[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0323625A - Semiconductor vapor growth apparatus - Google Patents

Semiconductor vapor growth apparatus

Info

Publication number
JPH0323625A
JPH0323625A JP15927589A JP15927589A JPH0323625A JP H0323625 A JPH0323625 A JP H0323625A JP 15927589 A JP15927589 A JP 15927589A JP 15927589 A JP15927589 A JP 15927589A JP H0323625 A JPH0323625 A JP H0323625A
Authority
JP
Japan
Prior art keywords
pressure
pipe
organic metal
organometallic
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15927589A
Other languages
Japanese (ja)
Inventor
Haruki Ogawa
晴樹 小河
Kenichi Koya
賢一 小屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15927589A priority Critical patent/JPH0323625A/en
Publication of JPH0323625A publication Critical patent/JPH0323625A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a backward flow of an organic metal to a pipe by providing a plurality of independent redundant pipes. CONSTITUTION:One system out of redundant pipes 21, 29 is used for a wasteful flow in order to stabilize a flow rate. The other system is used only when valves of storage containers 1, 2 are opened. When the valves are opened, four- way cocks 31, 32 are connected to the pipe 29. After a pressure has been stabilized to a definite value, the cocks 31, 32 are changed over to the pipe 21 so as to execute a wasteful flow. Thereby, it is possible to prevent a backward flow phenomenon in such a way that a change in a pressure does not affect the storage containers when the valves of the storage containers 1, 2 are opened from a hermetically sealed state.

Description

【発明の詳細な説明】 産栗上の利用分野 本発明は有機金風気相成長法(以下、MOCVD法と記
す)による半導体気相成長@置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Chestnut Field The present invention relates to semiconductor vapor phase growth by organic gold vapor vapor growth method (hereinafter referred to as MOCVD method).

従来の技術 近年、化合物半導体の結晶成長法として、液相或長法(
LPE法〉、ハロゲン輸送法《ハロゲンVPE法冫、分
′子線エビタキシー法(MBE法》とともに、MOCV
O法が注目されている。
Conventional technology In recent years, the liquid phase growth method (
MOCV
The O method is attracting attention.

MOCVD法は結晶の均一性に優れ、ffi産性が良い
。また、膜厚の#J i(l性に優れ、超格子など、W
Ifmの多m4i1nの形成に適しているなどの特徴を
有し、主として半導体レーザーなどの発光素子、高移動
度トランジスタ(HEMT)などの超,i速素子の結晶
成長法として用いられている。
The MOCVD method has excellent crystal uniformity and good ffi productivity. In addition, the film thickness #Ji (excellent l property, superlattice, etc.)
It has characteristics such as being suitable for forming Ifm multi-m4i1n, and is mainly used as a crystal growth method for light emitting devices such as semiconductor lasers and ultra-i-fast devices such as high mobility transistors (HEMT).

以下、従来のMOCVD装置の概略について、砒化ガリ
ウム・アルミニウム(以下、aa^1^S)成長用減圧
MOCV[)H置を例にとり説明1Jる。
The outline of a conventional MOCVD apparatus will be explained below, taking as an example a low-pressure MOCVD apparatus for growing gallium aluminum arsenide (hereinafter referred to as aa^1^S).

第2図は従来のQaA IAs戒良川減圧M O C 
V D !A置の概略を示したものである。
Figure 2 shows the conventional QaA IAs Kaira River depressurization M O C
VD! This is an outline of the A location.

aaおよび^1の原料には有機金属化合物であるトリメ
チルガリウム〈以下、TMGと記す) 63よびトリメ
チルアルミニウム(JX下、TMAと配り)を用いてい
る。これらはストップバルプの付いた保存容器1および
2内に保存され、水素《口2〉でバプリングすることに
より供給される。保存容!li1.2は恒温13.4に
より一定の温度に保たれ、またH2の供給量はマスフロ
ーコントローラ−5.6により制御される。有機金属の
供給量は保たれるm度における有機金属の蒸気圧とH2
の供給量により決まる。蒸発した有機金属は三方コック
7.8および有機金#I2#人管9を通って成長室10
に導かれる。
The organic metal compounds trimethyl gallium (hereinafter referred to as TMG) 63 and trimethyl aluminum (under JX, distributed as TMA) are used as raw materials for aa and ^1. These are stored in storage containers 1 and 2 with stop valves and supplied by bubbling with hydrogen (port 2). Storage capacity! li1.2 is kept at a constant temperature by constant temperature 13.4, and the supply amount of H2 is controlled by mass flow controller 5.6. The amount of organometallic supply is maintained.Vapor pressure of organometallic and H2 at m degrees
Determined by the amount of supply. The evaporated organic metal passes through the three-way cock 7.8 and the organic gold #I2 #human tube 9 to the growth chamber 10.
guided by.

一方、^Sの原料には水素化物のアルシン(^S}−1
3)を川いる。^S}+3は口2により希釈され、ボン
ベ11内に保存されており、レギュレーター28を通っ
てマス7ローコントローラー12により流恐制御され、
三方コツク13および水素化物導入配管14を通り成長
室10に導かれる。
On the other hand, the raw material for ^S is the hydride arsine (^S}-1
3) There is a river. ^S}+3 is diluted by the port 2 and stored in the cylinder 11, passes through the regulator 28 and is controlled by the mass 7 low controller 12,
It is led to the growth chamber 10 through a three-way tank 13 and a hydride introduction pipe 14.

成長室10には結晶成長用基板である砒化ガリウム(G
aAs) 14板15を載せたカーボン製のサセプタ1
6が置かれ、これを高周波加熱千段17により加熱し、
成長室10に導入された上記原料ガスの熱分解あるいは
化学反応によりGaAs基板15上にGaAIAS単結
晶をエビタキシャル成長させるものである。
The growth chamber 10 contains gallium arsenide (G), which is a substrate for crystal growth.
aAs) Carbon susceptor 1 with 14 plates 15 mounted on it
6 is placed, which is heated by high frequency heating stage 17,
A GaAIAS single crystal is grown epitaxially on a GaAs substrate 15 by thermal decomposition or chemical reaction of the source gas introduced into the growth chamber 10.

減圧成長を行なうには、成長室1G内に導入されたガス
をロータリーポンプ18により排気し、排気速度をメイ
ンバルプ19で調節することで所定或長圧力に保持する
。この際、有機金属のM発量が保存容M1.2中の1上
力にも依存することから、保存容N1,2中の圧力を二
一ドル20にて精度良くl1mする必要がある。Ii長
開始直後においても有機金属ガスの供給を変動なく一定
に保つには、三方コック7.8の切換え前後で過渡的な
圧h変動を生じないようにする必要があり、有機金Mi
4人管9と並列に設置される捨て配管21も二一ドル2
2により同じ圧力で一定にiJAl整されねばならない
To perform the reduced pressure growth, the gas introduced into the growth chamber 1G is evacuated by the rotary pump 18, and the exhaust speed is adjusted by the main valve 19 to maintain the pressure for a predetermined period of time. At this time, since the amount of M released by the organic metal also depends on the pressure in the storage volume M1.2, it is necessary to adjust the pressure in the storage volumes N1 and 2 accurately to 11 m at 21 dollars and 20. In order to keep the supply of organometallic gas constant without fluctuations even immediately after the start of the Ii length, it is necessary to prevent transient pressure h fluctuations before and after switching the three-way cock 7.8.
The waste pipe 21 installed in parallel with the 4-person pipe 9 also costs 21 dollars 2.
2, iJAl must be kept constant at the same pressure.

am圧力鎖は大気圧である76010rrが一般的に用
いられる。
For the am pressure chain, 76010rr, which is atmospheric pressure, is generally used.

以上のような減圧MOCVD装置を用いてGaAIAs
成長を行なう際の操作手wAはまず高真空ポンプ(たと
えばターボ分子ボンプ)23により成長室10および各
ガス配管を真空排気して管壁に付着した原料ガスなどの
吸者物を除去した後、02ノJスを供給して成長室10
および各ガス配管を所定圧力にコントロールする。次に
有機金属保存容器1.2を捨て配121に接続した状態
で容器のストップバルプを開け、H2による有機金属の
パブリングを開始し、高周波加熱手段17により成長室
10内のサセブタ16が所定温度で一定となった後、三
方コック7.8を捨て配管21から有機金属導入管9に
切り換え、各原料ガスを成長室10に導入し、成長を行
なうものである。
Using the above-mentioned low-pressure MOCVD equipment, GaAIAs
When performing growth, the operator wA first evacuates the growth chamber 10 and each gas pipe using a high vacuum pump (for example, a turbo molecular pump) 23 to remove absorbent materials such as source gas adhering to the pipe wall, and then Growth chamber 10 by supplying 02 No.
and control each gas piping to a predetermined pressure. Next, with the organometallic storage container 1.2 connected to the susceptor 121, the stop valve of the container is opened, and bubbling of the organometallic with H2 is started. After this becomes constant, the three-way cock 7.8 is discarded and the pipe 21 is switched to the organic metal introduction pipe 9, and each raw material gas is introduced into the growth chamber 10 for growth.

允明が解決しようとする課題 しかしながら、上記従来の構或では有機金属の取り出し
開始のため有機金属保存容器1.2のストップバルプを
開けると、捨て配v121および有機金属取り出し側配
管24. 25において瞬間的な圧力上昇が生じる。こ
れは口2の8!量制御をマスフローコントローラーによ
り精度よく行なうために、H2の供給圧力を通常大気圧
よりも充分大きな鎖(たとえば3*9/cd)とするた
めで、口2が流れていない状態では有機金属保存容器1
.2のH2人口側配管がこれと同じ圧力となることによ
る。
However, in the conventional structure described above, when the stop valve of the organometallic storage container 1.2 is opened to start taking out the organometallic, the waste pipe v121 and the organometallic take-out side pipe 24.2 are opened. An instantaneous pressure increase occurs at 25. This is mouth 2 8! In order to accurately control the amount using a mass flow controller, the supply pressure of H2 is set to a value sufficiently larger than normal atmospheric pressure (for example, 3*9/cd), and when the port 2 is not flowing, the organometallic storage container 1
.. This is because the H2 artificial side piping in No. 2 has the same pressure.

この瞬間的な圧力上昇はすでに取り出しを開始し、捨て
配?!21に接続されている有機金属の保存容器1.2
中にも及び、水素入口側配!26. 27への逆流をも
たらす。この逆流により、水素入口側配管26. 27
に液体状の有機金属が流出し、前述の高真空ボンプ23
を用いた配管の真空排気の際に、有機金属が流出してい
ない場合に比べ、同じ真空度に到達するまでの時間が大
幅に長くなり、製造工程上大きな問題となっていた。
This instantaneous pressure increase has already started taking out, and is it discarded? ! Organometallic storage container connected to 21 1.2
It also extends inside, and the hydrogen inlet is on the side! 26. This results in a backflow to 27. This backflow causes the hydrogen inlet side piping 26. 27
The liquid organic metal flows out into the high vacuum pump 23 mentioned above.
When evacuating piping using a vacuum cleaner, it takes much longer to reach the same degree of vacuum than when organic metals do not flow out, which poses a major problem in the manufacturing process.

本発明はこのような課題を解決するもので、瞬間的な圧
力上昇にともなうすでに取り出しを開始している有機金
属の水素入口側配管への逆流を起こすことなく、有機金
属を取り出サことができる半導体気相戊艮@置を提供す
ることを11的とづるものである。
The present invention solves these problems and makes it possible to extract organic metals without causing a backflow of the organic metals that have already started to be extracted into the hydrogen inlet pipe due to an instantaneous pressure rise. The 11th objective is to provide a semiconductor vapor phase system that can be used.

課題を解決するための手段 この課題を解決するために、本発明は、有機金属の戒長
室への供給を行なう導入管を有するとともに2本以上の
独立した捨て配管を有し、有機金属保存容器の取り出し
口が切り換え弁により前記導入管もしくは捨て配管の1
つに選択的に接続できるようにしたものである。
Means for Solving the Problems In order to solve this problem, the present invention has an inlet pipe for supplying organic metals to the prefectural chief chamber, as well as two or more independent waste pipes, and The outlet of the container is connected to one of the inlet pipes or waste pipes by a switching valve.
This allows for selective connection to.

作用 このII1或により、有機金属の取り出しを開始する際
、有機金属の取り出しをすでに開始している他の有機金
属保存容器の有機金属取り出し口が接続されていない捨
て配管に、有機金属取り出し口を接続することにより、
取り出し開始時の瞬間的な圧力上昇にともなうすでに取
り出しを開始している他の有機金属の水素入口側配管へ
の逆流を起こすことなく、右機金属を取り出すことがで
きる.実施例 以下、本允明の一実施例について、図面に基づいて説明
する。第1図は本発明の一実施例におけるGa^1^S
或長用減圧MOCVD装置の概略図であり、図中前記従
来例と同一符号は同一部材を示す.従来例と同様にTM
AおよびTMGを用い、H2ガスをバプリングさせ有機
金属をJI発させて、有機金属導入管9を経て成長室1
0へ供給した。また、^8113はボンベ11よりマス
フローコントローラー12で8!愚制御され、同様に成
長室10へ導かれるものである。戒長室1Gの圧力はメ
インバルプ19を用いて75TOrrに、保存容!11
.2および捨て配管.21. 29内の圧力は二一ドル
2G, 22. 30により7607Orrに保持した
According to this II1, when starting the extraction of organic metals, the organometallic extraction port is connected to a waste pipe to which the organic metal extraction port of another organometallic storage container from which the extraction of organic metals has already started is not connected. By connecting
The right metal can be taken out without causing backflow of other organometallic metals that have already started to be taken out into the hydrogen inlet pipe due to the instantaneous pressure rise at the start of taking out. EXAMPLE Hereinafter, an example of Masaaki Moto will be described based on the drawings. Figure 1 shows Ga^1^S in one embodiment of the present invention.
It is a schematic diagram of a reduced pressure MOCVD apparatus for a certain length, and in the figure, the same reference numerals as in the conventional example indicate the same members. TM like the conventional example
Using A and TMG, H2 gas is bubbled to cause JI emission of the organic metal, and the organic metal is introduced into the growth chamber 1 through the organic metal introduction pipe 9.
0 was supplied. Also, ^8113 is 8 with mass flow controller 12 than cylinder 11! It is controlled and guided to the growth chamber 10 in the same way. The pressure in the prefectural chamber 1G is reduced to 75 TOrr using the main valve 19, which is the storage capacity! 11
.. 2 and discarded piping. 21. The pressure inside 29 is 21 dollars 2G, 22. 30, it was held at 7607 Orr.

本発明の実施例の@置では、捨て配管21. 29を2
系統設けている点で従来例と大きく異なる。2系統の捨
て配管21. 29のうち1系統は従来技術と同様に流
畿を安定化ざぜるための空流しに使用するが、残りの1
系統は保存容器1.2のIfn弁時にのみ用い、その際
の圧力変動が他の保存′8′aに影響を及ぼさないよう
にした。ツなわら、保存容器1,2の間弁時には四方コ
ック31. 32は捨て配管29に接続され、圧力が一
定値(この場合は760Torr)に安定した後、四方
コック31. 32を捨て配管21に切り換えて空流し
を行なった。このようにすれば、有機金属の保存容器を
Y!B閏状態から開弁ずる際の圧力変動が、他の有機金
属保存容器に影響を与えず、前述の逆流現象は生じない
In the @ position of the embodiment of the present invention, the waste pipe 21. 29 to 2
It differs greatly from the conventional example in that it has a system. 2 systems of waste piping 21. One of the 29 systems is used for air flow to stabilize the flow as in the conventional technology, but the remaining 1 system is used for air flow to stabilize the flow.
The system was used only for the Ifn valve of storage container 1.2, so that pressure fluctuations at that time would not affect other storage '8'a. However, when the valve between storage containers 1 and 2 is open, the four-way cock 31. 32 is connected to the waste pipe 29, and after the pressure stabilizes at a constant value (760 Torr in this case), the four-way cock 31. 32 was discarded and switched to piping 21 for air flow. If you do this, you can make a storage container for organic metals! B The pressure fluctuation when opening the valve from the leap state does not affect other organometallic storage containers, and the above-mentioned backflow phenomenon does not occur.

以上の効果を検証するために、1゜MAの保存容!I!
1を開弁した後、TMGの保存容器2を間弁する際の保
存容器1中の圧力変動および成長終了後の各配管の真空
到達時間の2点について調べた。
In order to verify the above effects, we decided to use a storage capacity of 1°MA! I!
Two points were investigated: the pressure fluctuation in the storage container 1 when the TMG storage container 2 was closed after the valve 1 was opened, and the time required for each piping to reach vacuum after growth was completed.

H2ガスの圧力を3.OK’l/alとした場合、従来
技術においてはTMAの保存容器1中の圧力は760T
orrから800Torrへ増加したが、本発明の実施
例では全く圧力変化は生じなかった。また、従来技術で
は逆F現象により、TMAが液体状態のまま配管内に流
出したために、或長終了後、IX10410『rまでの
真空到達時間は90分以上の長時間を要したのに対し、
本発明の実施例では逆流が生じないため、30分程度で
済み、成長プロセスの大幅な時m短縮が実現できた。
3. H2 gas pressure. In the case of OK'l/al, in the conventional technology, the pressure in the TMA storage container 1 is 760T.
orr to 800 Torr, but no pressure change occurred in the example of the present invention. In addition, in the conventional technology, TMA flowed out in a liquid state into the piping due to the reverse F phenomenon, so it took a long time of more than 90 minutes to reach vacuum to IX10410'r after a certain period of time.
In the example of the present invention, since backflow does not occur, it only takes about 30 minutes, and a significant time m reduction in the growth process can be achieved.

以上のように、有機金属用に2本の捨て配管21.29
を有し、有機金属の取り出しを閤始する際、すでに取り
出しを開始しているTMAの有機金属取り出し口が接続
されていない捨て配管に,TMGの有機金属取り出し口
を接続することにより、取り出し開始時の瞬間的な圧力
上昇にともなうすでに取り出しを開始しているTMAの
水素入口側配管への逆流を起こすことなく、有機金属を
取り出すことができる。
As mentioned above, two waste pipes 21.29 for organometallic
When starting the extraction of organic metals, the organometallic extraction port of the TMG is connected to the waste pipe to which the organic metal extraction port of the TMA, which has already started extraction, is not connected. The organic metal can be taken out without causing a backflow to the hydrogen inlet side pipe of the TMA, which has already started taking out, due to an instantaneous pressure rise.

なお上記実施例では、2種類の有機金属を川いたが、3
種類以上の場合でも同様の手段により適川できる。
In the above example, two types of organic metals were used, but three types were used.
Even if there are more than one type, the same method can be used.

また上記実施例では、2本の捨て配管を用いたが、3本
以上の場合でも本充明の効果を失なうことはな(、Ga
^1^Sだけでなく、燐化インジウム(InP)、燐化
インジウム・ガリウム( TnGaP )、燗化・砒化
インジウム・ガリウム( InGaAsF’ )などの
他の化合物半導体のMOCVD成長でもfi1様の効果
が骨られることは言うまでもない。
In addition, in the above embodiment, two waste pipes were used, but even if three or more pipes are used, the effect of main filling will not be lost (Ga
^1^ In addition to S, fi1-like effects are also observed in MOCVD growth of other compound semiconductors such as indium phosphide (InP), indium gallium phosphide (TnGaP), and indium gallium arsenide (InGaAsF'). Needless to say, it will be broken.

発明の効果 以上のように本発明によれば、有機金属を原材料とした
半導体気相成長装置において、2本以上の複数の独立し
た捨て配管を有することにより、有機金属の取り出しを
開始する際の、すでに取り出しを開始している他の有機
金属の水木入口側配管への逆流を起こすことなく有機金
属を取り出すことができる。これにより、a%真空ポン
プによりガス&!管を真空排気する場合の真空刊達時間
の大松¥nlm、その他の有機金属の配管への逆流にと
もなう異常現象をなくすことができる。
Effects of the Invention As described above, according to the present invention, in a semiconductor vapor phase growth apparatus using an organic metal as a raw material, by having a plurality of two or more independent sacrificial pipes, it is possible to improve the efficiency when starting to take out the organic metal. , the organic metal can be taken out without causing a backflow of other organic metals that have already started to be taken out to the Mizuki inlet pipe. This allows the a% vacuum pump to generate gas &! It is possible to eliminate abnormal phenomena associated with the backflow of organic metals into the piping, as well as the long vacuum delivery time when evacuating the tube.

4.図面ノrm1tlナ説明 第1図は本発明の一実施例における半導体気相成長装置
の概略図、第2図は従来の半導体気相成長装置の/R略
図である。
4. DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram of a semiconductor vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional semiconductor vapor phase growth apparatus.

1.2・・・保存容器、9・・・有機金I[導入管、1
0・・・成長室、11・・・ボンベ、15・・・砒化ガ
リウム基板、16・・・サセプタ、17・・・高周波加
熱手段、20・・・二一ドル、21・・・捨て配管、2
2・・・二一ドル、24. 25・・・有機金属取り出
し側配管、26. 27・・・水素入口側配管、29・
・・捨て配管、30・・・二一ドル、31. 32・・
・四方コック。
1.2...Storage container, 9...Organic gold I [introduction tube, 1
0... Growth chamber, 11... Cylinder, 15... Gallium arsenide substrate, 16... Susceptor, 17... High frequency heating means, 20... Twenty-one dollars, 21... Disposable piping, 2
2...21 dollars, 24. 25... Organometallic extraction side piping, 26. 27...Hydrogen inlet side piping, 29.
...Discarded piping, 30...21 dollars, 31. 32...
・Four-sided cock.

Claims (1)

【特許請求の範囲】[Claims] 1、有機金属を原材料とした半導体気相成長装置であっ
て、有機金属の成長室への供給を行なう導入管を有する
とともに2本以上の独立した捨て配管を有し、有機金属
保存容器の取り出し口が切り換え弁により前記導入管も
しくは捨て配管の1つに選択的に接続できるようにした
半導体気相成長装置。
1. A semiconductor vapor phase growth apparatus using organic metal as a raw material, which has an introduction pipe for supplying the organic metal to the growth chamber, as well as two or more independent disposal pipes, and has a method for removing the organic metal storage container. A semiconductor vapor phase growth apparatus in which an opening can be selectively connected to one of the introduction pipe or the waste pipe by a switching valve.
JP15927589A 1989-06-21 1989-06-21 Semiconductor vapor growth apparatus Pending JPH0323625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15927589A JPH0323625A (en) 1989-06-21 1989-06-21 Semiconductor vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15927589A JPH0323625A (en) 1989-06-21 1989-06-21 Semiconductor vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPH0323625A true JPH0323625A (en) 1991-01-31

Family

ID=15690223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15927589A Pending JPH0323625A (en) 1989-06-21 1989-06-21 Semiconductor vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPH0323625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203208A (en) * 2005-01-19 2006-08-03 Samsung Electronics Co Ltd Manufacturing apparatus of semiconductor element having four-way valve, controlling method of valve of the manufacturing apparatus of semiconductor element, and manufacturing method of semiconductor element using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203208A (en) * 2005-01-19 2006-08-03 Samsung Electronics Co Ltd Manufacturing apparatus of semiconductor element having four-way valve, controlling method of valve of the manufacturing apparatus of semiconductor element, and manufacturing method of semiconductor element using the same
US9029244B2 (en) 2005-01-19 2015-05-12 Samsung Electronics Co., Ltd. Apparatus including 4-way valve for fabricating semiconductor device, method of controlling valve, and method of fabricating semiconductor device using the apparatus
US9406502B2 (en) 2005-01-19 2016-08-02 Samsung Electronics Co., Ltd. Apparatus including 4-way valve for fabricating semiconductor device, method of controlling valve, and method of fabricating semiconductor device using the apparatus
US9702041B2 (en) 2005-01-19 2017-07-11 Samsung Electronics Co., Ltd. Apparatus including 4-way valve for fabricating semiconductor device, method of controlling valve, and method of fabricating semiconductor device using the apparatus

Similar Documents

Publication Publication Date Title
JPH02284638A (en) Feeder of high-performance process gas
JPH0323625A (en) Semiconductor vapor growth apparatus
US5025751A (en) Solid film growth apparatus
JPS61219793A (en) Gas phase growth apparatus by thermally decomposing method for organic metal
JPS60131968A (en) Vapor growth deposition device
JP2826479B2 (en) Gas supply device and operation method thereof
JPH0627944Y2 (en) Vapor phase growth equipment
JP4368443B2 (en) Vapor growth method
CN116855917A (en) Chemical substance conveying system and method
KR100234531B1 (en) Exhausting system of semiconductor low press chemincal vapor deposition system
JPH07118459B2 (en) Leak check method for vapor phase growth equipment
JPH01319929A (en) Crystal growth apparatus
JPH0639705B2 (en) Gas supply device
JPH02102194A (en) Vapor phase growth apparatus
JPH04145619A (en) Vapor growth device
JP2681939B2 (en) Low pressure MOCVD equipment
JPH05264000A (en) Installation and process for the distribution of very high purity nitrogen
JPH01220821A (en) Gas controlling method for vapor growth equipment
JP2007277059A (en) Apparatus for manufacturing group iii nitride compound semiconductor
JPS60180996A (en) Epitaxial vapor growth method and its device
JPH1192939A (en) Liquid raw material transporting device, thin coating forming device using it and formation of thin coating
JPH10242063A (en) Low pressure chemical vapor deposition equipment
JPH04155912A (en) Vacuum device
JPS6355193A (en) Apparatus for growing compound semiconductor crystal
JPH03196518A (en) Molecular-beam epitaxial growth method