JPH03236862A - Medical electron accelerating device - Google Patents
Medical electron accelerating deviceInfo
- Publication number
- JPH03236862A JPH03236862A JP2032916A JP3291690A JPH03236862A JP H03236862 A JPH03236862 A JP H03236862A JP 2032916 A JP2032916 A JP 2032916A JP 3291690 A JP3291690 A JP 3291690A JP H03236862 A JPH03236862 A JP H03236862A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- constant current
- voltage generator
- flux density
- electromagnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 8
- 230000004907 flux Effects 0.000 abstract description 29
- 230000005855 radiation Effects 0.000 abstract description 6
- 229920006395 saturated elastomer Polymers 0.000 abstract description 4
- 230000005284 excitation Effects 0.000 description 13
- 238000005452 bending Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1089—Electrons
Landscapes
- Particle Accelerators (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は医用電子加速装置に間し、特に加速管からの電
子ビームを偏向する電磁石又は、電子を加速する高周波
源であるマグネトロンの電磁石の各出力エネルギ毎に決
められる磁束密度の設定方法に関する。Detailed Description of the Invention [Industrial Application Field] The present invention is applied to medical electron accelerators, and particularly to electromagnets for deflecting electron beams from an acceleration tube or for magnetrons, which are high-frequency sources for accelerating electrons. The present invention relates to a method of setting magnetic flux density determined for each output energy.
従来、この種の医用電子加速装置は、電磁石に所望の磁
束密度を得られる電流を与えるのみの単純な制御しか行
なっていなかった。Conventionally, this type of medical electron accelerator has been simply controlled by simply applying a current to the electromagnet to obtain a desired magnetic flux density.
電磁石の飽和励磁特性は第3図の電流(磁場の強さが電
流に比例する〉と磁束密度と関係を表わしたグラフ(B
H曲線ともいう)に示すように0−8−Br−8’ ・
−Br−Sの曲線で示されるヒステリシス特性を有する
。同図でBsは飽和磁束密度、Brは残留磁束密度であ
る。偏向電磁石やマグネトロンにおける電磁石の磁束は
単一方向である為、同図の0−8−Brで囲まれた斜線
の範囲を使用する。The saturation excitation characteristics of an electromagnet are shown in Figure 3, a graph (B
0-8-Br-8' ・
It has a hysteresis characteristic shown by the -Br-S curve. In the figure, Bs is the saturation magnetic flux density, and Br is the residual magnetic flux density. Since the magnetic flux of an electromagnet in a bending electromagnet or a magnetron is unidirectional, the diagonally shaded range surrounded by 0-8-Br in the figure is used.
前述した従来の方法によれば所望の励磁電流rpに対す
る磁束密度Bpは設定の都度その励磁電流が零からrp
になるまでの増域の履歴により変動し、加速管からの出
力ビームを正しく偏向できなくなったりマグネトロンの
出力変動の可能性があったりしている。この為に垂直方
向に取り出される放射線出力の変動やビーム軸のズレ等
の障害が発生する。According to the conventional method described above, the magnetic flux density Bp for a desired excitation current rp is changed each time the excitation current changes from zero to rp.
It varies depending on the history of band increase until it becomes , and there is a possibility that the output beam from the accelerator tube cannot be deflected correctly or the output of the magnetron may fluctuate. This causes problems such as fluctuations in the output of radiation extracted in the vertical direction and deviations in the beam axis.
本発明の医用電子加速装置の第一の発明は、複数のエネ
ルギの電子線出力あるいはX線出力を有する医用電子加
速装置にあって、加速管からの電子ビームを垂直方向に
偏向する偏向電磁石と、前記偏向電磁石を励磁する定電
流電源と、前記定電流電源を削口するプロセッサと、電
圧発生器とを備えて構成される。A first aspect of the medical electron accelerator of the present invention is a medical electron accelerator having an electron beam output or an X-ray output of a plurality of energies, which includes a deflecting electromagnet that deflects an electron beam from an accelerating tube in a vertical direction. , a constant current power supply that excites the deflection electromagnet, a processor that excites the constant current power supply, and a voltage generator.
本発明の医用電子加速装置の第二の発明は、複数のエネ
ルギの電子線出力あるいはX線出力を有する医用電子加
速装置にあって、電子を加速する為の高周波源にマグネ
トロンを有し、前記マグネトロンに使われる電磁石と、
前記電磁石を励磁する定電流電源と、前記定電流源を制
御するプロセッサと、電圧発生器とを備えて構成される
。A second invention of the medical electron accelerator of the present invention is a medical electron accelerator having electron beam output or X-ray output of a plurality of energies, which has a magnetron as a high frequency source for accelerating electrons, Electromagnets used in magnetrons,
The device includes a constant current power source that excites the electromagnet, a processor that controls the constant current source, and a voltage generator.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の第1の実施例の要部の構成を示すブロ
ック図である。加速管101からの出力ビーム102は
複数のエネルギに切換えることができる。出力ビームを
102に偏向する電磁石4Aは各エネルギ毎に磁束密度
が一義的に決められ、ビームを定められた(ここでは第
1図に向って反時計方向に旋回し右)方向に偏向する。FIG. 1 is a block diagram showing the configuration of essential parts of a first embodiment of the present invention. Output beam 102 from accelerator tube 101 can be switched to multiple energies. The electromagnet 4A that deflects the output beam 102 has a magnetic flux density uniquely determined for each energy, and deflects the beam in a determined direction (here, rotated counterclockwise toward the right in FIG. 1).
電磁石4Aは定電流電源3により電流の供給を受は励磁
される。定電流電源3は電圧発生器2の出力電圧により
電流出力が制御される。プロセッサ1は電圧発生器2の
出力電圧を任意に可変するよう電圧発生器2を制御する
。本実施例では、所望の放射線出力エネルギを発生せし
める医用電子加速装置のセットアツプ時ごとに、プロセ
ッサ1が偏向電磁石4の磁束密度を第3図の飽和磁束密
度Bsとなる励磁電流Isが定電流電源3から出力する
よう、電圧発生器2を制御する。この励磁電流Isは偏
向電磁石4の磁束が十分に飽和する間印加され(実施例
では約6秒)、続いて所望の磁束密度Bpが得られる励
磁電流Ipに自動的に低下させ固定される。これら一連
の操作はセットアツプ時のシーケンスに組込まれており
、全て自動で行なわれる。The electromagnet 4A is supplied with current by the constant current power source 3 and is excited. The current output of the constant current power supply 3 is controlled by the output voltage of the voltage generator 2. The processor 1 controls the voltage generator 2 so as to arbitrarily vary the output voltage of the voltage generator 2. In this embodiment, each time the medical electronic accelerator is set up to generate a desired radiation output energy, the processor 1 adjusts the magnetic flux density of the bending electromagnet 4 so that the excitation current Is becomes a constant current, so that the magnetic flux density becomes the saturation magnetic flux density Bs shown in FIG. The voltage generator 2 is controlled to output from the power supply 3. This excitation current Is is applied while the magnetic flux of the bending electromagnet 4 is sufficiently saturated (about 6 seconds in the embodiment), and then it is automatically lowered and fixed to an excitation current Ip that provides the desired magnetic flux density Bp. These series of operations are incorporated into the setup sequence and are all performed automatically.
第3図で明らかなように、磁束密度を飽和点(Bs)か
ら下げると5−Brの飽和曲線上で励磁電流に対する磁
束密度は一義的に定まる。As is clear from FIG. 3, when the magnetic flux density is lowered from the saturation point (Bs), the magnetic flux density with respect to the excitation current is uniquely determined on the 5-Br saturation curve.
第2図は本発明の第2の実施例を示すブロック図である
。マグネトロン5は電磁石4Bの磁束密度の大きさに比
例した出力を放出する。この磁束密度は複数の放射線出
力エネルギに応じて可変される。定電流電源3は電磁石
4に電流を供給し励磁する。この定電流電源3は電圧発
生器2の出力電圧により電流出力が制御される。プロセ
ッサlは電圧発生器2の出力電圧を任意に可変する様電
圧発生器を制御する。FIG. 2 is a block diagram showing a second embodiment of the invention. The magnetron 5 emits an output proportional to the magnetic flux density of the electromagnet 4B. This magnetic flux density is varied according to a plurality of radiation output energies. Constant current power supply 3 supplies current to electromagnet 4 to excite it. The current output of this constant current power supply 3 is controlled by the output voltage of the voltage generator 2. The processor 1 controls the voltage generator 2 so that the output voltage of the voltage generator 2 can be arbitrarily varied.
第2の実施例では、所望の放射線出力エネルギを発生せ
しめる医用電子加速装置のセットアツプ時ごとに、プロ
セッサ1が電磁石4の磁束密度を第2図の飽和磁束密度
Bsとなる励磁電流Isが定電流電源3から出力するよ
う電圧発生器を制御する。この励磁電流Isは、電磁石
4の磁束が十分に飽和する間印加され(実施例では約6
秒)、続いて所望の磁束密度Bpが得られる励磁電流I
pに自動的に低下させ固定される。In the second embodiment, each time the medical electronic accelerator is set up to generate a desired radiation output energy, the processor 1 determines the magnetic flux density of the electromagnet 4 so that the excitation current Is becomes the saturation magnetic flux density Bs shown in FIG. The voltage generator is controlled to output from the current power source 3. This excitation current Is is applied while the magnetic flux of the electromagnet 4 is sufficiently saturated (in the embodiment, about 6
seconds), followed by an excitation current I that obtains the desired magnetic flux density Bp.
p is automatically lowered and fixed.
これら一連の操作は、セットアツプ時のシーケンスに組
込まれており全て自動て行なわれる。また、第2図で明
らかなように、磁束密度を飽和点(Bs)から下げると
5−Brの飽和曲線上で励磁電流に対する磁束密度は一
義的に決まる。These series of operations are incorporated into the setup sequence and are all performed automatically. Furthermore, as is clear from FIG. 2, when the magnetic flux density is lowered from the saturation point (Bs), the magnetic flux density with respect to the excitation current is uniquely determined on the 5-Br saturation curve.
〔発明の効果〕
以上説明したように本発明は、電磁石の磁束密度をセッ
トアツプ時毎に必ず飽和させてから所望の値に固定させ
る為、ヒステリシスによる磁束密度の変動の影響を受け
ない再現性に秀れたビームの偏向が可能である。この為
に、医用電子加速装置の出力放射線の安定化が計れると
いう効果がある。[Effects of the Invention] As explained above, the present invention saturates the magnetic flux density of the electromagnet every time it is set up and then fixes it at a desired value. Therefore, the reproducibility is not affected by fluctuations in the magnetic flux density due to hysteresis. Excellent beam deflection is possible. This has the effect of stabilizing the output radiation of the medical electron accelerator.
第1図は本発明の医用電子加速装置の偏向電磁石の励磁
電流制御を示すブロック図、第1図は本発明の第1の実
施例の構成を示すブロック図、第2図は本発明の第2の
実施例の構成を示すブロック図、第3図は電磁石の励磁
特性曲線。
1・・・プロセッサ、2・・・電圧発生器、3・・・定
電流電源、4A・4B・・・偏向電磁石、5・・・マグ
ネトロン、101・・・加速管、102・・・出力ビー
ム。FIG. 1 is a block diagram showing the excitation current control of the bending electromagnet of the medical electron accelerator of the present invention, FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention, and FIG. FIG. 3 is a block diagram showing the configuration of the second embodiment, and FIG. 3 is an excitation characteristic curve of the electromagnet. DESCRIPTION OF SYMBOLS 1...Processor, 2...Voltage generator, 3...Constant current power supply, 4A/4B...Bending electromagnet, 5...Magnetron, 101...Acceleration tube, 102...Output beam .
Claims (1)
する医用電子加速装置にあって、加速管からの電子ビー
ムを垂直方向に偏向する偏向電磁石と、前記偏向電磁石
を励磁する定電流電源と、前記定電流電源を制御するプ
ロセッサと、電圧発生器とを備えて成ることを特徴とす
る医用電子加速装置。 2、複数のエネルギの電子線出力あるいはX線出力を有
する医用電子加速装置にあって、電子を加速する為の高
周波源にマグネトロンを有し、前記マグネトロンに使わ
れる電磁石と、前記電磁石を励磁する定電流電源と、前
記定電流源を制御するプロセッサと、電圧発生器とを備
えて成ることを特徴とする医用電子加速装置。[Scope of Claims] 1. A medical electron accelerator having electron beam output or X-ray output of a plurality of energies, including a deflecting electromagnet that deflects an electron beam from an accelerating tube in a vertical direction, and exciting the deflecting electromagnet. 1. A medical electronic accelerator comprising: a constant current power supply; a processor that controls the constant current power supply; and a voltage generator. 2. A medical electron accelerator having multiple energies of electron beam output or A medical electronic accelerator comprising a constant current power source, a processor that controls the constant current source, and a voltage generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2032916A JPH03236862A (en) | 1990-02-13 | 1990-02-13 | Medical electron accelerating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2032916A JPH03236862A (en) | 1990-02-13 | 1990-02-13 | Medical electron accelerating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03236862A true JPH03236862A (en) | 1991-10-22 |
Family
ID=12372223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2032916A Pending JPH03236862A (en) | 1990-02-13 | 1990-02-13 | Medical electron accelerating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03236862A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132902A (en) * | 2005-11-14 | 2007-05-31 | Hitachi Ltd | Particle beam irradiation system |
WO2014174592A1 (en) | 2013-04-23 | 2014-10-30 | 三菱電機株式会社 | Particle beam treatment device and operation method therefor |
-
1990
- 1990-02-13 JP JP2032916A patent/JPH03236862A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132902A (en) * | 2005-11-14 | 2007-05-31 | Hitachi Ltd | Particle beam irradiation system |
WO2014174592A1 (en) | 2013-04-23 | 2014-10-30 | 三菱電機株式会社 | Particle beam treatment device and operation method therefor |
US9403036B2 (en) | 2013-04-23 | 2016-08-02 | Mitsubishi Electric Corporation | Particle beam treatment device and operation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3307059B2 (en) | Accelerator, medical device and emission method | |
JP4646069B2 (en) | Particle beam irradiation system | |
JPH01149965A (en) | Plasma reactor | |
US5138271A (en) | Method for cooling a charged particle beam | |
JPH03236862A (en) | Medical electron accelerating device | |
JPH04196708A (en) | Frequency adjustment device and method for piezoelectric element | |
JPS6248345B2 (en) | ||
US4500791A (en) | High stability electron beam generator for processing material | |
JP6007133B2 (en) | Synchrotron and particle beam therapy system using the same | |
JPH07111199A (en) | Accelerator, beam radiation method, and medical device | |
JPH08293399A (en) | Charged particle accelerator | |
JP2011129353A (en) | Circular accelerator and method of operating circular accelerator | |
KR101930363B1 (en) | The apparatus of medical linear accelerator and the method of that | |
JP2892562B2 (en) | Circular accelerator and its operation method | |
JPH076900A (en) | High frequency acceleration cavity and ion synchrotron accelerator | |
WO2018123063A1 (en) | Particle therapy apparatus | |
US12002646B2 (en) | Ion generation device, ion generation method, and ion generation program | |
JP2008112693A (en) | Annular acceleration device and operating method therefor | |
JP3572134B2 (en) | Electronic linac acceleration voltage automatic controller | |
JP2968448B2 (en) | Method for switching wavelength of FEL device | |
JPS63281342A (en) | Electron beam generating device | |
Warren et al. | The Los Alamos free electron laser: Accelerator performance | |
JPH07263199A (en) | Beam acceleration system of accelerator | |
JP2001043998A (en) | Electromagnet, circular accelerator using it and circular accelerator system | |
JP2000208299A (en) | Electron accelerator, pattern memory device used for electron accelerator, and control system for electron accelerator |