JPS6351016B2 - - Google Patents
Info
- Publication number
- JPS6351016B2 JPS6351016B2 JP57191169A JP19116982A JPS6351016B2 JP S6351016 B2 JPS6351016 B2 JP S6351016B2 JP 57191169 A JP57191169 A JP 57191169A JP 19116982 A JP19116982 A JP 19116982A JP S6351016 B2 JPS6351016 B2 JP S6351016B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive power
- eye
- examined
- measurement
- optotype
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005259 measurement Methods 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 25
- 238000002577 ophthalmoscopy Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 210000004087 cornea Anatomy 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
Landscapes
- Eye Examination Apparatus (AREA)
Description
【発明の詳細な説明】
この発明は被検眼の屈折力を他覚的に測定する
装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for objectively measuring the refractive power of an eye to be examined.
眼鏡を調整するため眼の屈折力を測定する装置
として、近年測定時間が早いこと、測定に熟練を
要せず、従つて検者による測定差が少ない等の理
由により、数多くの他覚式自動屈折力測定装置が
提案されているが、これらの装置においても通常
他覚測定後自覚式検眼器による最終調整が行なわ
れている。従つて自動のものであれ、手動のもの
であれ、いずれにしても検者は他覚式と自覚式の
2台の装置を設置しなければならず、コスト、ス
ペース等をより多く必要とする欠点があつた。 In recent years, many objective automatic devices have been used as devices for measuring the refractive power of the eye to adjust eyeglasses, due to the fact that the measurement time is quick, no skill is required for measurement, and there is little difference in measurement between examiners. Although refractive power measurement devices have been proposed, even in these devices, final adjustment is usually performed using a subjective ophthalmoscope after objective measurement. Therefore, whether automatic or manual, the examiner must install two devices, one objective and one subjective, which requires more cost and space. There were flaws.
この発明の目的は、上記従来装置の欠点に鑑
み、1台の装置で他覚と自覚の両方の検査ができ
る眼屈折測定装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an ocular refraction measurement device that can perform both objective and subjective tests with a single device, in view of the drawbacks of the conventional devices.
上記目的を達するために、本発明は被検眼の眼
底に測定用視標を投影し、被検眼眼底上の該視標
像を検出し、被検眼の屈折力情報を得ることので
きる眼屈折力測定装置において、固視用視標を投
影する固視用視標投影系中に、自覚式検眼用の視
標を提示する手段及び軸角度(AXIS)柱面屈折
力(CYL)・球面屈折力(SPH)を変化させるこ
とができる矯正光学系を配置し、被検眼の自覚式
屈折力測定を可能にしたことを特徴としている。 In order to achieve the above object, the present invention projects an optotype for measurement onto the fundus of the eye to be examined, detects the optotype image on the fundus of the eye to be examined, and provides an eye refractive power capable of obtaining refractive power information of the eye to be examined. In the measuring device, means for presenting the visual target for subjective optometry in the fixation visual target projection system that projects the visual fixation target, and the axial angle (AXIS), cylindrical refractive power (CYL), and spherical refractive power. It is characterized by the arrangement of a corrective optical system that can change the (SPH), making it possible to measure the subjective refractive power of the eye to be examined.
以下、図面によりこの発明の詳細について説明
する。 The details of this invention will be explained below with reference to the drawings.
第1図はこの発明に係る眼屈折力測定装置の光
学系配置図であり、1は赤外領域に波長をもつ測
定用光源、2,3は集光レンズ、4は被検眼8の
眼底と共役な位置に配置されるべく移動可能なス
ポツト絞り(測定用視標、以下単にスポツト絞り
という)、5,6は対物レンズ、7,9はプリズ
ム、10はミラー、11,12はリレーレンズ、
13は被検眼8の角膜と共役な位置に配置されて
いる帯状の角膜反射除去マスク、14は前記スポ
ツト絞り4と共に移動する移動レンズ、15は結
像レンズである。16は測定用受光素子を示し、
前記測定用光源1および角膜反射除去マスク13
と同期して光軸を中心に回動するようになつてい
る。17は光軸上を移動可能な第1リレーレンズ
で、その移動量は被検眼の球面屈折力と比例関係
にある。 FIG. 1 is an optical system layout diagram of the eye refractive power measuring device according to the present invention, in which 1 is a measurement light source having a wavelength in the infrared region, 2 and 3 are condensing lenses, and 4 is the fundus of the eye 8 to be examined. A movable spot diaphragm (measurement target, hereinafter simply referred to as a spot diaphragm) to be placed at a conjugate position; 5 and 6 are objective lenses; 7 and 9 are prisms; 10 is a mirror; 11 and 12 are relay lenses;
13 is a band-shaped corneal reflection removal mask placed at a position conjugate with the cornea of the eye 8 to be examined; 14 is a movable lens that moves together with the spot diaphragm 4; and 15 is an imaging lens. 16 indicates a light receiving element for measurement;
The measurement light source 1 and the corneal reflection removal mask 13
It is designed to rotate around the optical axis in synchronization with the A first relay lens 17 is movable on the optical axis, and the amount of movement thereof is proportional to the spherical refractive power of the eye to be examined.
18,19は焦点距離の等しい正の円柱レンズ
であり、両者は同一方向又は反対方向に同量だけ
光軸を中心に回転可能になつている。なお公知の
ように2枚の円柱レンズで円柱成分を作り出すと
きは球面効果を考慮して補正する必要がある。2
0は第2リレーレンズ、21は第2リレーレンズ
20の焦点位置にある視標板で、固視用視標及び
一般視標が同一視野内に配置されている。 Reference numerals 18 and 19 are positive cylindrical lenses having the same focal length, and both lenses are rotatable about the optical axis by the same amount in the same direction or in opposite directions. As is well known, when creating a cylindrical component using two cylindrical lenses, it is necessary to take the spherical effect into account and make corrections. 2
0 is a second relay lens, 21 is an optotype plate located at the focal position of the second relay lens 20, and a fixation optotype and a general optotype are arranged in the same visual field.
なお、本実施例の視標板は1つの視標板上に固
視用視標及び一般視標が配置されているが、特開
昭53−130891号公報に記載されているように、周
方向に間隔をもつて視標が配置された回転円板で
あり、該円板を回転させることにより異なつた種
類の視標を光路中に挿入し得るようにしたもので
もよいことはいうまでもない。 In addition, in the optotype board of this example, the fixation optotype and the general optotype are arranged on one optotype board, but as described in JP-A-53-130891, It goes without saying that it may be a rotating disk on which optotypes are arranged at intervals in the direction, and that different types of optotypes can be inserted into the optical path by rotating the disk. do not have.
22は集光レンズ、23は照明ランプである。 22 is a condensing lens, and 23 is an illumination lamp.
第2図及び第3図は視標光学系の他の実施例を
示すものであり、第2図の18a,19aは焦点
距離の等しい正の円柱レンズであり両者は同一方
向又は反対方向に同量だけ光軸を中心に回転可能
になつている。第3図において18bは正の円柱
レンズであり光軸上を移動可能になつている。1
9bは負の円柱レンズを示し、正の円柱レンズ1
8bと一緒に光軸を中心に回転するようになつて
いる。さらにこれら両円柱レンズと第1リレーレ
ンズが一緒に光軸上を移動可能になつている。 Figures 2 and 3 show other embodiments of the target optical system, and 18a and 19a in Figure 2 are positive cylindrical lenses with equal focal lengths, and both lenses are aligned in the same direction or in opposite directions. It is possible to rotate around the optical axis by a certain amount. In FIG. 3, 18b is a positive cylindrical lens which is movable on the optical axis. 1
9b indicates a negative cylindrical lens, and the positive cylindrical lens 1
It is designed to rotate around the optical axis together with 8b. Further, both of these cylindrical lenses and the first relay lens are movable together on the optical axis.
第4図は視標光学系内の第1リレーレンズ17
及び円柱レンズ18,19を作動させる経路を示
すブロツク図であり、24は図示しないボデー側
部に設けられているダイヤルでロータリーエンコ
ーダの回転によりパルス信号を発生するようにな
つている。25はパルスカウンタ、26は他覚及
び自覚測定に関するすべての動作を制御するマイ
クロコンピユータ、27は表示器、28はパルス
モータドライバ、29は円柱レンズ18,19を
光軸を中心に回転させて柱面屈折力及び軸角度を
変えるためのパルスモータ、30はデジタル信号
をアナログ信号に変換させるD/A変換器、31
は第1リレーレンズ17を光軸に沿つて移動させ
球面屈折力を変えるためのDCモータ、32は
A/D変換器である。 Figure 4 shows the first relay lens 17 in the optotype optical system.
2 is a block diagram showing a path for operating the cylindrical lenses 18 and 19. Reference numeral 24 denotes a dial provided on the side of the body (not shown), which generates a pulse signal by rotating a rotary encoder. 25 is a pulse counter, 26 is a microcomputer that controls all operations related to objective and subjective measurement, 27 is a display, 28 is a pulse motor driver, and 29 is a column by rotating the cylindrical lenses 18 and 19 around the optical axis. A pulse motor for changing the surface refractive power and the axis angle; 30 a D/A converter for converting a digital signal into an analog signal; 31
32 is a DC motor for moving the first relay lens 17 along the optical axis to change the spherical refractive power, and 32 is an A/D converter.
以上のような構成となつており、光源1から出
た赤外光は集光レンズ2及び3、ススポツト絞り
4、対物レンズ5を経て被検眼8の角膜に集光し
眼底に到達する。一方照明ランプ23からの光は
集光レンズ22を通つて視標板21内の固視用視
標を被検眼8の眼底上に投影し、被検眼8を固視
させる。眼底から反射した光はミラー10で反射
し、リレーレンズ11,12は通過後結像レンズ
15によつて受光素子16上で結像する。受光素
子16は入射した光を検知し、マイクロコンピユ
ータ26にデジタル信号として供給される。被検
眼8に対するアライメント完了後測定ボタン(図
示せず)を押すと、マイクロコンピユータ26
は、スポツト絞り4の位置が被検眼8の眼底と共
役な位置にくるまで、スポツト絞り4と移動レン
ズ14を移動させる。 With the above structure, the infrared light emitted from the light source 1 passes through the condensing lenses 2 and 3, the spot diaphragm 4, and the objective lens 5, and is condensed on the cornea of the eye 8 to be examined, and reaches the fundus of the eye. On the other hand, the light from the illumination lamp 23 passes through the condensing lens 22 and projects the fixation target in the optotype plate 21 onto the fundus of the eye 8 to be examined, causing the eye 8 to fixate. The light reflected from the fundus of the eye is reflected by a mirror 10, and after passing through relay lenses 11 and 12, an image is formed on a light receiving element 16 by an imaging lens 15. The light receiving element 16 detects the incident light and supplies it to the microcomputer 26 as a digital signal. When the measurement button (not shown) is pressed after the alignment for the eye 8 to be examined is completed, the microcomputer 26
The spot diaphragm 4 and the movable lens 14 are moved until the spot diaphragm 4 is at a position conjugate with the fundus of the eye 8 to be examined.
同時に固視用視標が被検眼8の眼底上に結像し
た後、適当なデイオプタ分だけ雲霧がかかるよう
に第1リレーレンズ17を移動させる。その後、
測定用光源1、角膜反射除去マスク13及び測定
用受光素子16を光軸の回りに180゜移動させる。
回動中、受光素子からの信号によりスポツト絞り
4及び移動レンズ14は移動し、その移動量によ
り各経線に対する屈折力値を知ることができる。 At the same time, after the fixation target is imaged on the fundus of the eye 8 to be examined, the first relay lens 17 is moved so that it is fogged by an appropriate diopter. after that,
The measurement light source 1, the corneal reflection removal mask 13, and the measurement light receiving element 16 are moved 180° around the optical axis.
During rotation, the spot diaphragm 4 and the movable lens 14 are moved by signals from the light receiving element, and the refractive power value for each meridian can be determined from the amount of movement.
以上のような他覚的な測定が終つた後、自覚測
定切換え用スイツチ(図示せず)を押すと、マイ
クロコンピユータ26の制御により先ず他覚測定
で得た値の位置まで第1リレーレンズ17が移動
し、円柱レンズ18及び19が夫々回転する。従
つて、被検眼8は他覚測定で得られた屈折力を補
正した状態で一般視標を見ることになる。この状
態でもし被検者が例えば一般視標のうちの視力値
1.0に相当するランドルト環を視認できない場合
には以下の手動操作により自覚測定を行なう。測
定は球面屈折力、柱面屈折力及び軸角度それぞれ
について行なう。球面屈折力の測定を行なう場
合、球面屈折力測定用スイツチを押し、ダイヤル
24を回転させるとカウンタ25によりパルス信
号がマイクロコンピユータ26に入力され、D/
A変換器30を介してDCモータ31が作動し、
第1リレーレンズを光軸上で移動させる。柱面屈
折力の測定を行なう場合には、柱面屈折力測定ス
イツチを、軸角度の測定を行なう場合には軸角度
測定用スイツチを、各々押してダイヤル24を回
転させるとコンピユータ26によりパルスモータ
29が動作し、円柱レンズ18及び19を回転さ
せる。ダイヤル24は例えば2゜の回転によりパル
ス発生し、球面及び柱面屈折力については0.25D
に相当し、軸角度については1゜に相当するように
設定されている。ダイヤル24の回転に従つて表
示器27に屈折力値が表示される。第2図に示す
実施例の場合も全く同様である。第3図に示す実
施例においては、DCモータ31により第1リレ
ーレンズ17、円柱レンズ18b及び19bを一
体的に移動させて球面屈折力を、円柱レンズ18
bを移動させて柱面屈折力を設定する。またパル
スモータ29により円柱レンズ18b及び19b
が一体的に回転して軸角度を設定する。 When the subjective measurement switch (not shown) is pressed after the objective measurement as described above is completed, the first relay lens 17 is moved to the position of the value obtained in the objective measurement under the control of the microcomputer 26. moves, and the cylindrical lenses 18 and 19 rotate, respectively. Therefore, the eye 8 to be examined sees the general optotype with the refractive power obtained by objective measurement corrected. In this state, if the examinee were to
If the Landolt ring corresponding to 1.0 cannot be visually recognized, perform subjective measurement using the following manual operation. Measurements are made for each of the spherical refractive power, cylindrical refractive power, and axial angle. When measuring spherical refractive power, press the spherical refractive power measurement switch and rotate the dial 24. A pulse signal is input to the microcomputer 26 by the counter 25, and the D/
The DC motor 31 operates via the A converter 30,
The first relay lens is moved on the optical axis. When measuring the cylindrical refractive power, press the cylindrical refractive power measurement switch, and when measuring the axial angle, press the axial angle measurement switch to rotate the dial 24. Then, the computer 26 activates the pulse motor 29. operates to rotate the cylindrical lenses 18 and 19. For example, the dial 24 generates a pulse by rotating 2 degrees, and the spherical and cylindrical refractive power is 0.25D.
The axis angle is set to correspond to 1°. As the dial 24 is rotated, the refractive power value is displayed on the display 27. The same applies to the embodiment shown in FIG. In the embodiment shown in FIG. 3, the first relay lens 17 and the cylindrical lenses 18b and 19b are integrally moved by the DC motor 31 to change the spherical refractive power to the cylindrical lens 18.
Set the cylindrical refractive power by moving b. Moreover, the cylindrical lenses 18b and 19b are controlled by the pulse motor 29.
rotates together to set the shaft angle.
この実施例においては、第1リレーレンズが移
動するようになつているが、視標光学系内の他の
光学素子、例えば第2リレーレンズ、視標等を移
動させても同様な効果が得られる。 In this embodiment, the first relay lens is moved, but the same effect can be obtained by moving other optical elements in the optotype optical system, such as the second relay lens, optotype, etc. It will be done.
また、本実施例においては他覚式自動屈折力測
定装置を例にとつて説明したが、半手動式の装置
にも応用できることは明白である。更に、視標光
学系内に配置される矯正光学系は本実施例記載の
ものにとどまらないことはいうまでもない。 Furthermore, although the present embodiment has been described using an objective type automatic refractive power measuring device as an example, it is obvious that the present invention can also be applied to a semi-manual type device. Furthermore, it goes without saying that the correction optical system disposed within the target optical system is not limited to that described in this embodiment.
以上の説明から明らかなように固視用視標投影
系中に自覚式屈折力を測定するための光学系を配
置することにより、1台の装置により他覚測定終
了後直ちに精密で総合的な自覚測定が可能とな
る。また、固視用視標投影系中の部材を自覚検眼
用のものと兼用できるので、共用部品を多くで
き、コンパクトな装置にすることができる。 As is clear from the above explanation, by arranging the optical system for measuring subjective refractive power in the fixation target projection system, it is possible to quickly and accurately measure the subjective refractive power with one device. Subjective measurement becomes possible. Further, since the members in the visual target projection system for fixation can also be used for subjective optometry, the number of common parts can be increased, and the apparatus can be made compact.
第1図はこの発明に係る眼屈折度測定装置の光
学系配置図、第2図及び第3図は視標光学系の他
の実施例を示す光学系配置図、第4図はブロツク
図である。
1……測定用光源、4……スポツト絞り、5,
6……対物レンズ、8……被検眼、13……角膜
反射除去マスク、14……移動レンズ、16……
受光素子、17……第1リレーレンズ、18,1
9……円柱レンズ、21……視標板。
FIG. 1 is an optical system layout diagram of an eye refractometer according to the present invention, FIGS. 2 and 3 are optical system layout diagrams showing other embodiments of the target optical system, and FIG. 4 is a block diagram. be. 1...Light source for measurement, 4...Spot aperture, 5,
6... Objective lens, 8... Eye to be examined, 13... Corneal reflection removal mask, 14... Moving lens, 16...
Light receiving element, 17...first relay lens, 18,1
9...Cylindrical lens, 21...Optotype board.
Claims (1)
眼底上の該視標像を検出し、被検眼の屈折力情報
を得ることのできる眼屈折力測定装置において、
固視用視標を投影する固視用視標投影系中に、自
覚式検眼用の視標を提示する手段及び軸角度
(AXIS)柱面屈折力(CYL)・球面屈折力
(SPH)を変化させることができる矯正光学系を
配置し、被検眼の自覚式屈折力測定を可能とした
眼屈折力測定装置。1. In an eye refractive power measuring device capable of projecting a measurement optotype onto the fundus of the eye to be examined, detecting the image of the optotype on the fundus of the eye to be examined, and obtaining refractive power information of the eye to be examined,
In the fixation target projection system that projects the fixation target, the means for presenting the target for subjective ophthalmoscopy, the axis angle (AXIS), the cylindrical refractive power (CYL), and the spherical refractive power (SPH) are included. This eye refractive power measuring device is equipped with a variable corrective optical system and enables subjective refractive power measurement of the eye being examined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57191169A JPS5980227A (en) | 1982-10-29 | 1982-10-29 | Apparatus for measuring refractive force of eye |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57191169A JPS5980227A (en) | 1982-10-29 | 1982-10-29 | Apparatus for measuring refractive force of eye |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5980227A JPS5980227A (en) | 1984-05-09 |
JPS6351016B2 true JPS6351016B2 (en) | 1988-10-12 |
Family
ID=16270042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57191169A Granted JPS5980227A (en) | 1982-10-29 | 1982-10-29 | Apparatus for measuring refractive force of eye |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5980227A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61185242A (en) * | 1985-02-09 | 1986-08-18 | キヤノン株式会社 | Ophthalmic measuring apparatus |
JPS60222028A (en) * | 1984-04-19 | 1985-11-06 | 株式会社トプコン | Eye refrection inspection apparatus |
JPS61293427A (en) * | 1985-06-22 | 1986-12-24 | 株式会社トプコン | Apparatus for automatic measurement of eye refraction power |
JPS62148636A (en) * | 1985-12-21 | 1987-07-02 | 株式会社 ニデツク | Apparatus for transmitting refraction frequency |
JPS6323640A (en) * | 1987-05-29 | 1988-01-30 | 株式会社 ニデック | Ophthalmic apparatus |
JP2846633B2 (en) * | 1987-09-10 | 1999-01-13 | 株式会社ニデック | Refractive power inspection device |
JPH0716205A (en) * | 1993-12-24 | 1995-01-20 | Topcon Corp | Optometry device |
JP4426837B2 (en) * | 2003-12-22 | 2010-03-03 | 株式会社ニデック | Eye adjustment function measuring device |
JP4699069B2 (en) * | 2005-03-31 | 2011-06-08 | 株式会社ニデック | Optometry equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3524702A (en) * | 1968-09-06 | 1970-08-18 | John G Bellows | Apparatus for objectively and automatically refracting the eye |
US3791719A (en) * | 1969-11-06 | 1974-02-12 | Zeiss Stiftung | Method of and device for determining the state of refraction of a human eye |
US3874774A (en) * | 1973-06-20 | 1975-04-01 | Humphrey Research Associates I | Eye test apparatus |
JPS521993A (en) * | 1975-06-23 | 1977-01-08 | Nippon Chemical Ind | Apparatus for examining eye |
US4105302A (en) * | 1976-06-23 | 1978-08-08 | Tate Jr George W | Automatic refraction apparatus and method |
US4190332A (en) * | 1977-10-14 | 1980-02-26 | Acuity Systems, Incorporated | Method and apparatus for controlling visual refractive state of the eye |
JPS56125032A (en) * | 1980-03-07 | 1981-10-01 | Nippon Chemical Ind | Optometry apparatus |
JPS57117828A (en) * | 1980-11-29 | 1982-07-22 | Zeiss Stiftung | Subjective and objective reflex inspection apparatus |
JPS621723A (en) * | 1985-06-28 | 1987-01-07 | Toshiba Corp | Epoxy resin composition |
-
1982
- 1982-10-29 JP JP57191169A patent/JPS5980227A/en active Granted
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3524702A (en) * | 1968-09-06 | 1970-08-18 | John G Bellows | Apparatus for objectively and automatically refracting the eye |
US3791719A (en) * | 1969-11-06 | 1974-02-12 | Zeiss Stiftung | Method of and device for determining the state of refraction of a human eye |
US3874774A (en) * | 1973-06-20 | 1975-04-01 | Humphrey Research Associates I | Eye test apparatus |
JPS521993A (en) * | 1975-06-23 | 1977-01-08 | Nippon Chemical Ind | Apparatus for examining eye |
US4105302A (en) * | 1976-06-23 | 1978-08-08 | Tate Jr George W | Automatic refraction apparatus and method |
US4190332A (en) * | 1977-10-14 | 1980-02-26 | Acuity Systems, Incorporated | Method and apparatus for controlling visual refractive state of the eye |
JPS56125032A (en) * | 1980-03-07 | 1981-10-01 | Nippon Chemical Ind | Optometry apparatus |
JPS57117828A (en) * | 1980-11-29 | 1982-07-22 | Zeiss Stiftung | Subjective and objective reflex inspection apparatus |
JPS621723A (en) * | 1985-06-28 | 1987-01-07 | Toshiba Corp | Epoxy resin composition |
Also Published As
Publication number | Publication date |
---|---|
JPS5980227A (en) | 1984-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2268637C2 (en) | Aberration meter provided with vision acuity testing system (versions), device and method of adjustment | |
EP1138254A1 (en) | Keratometer/pachymeter | |
JP3168212B2 (en) | Eye refractive power measuring device | |
US3602580A (en) | Method and optical system for refracting eyes | |
US4529280A (en) | Apparatus for subjectively measuring the refractive power of an eye | |
US4444476A (en) | Objective refractometers | |
EP1138252A2 (en) | Ophthalmic apparatus for measuring and analysing refractive power distribution | |
JPS6351016B2 (en) | ||
JP3655071B2 (en) | Eye refractive power measurement device | |
JP3636917B2 (en) | Eye refractive power measurement device | |
JP2003164425A (en) | Perimeter | |
JP2005137662A (en) | Ophthalmological measuring apparatus | |
JP2775183B2 (en) | Eye accommodation power measuring device | |
JPS6117494B2 (en) | ||
JPH0323043B2 (en) | ||
JPH0612729Y2 (en) | Optometry device | |
JPH09271461A (en) | Ophthalmometer | |
JPH0410332B2 (en) | ||
JPH0439332B2 (en) | ||
JP2897211B2 (en) | Optometry device | |
JPH0430291B2 (en) | ||
JPH06304140A (en) | Eye examination device | |
JPS6028401Y2 (en) | Screening machine used for optometry, etc. | |
JPH0554326B2 (en) | ||
JPS621723B2 (en) |