[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03275109A - Filter base material - Google Patents

Filter base material

Info

Publication number
JPH03275109A
JPH03275109A JP2075870A JP7587090A JPH03275109A JP H03275109 A JPH03275109 A JP H03275109A JP 2075870 A JP2075870 A JP 2075870A JP 7587090 A JP7587090 A JP 7587090A JP H03275109 A JPH03275109 A JP H03275109A
Authority
JP
Japan
Prior art keywords
pas
base material
filter base
polyarylene sulfide
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075870A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ono
善之 小野
Tsunehiko Nishimura
恒彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2075870A priority Critical patent/JPH03275109A/en
Publication of JPH03275109A publication Critical patent/JPH03275109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the filter base material easy to produce and excellent in physical properties by injecting a gas into a viscous polyarylene sulfide (PAS) to blow off the PAS and using the product PAS short fiber. CONSTITUTION:A gas is injected into a viscous PAS to blow off the PAS, and the product PAS short fiber is used to obtain a filter base material. A mat material obtained by combining the short fiber with a carbide short fiber is used when mechanical strength is required. The PAS short fiber is heat- treated at a temp. above the glass transition temp. of PAS at an optional stage between the production of the PAS short fiber and the production of the filter base material. The molten PAS flows at 500-3000g/10min. Since the filter base material is produced from the PAS fiber excellent in resistance to heat and chemicals, the base material is more easily produced than before, and the physical properties are excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粘稠状態のポリアリーレンスルフィド樹脂(
以下、P’ASと略す。)に気体を噴射し、吹きとばす
ことにより得られるPAS短繊維を用いてなるフィルタ
ー基材に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a polyarylene sulfide resin in a viscous state (
Hereinafter, it will be abbreviated as P'AS. ), and relates to a filter base material made of PAS short fibers obtained by injecting gas and blowing it away.

〔従来技術〕[Prior art]

PAS、特にその中でも代表的なポリフェニレンサルフ
ァイド樹脂(以下、PPSと略す。)を繊維化し、それ
を用いてフィルター基材とすることは知られている。例
えば、特公昭52−30609公報に溶融紡糸法により
紡糸・延伸したフィラメントを製造し、次に該フィラメ
ントから作った織物よりなるフィルター基材の開示があ
る。又PPSを溶融紡糸・延伸後けん縮をイ」与し、次
いでカットし、更にカーデイング後にニードルパンチ等
の処理を施した不織布或いは紡糸後にそのままニードル
パンチ等の処理を施した不織布(スパンボンド法)など
もフィルター基材として知られる。
It is known that PAS, particularly polyphenylene sulfide resin (hereinafter abbreviated as PPS), which is a typical PAS, is made into fibers and used as a filter base material. For example, Japanese Patent Publication No. 52-30609 discloses a filter base material made of a woven fabric made from filaments that are spun and drawn by a melt spinning method and then made from the filaments. In addition, nonwoven fabrics made by melt-spinning and stretching PPS, then crimped, then cut, carded, and then subjected to treatments such as needle punching, or nonwoven fabrics that were subjected to treatments such as needle punching after spinning (spunbond method). etc. are also known as filter base materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、いずれの場合も紡糸に用いるポリマーは
製糸技術−に溶融粘度を少くとも1.000ボイズ以−
ヒに上げる必要があるため必らず高分子量のポリマーが
用いられていた。ところがPPSは融点が比較的高く、
このためかなり高温の紡糸条件を設定せざるを得ないが
、このような過酷な条件下ではポリマー分解、ガス発生
、ゲル化をおこし易くそのためノズル詰りなども発生し
て安定した紡糸が難しい欠点があった。
However, in either case, the polymer used for spinning has a melt viscosity of at least 1.000 voids or more depending on the spinning technology.
High molecular weight polymers were always used because of the need to increase the temperature. However, PPS has a relatively high melting point;
For this reason, spinning conditions must be set at fairly high temperatures, but under such harsh conditions, polymer decomposition, gas generation, and gelation are likely to occur, which can also cause nozzle clogging, making stable spinning difficult. there were.

また、通常、PAS繊維からフィルター基材を得るまで
には該繊維のけん縮工程、カット・工程、カーデイング
工程などの各種工程を必要とする欠点もある。しかも、
従来の工程を経て得られたフィルター基材の場合には、
フィルター使用後の回復性が劣る、いわゆる”へたり”
かめられる欠点も解消できなかった。
Another disadvantage is that various steps such as crimping, cutting, and carding of the fibers are usually required before a filter base material is obtained from the PAS fibers. Moreover,
In the case of filter base materials obtained through conventional processes,
Poor recovery after filter use, so-called "settling"
It also failed to resolve its perceived shortcomings.

このように、従来法によりつくられるPAS繊維を用い
てなるフィルター基材ては、多くの工程を設ける必要が
あり、また原料PASも汎用の射出成型用の低溶融粘度
PASは使用出来ずに高分子量ポリマーが必要で、その
紡糸工程に於いて難しい種々の問題点を塗し、しかもそ
のフィルター物性にも欠点があった。
In this way, filter base materials made using PAS fibers made by conventional methods require many steps, and the raw material PAS has a high melt viscosity that cannot be used for general-purpose injection molding. It requires a molecular weight polymer, which poses various problems in the spinning process, and also has drawbacks in its filter properties.

本発明の目的は、耐熱性・耐薬品性にずくれた特徴を有
しているPAS繊維を用いた安価でしかも良好な物性を
有するフィルター暴利を従供するにある。
An object of the present invention is to provide a filter that is inexpensive and has good physical properties using PAS fibers that have excellent heat resistance and chemical resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の課題を解決ずべ(鋭意研究した結
果、本発明を完成するに至った。
The present inventors have completed the present invention as a result of intensive research to solve the above problems.

即ち、本発明は′粘稠状態のポリアリーレンスルフィド
に気体を噴則し、吹きとばずことにより得られるポリア
リーレンスルフィド短繊維を用いてなるフィルター基材
に関する。
That is, the present invention relates to a filter base material using polyarylene sulfide short fibers obtained by injecting gas into viscous polyarylene sulfide and blowing it away.

本発明においてPASを繊維化する手段は通常の紡糸法
とは異なり、粘稠状態のPASに気体を噴射し、吹きと
ばすことによる。かかる紡糸法は、ノズルより吐出され
る溶融PAS糸に気体を、好適には紡糸温度と同等程度
のおよそ250℃〜350℃の気体を吹き当て効率よく
延伸する方法であり、ノズルの孔径と温度、吐出圧、ま
たは気体の温度、噴出角度及び流量などを変えることに
より、平均繊維径数μmから数10μm、平均繊維長5
〜300tmの繊維化が可能である。気体噴則による繊
維化手段のうちでも、特に、噴射する気体が進行する熔
融状態のPASの中心軸に垂直な横断面の外周に幻する
接線方向成分を有すると共に、溶融PASの進行に沿っ
てまず中心軸に徐々に接近し、次に前記中心軸から徐々
に離れて行く成分を有する気体であり、この気体を流出
する熔融PASに接触せしめる、いわゆる“渦流法゛に
よる繊維化手段(特公昭58−57374号公報参照)
は、カール状のPAS短繊維を与える。このカール状短
繊維では繊維同志が微妙にからみ合うのでフィルター基
材の形状保持が容易であり、しかもフィルターを実際に
使用した後の回復性に優れる等の特徴がある。また繊維
の物性も、引張強度30〜70kg/cmと良好なので
その利用は好適である。
In the present invention, the means for forming PAS into fibers is different from the usual spinning method, and involves injecting and blowing gas into viscous PAS. This spinning method is a method of efficiently stretching the molten PAS yarn discharged from a nozzle by blowing gas, preferably at a temperature of about 250°C to 350°C, which is about the same as the spinning temperature. By changing the discharge pressure, gas temperature, jetting angle, flow rate, etc., the average fiber diameter can be changed from several μm to several tens of μm, and the average fiber length is 5 μm.
Fiberization of ~300 tm is possible. Among the fiberization means based on the gas injection law, in particular, the injected gas has a tangential component appearing on the outer periphery of the cross section perpendicular to the central axis of the molten PAS, and along the progress of the molten PAS. The gas has components that first gradually approach the central axis and then gradually move away from the central axis, and this gas is brought into contact with the outflowing molten PAS, using the so-called "eddy current method" (Special Publications Show). (Refer to Publication No. 58-57374)
gives curled PAS short fibers. These curled short fibers are delicately intertwined with each other, making it easy to maintain the shape of the filter base material, and also having excellent recovery properties after the filter is actually used. Furthermore, the physical properties of the fibers are good, with a tensile strength of 30 to 70 kg/cm, so their use is suitable.

上記手段によって繊維化された繊維は、水平に移動する
負圧にされたメソシュベルト等の」−に捕集・堆積され
、さらに例えば定」ロールに通され、比較的高密度なマ
ツI・状繊維(RAS原綿マント)として形成される。
The fibers made into fibers by the above means are collected and deposited on a horizontally moving mesobelt or the like under negative pressure, and then passed through, for example, a fixed roll to form a relatively dense pine I-shaped fiber. Formed as fiber (RAS raw cotton mantle).

メソシュコンベアの速度を調整することにより、マント
状繊維の厚さを調整することができ、得られたマント状
繊維はこのままフィルター基材として用いることが可能
なので、フィルター基材の調製は非常容易である。
By adjusting the speed of the mesh conveyor, the thickness of the cloak-like fiber can be adjusted, and the obtained cloak-like fiber can be used as it is as a filter base material, so it is very easy to prepare the filter base material. It is.

本発明に係わるフィルター基材に用いられるPAS短繊
維としては、前記繊維化手段によって得られるPAS原
綿マントの形態がそのまま利用できるほか、該原綿マン
トを単独又は数枚積層した物をニードルパンチし高密度
化することによって均一な不織布としたもの、あるいは
該原綿マソトに適当なバイングーをスプレー加工したも
の等の形態のものも利用できる。
As the PAS short fibers used in the filter base material according to the present invention, the form of the PAS raw cotton mantle obtained by the above-mentioned fiberization method can be used as is, or the raw cotton mantle can be needle-punched singly or laminated with several sheets to make it high. It can also be used in the form of a uniform non-woven fabric made by densification, or one in which the raw cotton is sprayed with a suitable bangu.

また、気体噴射によって紡糸されたPAS短繊維は短時
間の内にベルトコンベアー上へ到達するため時として充
分熱処理されないまま原綿マットを形成することになる
。用途によっては熱安定性が必ずしも充分でない場合が
あるので、これを熱処理することは有用である。その際
の温度は繊維化されるPASのガラス転移温度以上が好
ましい。
Furthermore, since the PAS short fibers spun by gas injection reach the belt conveyor within a short time, they sometimes form raw cotton mats without being sufficiently heat-treated. Since thermal stability may not necessarily be sufficient depending on the application, heat treatment is useful. The temperature at that time is preferably higher than the glass transition temperature of the PAS to be made into fibers.

熱処理の方法として該短繊維或いはマントをそのまま熱
処理炉中に挿入してもよいが、PAS短繊維の極限伸び
が小さくなる、また引張強さが低下するなどの点を防止
する意味から、PAS短繊維の収縮を最小にとどめるよ
うにした状態、即ちPAS短繊維を定長下で熱処理する
ことがより望ましい。このような定長下での方法として
は、例えば高密度に埋め込まれた多数のニードル状物、
あるいはネ・ノド、ローラーによってマントを押えこん
だり、吸引することによって該マットを固定するなどが
あるがこれらの方法に限定されるものではない。以上の
操作によって得られたマットはそのまま使用してもよく
、さらにこれを開繊しウェッブを形成した後、ニードル
パンチ等適当な方法に依って不織布化して使用しても良
い。また、熱処理は該マント、もしくは不織布を実際に
使用する形状に底形した後に行なってもよく、その際の
温度、その他の条件は上記に準する。
As a heat treatment method, the short fibers or mantle may be inserted as they are into a heat treatment furnace, but in order to prevent the ultimate elongation of the PAS short fibers from becoming small and the tensile strength from decreasing, It is more desirable to heat-treat the PAS short fibers in a state that minimizes the shrinkage of the fibers, that is, under a constant length. As a method under such a fixed length, for example, a large number of needle-like objects embedded at high density,
Alternatively, the mat may be fixed by pressing down the cloak with a roller or by suction, but the method is not limited to these methods. The mat obtained by the above operation may be used as it is, or it may be opened to form a web and then made into a non-woven fabric by a suitable method such as needle punching. Further, the heat treatment may be carried out after shaping the cloak or nonwoven fabric into a shape to be actually used, and the temperature and other conditions at that time are similar to those described above.

本発明に係わるフィルター基材の原料であるPASは、
構造式(−Ar−3−)、1(Ar :アリーレン基)
で表される重合体である。ここで、アリーレン基の−A
r−は、p−フェニレン、m−フェニレン、0−フェニ
レン、2.6−ナフタレン、414′ビフエニレンなど
、あるいは 2個の炭素数6の芳香環を含む2価の芳香環残基であり
、さらに、各芳香環にはF、 Cj! 、 Br+ C
H3などの置換基が導入されることもある。これらは、
ホモポリマーであっても、ランダム共重合体であっても
、ブロック共重合体であってもよい。
PAS, which is the raw material for the filter base material according to the present invention, is
Structural formula (-Ar-3-), 1 (Ar: arylene group)
It is a polymer represented by Here, -A of the arylene group
r- is p-phenylene, m-phenylene, 0-phenylene, 2.6-naphthalene, 414'biphenylene, etc., or a divalent aromatic ring residue containing two 6-carbon aromatic rings, and , each aromatic ring has F, Cj! , Br+C
Substituents such as H3 may also be introduced. these are,
It may be a homopolymer, a random copolymer, or a block copolymer.

特に、粘度が比較的低粘度となる直鎖状のPASの使用
が好ましい。
In particular, it is preferable to use linear PAS which has a relatively low viscosity.

このようなPASは、ASTM D−1238−70に
準し、温度条件を結晶性樹脂の場合は融点+30℃に、
非晶性樹脂の場合はガラス転移温度+100 ℃に設定
、荷重を5 kgとして測定した溶融流れの値が500
〜3000の範囲にある。
Such PAS is based on ASTM D-1238-70, and in the case of crystalline resin, the temperature conditions are set to melting point +30°C,
In the case of amorphous resin, the melt flow value measured with the glass transition temperature + 100 °C and a load of 5 kg is 500.
~3000.

また、上記したPASの中でも、以下に詳述するPPs
、ポリフェニレンスルフィドケトン樹脂(以下、PP5
にと略す)、更にはP P、S部分とポレフェニレンス
ルフイドスルホン(以下、ppssと略す。)部分から
なるブロック共重合体などは諸物性に優れており、その
使用は好適である。
In addition, among the above-mentioned PAS, the PPs detailed below
, polyphenylene sulfide ketone resin (hereinafter referred to as PP5)
Furthermore, block copolymers consisting of a PP, S moiety and a polyphenylene sulfide sulfone (hereinafter abbreviated as ppss) moiety have excellent physical properties and are suitable for use.

PPSは、構造式 90モル%以上含む重合体である。PPSに100 (R:アルキル、フェニル、アルコキシ、ニトロ、ハロ
ゲン基のいずれか。)などである。これらの構造成分の
一部は、重合体の合成過程や後処理過程中に形成される
ものである。
PPS is a polymer containing 90 mol% or more of the structural formula. PPS is 100 (R: any one of alkyl, phenyl, alkoxy, nitro, or halogen group). Some of these structural components are formed during the polymer synthesis process or post-treatment process.

かかるPPSば一般的な製造法、例えば(1)ハロゲン
置換芳香族化合物と硫化アルカリとの反応(米国特許第
2513188号明細書、特公昭4427671号およ
び特公昭45−3368号参照)(2)チオフェノール
類のアルカリ触媒又は銅塩等の共存下における縮合反応
(米国特許第3274165号、英国特許第11606
60号参照)(3)芳香族化合物を塩化硫黄とのルイス
酸触媒共存下における縮合反応(特公昭46−2725
5号、ヘルギー特許第29437号参照)等により合成
されるものであり、目的に応じ任意に選択し得る。
Such PPS can be produced by common methods such as (1) reaction of a halogen-substituted aromatic compound with an alkali sulfide (see U.S. Pat. No. 2,513,188, Japanese Patent Publication No. 4427671 and Japanese Patent Publication No. 45-3368); (2) thio Condensation reaction of phenols in the coexistence of an alkali catalyst or copper salt, etc. (US Patent No. 3,274,165, British Patent No. 11,606)
60) (3) Condensation reaction of aromatic compounds with sulfur chloride in the presence of a Lewis acid catalyst (Japanese Patent Publication No. 46-2725
No. 5, Hergie Patent No. 29437), etc., and can be arbitrarily selected depending on the purpose.

1 本発明において使用するPPSの場合、その溶融流れ(
316℃,5kg荷重)は、7oo〜3oo。
1 In the case of PPS used in the present invention, its melt flow (
316°C, 5kg load) is 7oo to 3oo.

8710分、好ましくは1000〜20008710分
の範囲である。
8710 minutes, preferably in the range of 1000 to 20008710 minutes.

PP5には、繰り返し単位 (式中−CO−基及び−3−基は、ヘンゼン環を介して
ハラ位に結合)を主構成要素とする高耐熱性樹脂である
。高い耐熱性を持つためには、主構成要素として前記繰
り返し単位が50重量%を超え、より好ましくは60重
量%以上含んでいることが好ましい。前記繰り返し単位
が50重量%以下では、樹脂の結晶性が低下し、それに
伴って耐熱性も低下する恐れがある。前記繰り返し単位
以外の異種繰り返し単位としては (但し、−CO−基および−3−基がヘンゼン環をかい
してハラ位に結合したものを除く)2 下のアルキル基、mはO〜4の整数)などが挙げられる
PP5 is a highly heat-resistant resin whose main constituent is a repeating unit (in the formula, the -CO- group and -3- group are bonded to the hala position via a Hensen ring). In order to have high heat resistance, it is preferable that the content of the repeating unit as a main constituent exceeds 50% by weight, more preferably 60% by weight or more. If the content of the repeating unit is 50% by weight or less, the crystallinity of the resin may decrease, and the heat resistance may also decrease accordingly. Different types of repeating units other than the above-mentioned repeating units include (excluding those in which -CO- and -3- groups are bonded to the hala position through the Hensen ring) 2. The lower alkyl group, m is O to 4. (integer), etc.

そのPP5にの溶融流れ(390℃、5kg荷重)は、
500〜3000g/10分、好ましくは700〜15
00g/10分の範囲である。
The melt flow to PP5 (390℃, 5kg load) is:
500-3000g/10 minutes, preferably 700-15
It is in the range of 00 g/10 minutes.

また、PPS部分とPP5S部分からなるプロ(PPS
)を繰り返し単位とするポリマ一部分と、り返し単位と
するポリマ一部分のブロック共重合体で、特開昭62−
115030号公報や特開昭63278935号公報な
どに示されている製造法によって得ることができる。例
えば、硫化ナトリウムとビス(p−クロルフェニル)ス
ルホンとをN−メチルピロリドン中で反応させて得た末
端クロルフェニル基型PP5Sと、硫化ナトリウムとp
−ジクロルベンゼンとをN−メチルピロリドン中で反応
させて得た末端ナトリウムスルフィド基型PPS3 4 とをN−メチルピロリドン中で加熱する方法などにより
得ることができる。
In addition, there is a professional (PPS) consisting of a PPS part and a PP5S part.
) as a repeating unit and a block copolymer consisting of a polymer part as a repeating unit, disclosed in JP-A-62-
It can be obtained by the manufacturing method disclosed in JP-A No. 115030, JP-A-63278935, and the like. For example, PP5S with a terminal chlorphenyl group obtained by reacting sodium sulfide and bis(p-chlorophenyl)sulfone in N-methylpyrrolidone, and sodium sulfide and p-chlorphenyl
-dichlorobenzene in N-methylpyrrolidone and heating terminal sodium sulfide group type PPS3 4 in N-methylpyrrolidone.

該ブロック共重合体におけるppss部分の割合は10
〜99モル%の範囲であり、好ましくは30〜70モル
%の範囲である。
The proportion of ppss moieties in the block copolymer is 10
The range is 99 mol%, preferably 30 to 70 mol%.

また該ブロック共重合体には、製造上から含まれうるP
PSのホモポリマー、PP5Sのホモポリマー、フェニ
レンスルフィドスルホンとフェニレンスルフィドのラン
ダム共重合体を、本発明の効果を損なわない範囲内であ
れば含んでいてもかまわない。
In addition, the block copolymer contains P that may be contained during production.
A homopolymer of PS, a homopolymer of PP5S, and a random copolymer of phenylene sulfide sulfone and phenylene sulfide may be included as long as they do not impair the effects of the present invention.

このようなブロック共重合体の溶融流れ(316℃,5
kg荷重)は、500〜3000g/10分、好ましく
は700〜1500g/10分の範囲である。
Melt flow of such a block copolymer (316 °C, 5
kg load) is in the range of 500 to 3000 g/10 minutes, preferably 700 to 1500 g/10 minutes.

本発明に係わるフィルター基材は、気体噴射により繊維
化したPAS短繊維のマット状物を用いるもののほか、
特に機械的な強度を要求されるよう用途においては、該
短繊維に短繊維の炭化繊維を組み合わせたマント状物を
用いることが望ましい。
The filter base material according to the present invention uses a mat-like material of PAS short fibers made into fibers by gas injection, as well as
Particularly in applications where mechanical strength is required, it is desirable to use a cloak-like material in which the short fibers are combined with short carbonized fibers.

短繊維の炭化繊維としては、アスペクト比が50以上、
好ましくは200〜1500の炭素繊維が用いられる。
The short carbonized fibers have an aspect ratio of 50 or more,
Preferably 200 to 1500 carbon fibers are used.

当該マント状物の形態としては、PAS短繊維そのまま
もしくはPAS原綿マントを開繊したのち短繊維の炭化
繊維を混綿した物、あるいは更にニードルパンチし不織
布にした物、または該PAS原綿マットとマット状とし
た炭素繊維とを積層した物をニードルパンチしたPAS
炭素繊維積層不織布が好適である。熱処理は該マント、
もしくは不織布に対しそのまま行なってもよく、実際に
使用する形状に底形した後行なってもよい。
The form of the cloak-like product may be PAS short fibers as they are, PAS raw cotton cloaks opened and then mixed with carbonized short fibers, or needle-punched non-woven fabrics, or PAS raw cotton mats and mat-like materials. PAS is made by needle-punching a layered layer of carbon fiber.
Carbon fiber laminated nonwoven fabric is preferred. Heat treatment is applied to the cloak,
Alternatively, it may be applied to the nonwoven fabric as it is, or it may be applied after shaping the bottom into the shape to be actually used.

〔実施例〕〔Example〕

次いで、本発明を実施例により更に詳しく説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 ^STM D−1238−70に基ずき、温度316℃
、荷重5 kgの条件で測定した溶融流れ1300g/
10分のPPSを渦流法により紡糸し、これを直接べ5 6 ルトコンヘアー上に受は繊維長80〜150■、嵩密度
が約0.01g/cIn3、見かけ厚さが約2On+、
ガーレーデンソメータ−で計った空気の透過速度は36
000 (cm2/sec−atm)のマットを得た。
Example 1 Based on STM D-1238-70, temperature 316°C
, melt flow 1300g/measured under a load of 5kg.
PPS for 10 minutes was spun using the eddy current method, and the fiber length was 80 to 150 cm, the bulk density was about 0.01 g/cIn3, and the apparent thickness was about 2 On+.
The air permeation rate measured with a Gurley densometer is 36
000 (cm2/sec-atm) was obtained.

これをMAT−1とする。This is designated as MAT-1.

実施例2 MAT−1に5g/am2の荷重をかけ、これを140
℃に保った恒温槽中に5分間放置し、得られた熱処理後
のマントをMAT−2とする。
Example 2 A load of 5 g/am2 was applied to MAT-1, and this was
The cloak was left for 5 minutes in a constant temperature bath kept at 0.degree. C., and the resulting heat-treated cloak was designated as MAT-2.

MAT−2の嵩密度は約0.2g/ω3、ガーレーデン
ソメータ−で計った空気の透過密度200(c+n2/
sec  −atm)、見かけ厚さは約111であった
The bulk density of MAT-2 is approximately 0.2 g/ω3, and the air permeation density measured with a Gurley densometer is 200 (c+n2/
sec-atm), and the apparent thickness was about 111.

実施例3 MAT−1をニードルパンチ機によって針深度20tm
、針密度120本/cflI2、毎分400ストローク
なる条件でニードルパンチすることにより、目付600
g/m2、みかけ厚さ7 inの不織布とし、これをM
AT−3とする。MAT−3の嵩密度は0.03g/c
m3ガーレーデンソメータ−で計った空気の透過速度は
10000 (Cm”/ sec−atm)であった。
Example 3 MAT-1 was punched to a needle depth of 20 tm using a needle punch machine.
By needle punching at a needle density of 120 needles/cflI2 and 400 strokes per minute, a fabric weight of 600 was obtained.
g/m2, with an apparent thickness of 7 inches, and
It is called AT-3. The bulk density of MAT-3 is 0.03g/c
The air permeation rate measured with an m3 Gurley densometer was 10,000 (Cm''/sec-atm).

また、このMAT−3を排気ダクトに装着し、1力月使
用した。排気ダクト内の中心部の風速は約1m/sec
であった。使用後のMAT−3の厚みを測定したところ
6uであった。
In addition, this MAT-3 was attached to the exhaust duct and used for one month. The wind speed at the center of the exhaust duct is approximately 1 m/sec.
Met. The thickness of MAT-3 after use was measured and was 6u.

比較例1 ^STM D−1238−70に基ずき、温度316℃
、荷重5 kgの条件で測定した溶融流れ300g/1
0分のPPSを通常の溶融紡糸法によって紡糸し、単糸
28μmのPPS繊維を得た。
Comparative Example 1 Based on ^STM D-1238-70, temperature 316°C
, melt flow 300 g/1 measured under the condition of 5 kg load.
0 minute PPS was spun by a normal melt spinning method to obtain a single PPS fiber with a diameter of 28 μm.

これを実施例3と同様のスパンボンド法によってみかけ
厚さ7m、日付け600 g/mの不織布とした。但し
、MAT−3と同じ嵩密度(0,03g/cm”)を有
するようにするために平均30山/インチのケン縮を有
するように処理しなければならなかった。
This was made into a nonwoven fabric with an apparent thickness of 7 m and a weight of 600 g/m using the same spunbond method as in Example 3. However, in order to have the same bulk density as MAT-3 (0.03 g/cm''), it had to be treated to have an average shrinkage of 30 peaks/inch.

この不織布を用い、実施例3のMAT−3と同様に排気
ダクトに装着し、1力月使用した。使用後のみかけ厚み
を測定すると4flであった。
This nonwoven fabric was attached to an exhaust duct in the same manner as MAT-3 in Example 3, and used for one month. The apparent thickness after use was measured to be 4 fl.

実施例4 7 8 MAT−3を5 g / cm 2の荷重をかけ、19
0℃に保った恒温槽中に3分間放置し、得られたフェル
トをMAT−4とする。MAT−4の性状は見かけ厚さ
約LNN、嵩密度0.58/cm”、ガーレーデンソメ
ータ−で計った空気の透過速度は150(cm2/ s
ec−atm)であった。
Example 4 78 MAT-3 was loaded with 5 g/cm2 and 19
The felt was left in a constant temperature bath kept at 0° C. for 3 minutes, and the resulting felt was designated as MAT-4. The properties of MAT-4 are that the apparent thickness is approximately LNN, the bulk density is 0.58/cm", and the air permeation rate measured with a Gurley densometer is 150 (cm2/s).
ec-atm).

実施例5 MAT−2をカード機により開繊後、実施例3と同様に
ニードルバンチすることにより目付750g / m 
2の不織布どし、これをMAT−5とする。
Example 5 After opening MAT-2 using a card machine, needle bunching was performed in the same manner as in Example 3 to obtain a fabric weight of 750 g/m.
The nonwoven fabric of No. 2 is referred to as MAT-5.

MAT−5の性状は嵩密度0.04g/cm3、ガーレ
ーデンソメータ−で計った空気の透過速度ば7.000
(cm2/ sec−atm)であった〇実施例6 レゾール型フェノール樹脂(大日本インキ化学工業(株
)製“プライオーフェン”)を不揮発分が約8wt%と
なるように希釈し、それをMAT5の両面にスプレーに
より均一に散布し、続いてローラーをかけることにより
含浸させた。不織布重量に対する樹脂固形分の割合は0
.35倍であり、目付900 g/m”とした。含浸後
フェルトを110℃にて3分間乾燥した。これをMAT
−6とする。MAT−6の性状は嵩密度0.06g/c
m’ガーレーデンソメータ−で計った空気の透過速度は
5,000(cfn”/ sec−atm)であった。
The properties of MAT-5 include a bulk density of 0.04 g/cm3 and an air permeation rate of 7.000 as measured by a Gurley densometer.
(cm2/sec-atm) Example 6 A resol type phenolic resin (“Pryophen” manufactured by Dainippon Ink and Chemicals Co., Ltd.) was diluted so that the nonvolatile content was about 8 wt%, and it was diluted with MAT5. It was evenly distributed on both sides by spraying and then impregnated by rolling. The ratio of resin solid content to nonwoven fabric weight is 0
.. 35 times, and the basis weight was 900 g/m''. After impregnation, the felt was dried at 110°C for 3 minutes.
-6. The properties of MAT-6 are bulk density 0.06g/c
The air permeation rate measured by m' Gurley densometer was 5,000 (cfn''/sec-atm).

実施例7 MAT−2を開繊後、炭素繊維ドナカーボ■5210 
(ピッチ系炭素繊維、(株)トナツク製)と混綿し、目
付600 g/m3 となるよう実施例3と同様にニー
ドルバンチし不織布とした。これをMAT−7とする。
Example 7 After opening MAT-2, carbon fiber Dona Carbo ■5210
(pitch-based carbon fiber, manufactured by Tonatsuku Co., Ltd.) and needle bunched to give a basis weight of 600 g/m3 in the same manner as in Example 3 to obtain a nonwoven fabric. This will be referred to as MAT-7.

この物の性状は嵩密度0.05g/cm’、ガーレーデ
ンソメータ−で計った空気の透過速度8000(cm2
/ sec−atm)であった。
The properties of this material include a bulk density of 0.05 g/cm' and an air permeation rate of 8000 (cm2) measured with a Gurley densometer.
/sec-atm).

実施例8 ASTM D−1238−70に基すき、温度316℃
1荷重5 kgの条件で測定した溶融流れが540g/
10分のPPS部分とPPSS部分からなるブロック共
重合体(PPSS  40モル%含有)を渦流法により
紡糸し、これを直接へルトコンベアー上に受け、繊維長
50〜]、 30 ms、嵩密度が約0.O]、g9 0 70m3、見かけ厚さが約2011、ガーレーデンソメ
ータ−で計った空気の透過速度は40000(cm2/
sec  −atm)のマットを得た。
Example 8 Based on ASTM D-1238-70, temperature 316°C
The melt flow measured under the condition of 1 load of 5 kg was 540 g/
A block copolymer (containing 40 mol% of PPSS) consisting of a 10-minute PPS part and a PPSS part was spun by the eddy current method, and this was directly received on a helt conveyor to obtain a fiber length of 50 ~], 30 ms, and a bulk density of Approximately 0. O], g9 0 70m3, apparent thickness is approximately 2011, air permeation rate measured with Gurley densometer is 40000 (cm2/
sec-atm) was obtained.

実施例9 ASTM 04238−70法に基すき、温度390′
C,荷重5 kgの条件で測定した溶融流れが↓500
g/10分のポリフェニレンスルフィドケトンを渦流法
により紡糸し、これを直接へルトコンベアー上に受け、
繊維長60−1.50 w、嵩密度が約0.O1g/c
m3見かけ厚さが約2011、ガーレーデンソメータ−
で計った空気透過速度は38,000 (cm215e
ca tm)のマットを得た。
Example 9 Based on ASTM 04238-70 method, temperature 390'
C, the melt flow measured under the condition of 5 kg load is ↓500
g/10 minutes of polyphenylene sulfide ketone was spun by a vortex method, and this was directly received on a helt conveyor,
Fiber length 60-1.50 W, bulk density approximately 0. O1g/c
m3 apparent thickness is approximately 2011, Gurley densometer
The air permeation rate measured at 38,000 (cm215e
ca tm) mat was obtained.

〔発明の効果〕〔Effect of the invention〕

気体の噴射により繊維化せしめたPAS短繊維を用いて
なる本発明のフィルター基材は、従来に比べて製造が容
易であり、その物性も良好である。
The filter base material of the present invention, which uses PAS short fibers made into fibers by gas injection, is easier to manufacture than conventional filter base materials and has good physical properties.

Claims (4)

【特許請求の範囲】[Claims] 1.粘稠状態のポリアリーレンスルフィドに気体を噴射
し、吹きとばすことにより得られるポリアリーレンスル
フィド短繊維を用いてなるフィルター基材。
1. A filter base material made of polyarylene sulfide short fibers obtained by injecting gas into viscous polyarylene sulfide and blowing it away.
2.粘稠状態のポリアリーレンスルフィドに気体を噴射
し、吹きとばすことにより得られるポリアリーレンスル
フィド短繊維と短繊維の炭素繊維とからなる繊維組成物
を用いてなるフィルター基材。
2. A filter base material made of a fiber composition comprising short polyarylene sulfide fibers and short carbon fibers obtained by injecting gas into viscous polyarylene sulfide and blowing it away.
3.前記フィルター基材として、ポリアリーレンスルフ
ィド短繊維の製造後からフィルター基材の製造までの任
意の段階で、該ポリアリーレンスルフィドのガラス転移
温度以上の温度によって熱処理したポリアリーレンスル
フィド短繊維を用いる請求項第1項ないし第2項記載の
フィルター基材。
3. A claim in which polyarylene sulfide short fibers are used as the filter base material, which have been heat-treated at a temperature equal to or higher than the glass transition temperature of the polyarylene sulfide at any stage from after producing the polyarylene sulfide staple fibers to producing the filter base material. The filter base material according to Items 1 and 2.
4.ポリアリーレンスルフィドの溶融流れが500〜3
000g/10分(ASTM D−1238−70に準
じ、温度条件を結晶性樹脂では融点+30℃に、非晶性
樹脂ではガラス転移温度+100℃に設定、荷重5kg
)の範囲である請求項第1〜3項記載のフィルター基材
4. Melt flow of polyarylene sulfide is 500~3
000g/10min (according to ASTM D-1238-70, temperature conditions are set to melting point + 30℃ for crystalline resin, glass transition temperature + 100℃ for amorphous resin, load 5kg)
) The filter base material according to any one of claims 1 to 3, wherein the filter base material is in the range of:
JP2075870A 1990-03-26 1990-03-26 Filter base material Pending JPH03275109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075870A JPH03275109A (en) 1990-03-26 1990-03-26 Filter base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075870A JPH03275109A (en) 1990-03-26 1990-03-26 Filter base material

Publications (1)

Publication Number Publication Date
JPH03275109A true JPH03275109A (en) 1991-12-05

Family

ID=13588733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075870A Pending JPH03275109A (en) 1990-03-26 1990-03-26 Filter base material

Country Status (1)

Country Link
JP (1) JPH03275109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533506A (en) * 1998-12-18 2002-10-08 フイリツプス ピトローリアム カンパニー Poly (arylene sulfide) compositions and uses thereof
JPWO2005008647A1 (en) * 2003-07-16 2007-04-19 出光興産株式会社 Optical reader

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533506A (en) * 1998-12-18 2002-10-08 フイリツプス ピトローリアム カンパニー Poly (arylene sulfide) compositions and uses thereof
JPWO2005008647A1 (en) * 2003-07-16 2007-04-19 出光興産株式会社 Optical reader

Similar Documents

Publication Publication Date Title
KR101164947B1 (en) Nano-Fiber Web for Self-sealing and Method for Manufacturing the Same, and Composite Material Using the Same and Method for Manufacturing the Same
CA2602171C (en) Method for producing duroplastic fine-fiber non-wovens having a high flame-retardant, thermal protective and sound insulating effect
JP6329143B2 (en) Flame retardant nonwoven fabric, molded body and composite laminate
KR101834931B1 (en) Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning
US3912695A (en) Fibrous articles from phenylene sulfide polymers
EP0439184B1 (en) Carbon fiber structure and process for producing the same
JPH089822B2 (en) Method for producing carbon fiber non-woven fabric
JP2008223209A (en) Continuous fiber nonwoven fabric and fiber material using the same
JPH03275109A (en) Filter base material
KR101873670B1 (en) Insulating nonwoven fabric and production method thereof, and insulation material
CN106917192B (en) Preparation method of flame-retardant non-woven fabric
JPS63315655A (en) Polyphenylene sulfide melt blow nonwoven fabric and its production
JP2543548B2 (en) Polypropylene extra fine fiber non-woven fabric
JP4381576B2 (en) Heat resistant nonwoven fabric
JP2011117094A (en) Web, felt comprising the same, and methods for producing them
JP2890470B2 (en) Paper-like material comprising polyphenylene sulfide fiber and method for producing the same
US4118225A (en) Method for producing fibrous steel matts
CN112708969B (en) Preparation method of polyacrylonitrile pre-oxidized fiber
JP2586104B2 (en) Non-woven fabric with good dimensional stability
JPS60185820A (en) Production of nonwoven fabric consisting of carbon fiber
JP2005013829A (en) Polyoxymethylene resin-made filter
JPH01156510A (en) Production of silicon carbide fiber
KR101162568B1 (en) Method of fabricating multi-layered silicon carbide mats and multi-layered silicon carbide mats of thereof
JP2579658B2 (en) Manufacturing method of heat-resistant nonwoven fabric
CN111495037A (en) Polyether sulfone fiber non-woven fabric composite filter material and preparation method thereof