JPH03236132A - Alloy type temperature fuse - Google Patents
Alloy type temperature fuseInfo
- Publication number
- JPH03236132A JPH03236132A JP3340090A JP3340090A JPH03236132A JP H03236132 A JPH03236132 A JP H03236132A JP 3340090 A JP3340090 A JP 3340090A JP 3340090 A JP3340090 A JP 3340090A JP H03236132 A JPH03236132 A JP H03236132A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- fuse element
- alloy
- fuse
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 12
- 239000000956 alloy Substances 0.000 title claims abstract description 12
- 239000006023 eutectic alloy Substances 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 15
- 229910000743 fusible alloy Inorganic materials 0.000 claims abstract description 13
- 229910020159 Pb—Cd Inorganic materials 0.000 claims abstract description 3
- 229910020816 Sn Pb Inorganic materials 0.000 claims abstract description 3
- 229910020922 Sn-Pb Inorganic materials 0.000 claims abstract description 3
- 229910008783 Sn—Pb Inorganic materials 0.000 claims abstract description 3
- 229910052797 bismuth Inorganic materials 0.000 claims abstract 2
- 230000005496 eutectics Effects 0.000 claims description 12
- 239000007791 liquid phase Substances 0.000 abstract description 16
- 230000004907 flux Effects 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 abstract description 5
- 239000011347 resin Substances 0.000 abstract description 5
- 239000007790 solid phase Substances 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910009038 Sn—P Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H2037/768—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
Landscapes
- Fuses (AREA)
Abstract
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は合金型温度ヒユーズに関するものである。[Detailed description of the invention] <Industrial application field> The present invention relates to alloy type temperature fuses.
〈従来の技術〉
温度ヒユーズは、保護すべき電気機器が過電流により発
熱すると、その発生熱により作動して電気機器への通電
を遮断し、当該電気機器の損傷を未然に防止し、ひいて
は、火災の発生を事前に防止するものであり、合金型と
ベレット型とに大別できる6前者の合金型温度ヒユーズ
においては、フラックスを塗布せる低融点可溶合金片を
ヒユーズエレメントに使用し、過電流に基づく電気機器
の発熱によりヒユーズエレメントを溶断し、機器への通
電を遮断するものであって、その作動機構は、低融点可
溶合金片が溶融し、各リード導体端を核として溶融金属
がその表面張力により球状化し、この球状化の進行によ
って溶融金属が分断されることにある。この場合、フラ
ッスは低融点可溶合金片の表面酸化を防止し、低融点可
溶合金片の表面に万一酸化皮膜が存在しても、加熱によ
る活性のためにこの酸化皮膜を可溶化し、上記球状化分
断を保証する作用を営む。<Prior Art> When an electrical device to be protected generates heat due to overcurrent, a thermal fuse is activated by the generated heat to cut off the power to the electrical device, thereby preventing damage to the electrical device, and, as a result, This is to prevent the occurrence of fire in advance and can be broadly divided into alloy type and pellet type.6 In the former alloy type temperature fuse, a piece of a low melting point fusible alloy that can be coated with flux is used for the fuse element, and The fuse element is cut off by the heat generated by the electrical equipment due to the current, cutting off the power to the equipment.The operating mechanism is that a piece of low melting point fusible alloy melts and the molten metal is generated with the end of each lead conductor as a core. The molten metal becomes spheroidized due to its surface tension, and as this spheroidization progresses, the molten metal is divided. In this case, the flash prevents surface oxidation of the low-melting point fusible alloy pieces, and even if an oxide film exists on the surface of the low-melting point fusible alloy pieces, this oxide film will be solubilized due to activation by heating. , has the function of ensuring the above-mentioned spheroidization and division.
従来の温度ヒユーズにおいては、ヒユーズエレメントと
しての低融点可溶合金に共晶合金を用いている。而るに
、共晶合金においては固相線温度と液相線温度とが一致
し、この共晶点温度で温度ヒユーズを作動させている。In conventional temperature fuses, a eutectic alloy is used as a low melting point fusible alloy as a fuse element. However, in a eutectic alloy, the solidus temperature and liquidus temperature match, and the temperature fuse is operated at this eutectic point temperature.
而して、ヒユーズエレメントがこの共晶点温度に達する
と、同相のヒユーズエレメントが溶融し、液相となり、
液相が表面張力によって上記の球状化分断を行うが、そ
の液相化はヒユーズエレメント(線状)の外周から中心
部に向かって生じていき、中心部までが完全に液相化さ
れてから、上記の球状化分断が開始される。When the fuse element reaches this eutectic point temperature, the fuse element in the same phase melts and becomes a liquid phase.
The liquid phase undergoes the above-mentioned spheroidization due to surface tension, but the liquid phase occurs from the outer periphery of the fuse element (linear) toward the center, and only after the center has completely become a liquid phase. , the above-mentioned spheroidization is started.
く解決しようとする課題〉
しかし、本発明者においては、共晶合金をヒユーズエレ
メントに使用した温度ヒユーズと合金組成を共晶点から
ややずらした非共晶合金をヒユーズエレメントに使用し
た温度ヒユーズとを、同一の加熱オイルパス中に浸漬し
て浸漬直後からヒユーズエレメント溶断時までの時間を
測定したところ、意外にも、非共晶合金片をヒユーズエ
レメントに用いたちのか共晶合金片をヒユーズエレメン
トを用いたものよりも短かかった。従って、従来の合金
型温度ヒユーズは、電流遮断速度が遅く、問題かある。However, the present inventor has developed a temperature fuse in which a eutectic alloy is used for the fuse element, and a temperature fuse in which a non-eutectic alloy whose alloy composition is slightly shifted from the eutectic point is used in the fuse element. were immersed in the same heated oil path and measured the time from immediately after immersion until the fuse element melted. Surprisingly, it was found that while a non-eutectic alloy piece was used for the fuse element, a eutectic alloy piece was used for the fuse element. It was shorter than the one using . Therefore, the conventional alloy type thermal fuse has a slow current interruption speed, which is problematic.
本発明はかかる意外な知見に基づき、ヒユーズエレメン
トに非共晶の低融点可溶合金片を用いて合金型温度ヒユ
ーズの電流遮断速度を高速化することにある。Based on this unexpected finding, the present invention aims to increase the current interruption speed of an alloy type temperature fuse by using a non-eutectic low melting point fusible alloy piece for the fuse element.
〈課題を解決するための手段〉
本発明に係る合金型温度ヒユーズは、Sn−PL3Sn
−Pb−Bi−Sn−Pb−Cd、またはSn−Pb−
B 1−Cd系共晶合金に対して固相線温度と液相線温
度との温度差が1〜4°Cである非共晶低融点可溶合金
をヒユーズエレメントとしたことを特徴とする構成であ
り、ヒユーズエレメントの温度か液相線温度となる温度
条件下で作動する。<Means for solving the problem> The alloy type temperature fuse according to the present invention is made of Sn-PL3Sn.
-Pb-Bi-Sn-Pb-Cd, or Sn-Pb-
B The fuse element is a non-eutectic low melting point fusible alloy with a temperature difference between solidus temperature and liquidus temperature of 1 to 4°C relative to the 1-Cd-based eutectic alloy. It operates under temperature conditions that are the temperature of the fuse element or the liquidus temperature.
上記において、固相線温度と液相線温度との温度差を1
〜4°Cと限定した理由は、1℃以下では、共晶合金を
ヒユーズエレメントに使用する場合との差が殆んどなく
なり、ヒユーズエレメントに非共晶合金を用いることに
よる電流遮断速度の高速化を満足に達成し難く、4°C
以上では、ヒユーズエレメントの押出成形が困難になる
からである。In the above, the temperature difference between the solidus temperature and the liquidus temperature is 1
The reason for limiting the temperature to ~4°C is that at temperatures below 1°C, there is almost no difference between using a eutectic alloy for the fuse element, and using a non-eutectic alloy for the fuse element results in a faster current interruption speed. It is difficult to achieve a satisfactory temperature of 4°C.
This is because extrusion molding of the fuse element becomes difficult.
く作用ン
本発明の構成によれば、作動温度に達した瞬時、ヒユー
ズエレメントの表面部が液相線温度になるか、エレメン
ト中心部の温度は固相線温度と液相線温度との間にあっ
て、その相状態は、合金組成低融点側成分の融液中に高
融点側成分の微小結晶か共存している状態であり、固相
に較べて著しく強度か低く、ヒユーズエレメント全体が
液相化しなくてもある程度の深さまで液相化が進行する
と、この液相の表面張力のためにその深さよりも内部の
上記の共存状態部分が破断されて、溶融ヒユーズエレメ
ントの球状化が開始されるのである。According to the configuration of the present invention, the surface of the fuse element reaches the liquidus temperature at the moment the operating temperature is reached, or the temperature at the center of the element falls between the solidus temperature and the liquidus temperature. Therefore, the phase state is such that microcrystals of the high melting point components coexist in the melt of the low melting point components of the alloy, and the strength is significantly lower than that of the solid phase, and the entire fuse element is in the liquid phase. When the liquid phase progresses to a certain depth even if it does not become molten, the surface tension of this liquid phase causes the above-mentioned coexistence state part inside that depth to break, and the molten fuse element starts to become spheroidal. It is.
〈実施例の説明〉 以下、図面により本発明の詳細な説明する。<Explanation of Examples> Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図は本発明の一実施例を示す縦断面図である。第1
図において、1,1は一対のリード線である。2はリー
ド線間に溶接により橋設したヒユーズエレメントであり
、従来のSn−PL3SnPb−Bi、Sn−Pb−C
d、またはSn−PbBi−Cd系共晶合金に対して固
相線温度と液相線温度との温度差が1〜4℃の非共晶低
融点可溶合金を用いている。3はヒユーズエレメント上
に塗布したフラックスである。4はヒユーズエレメント
上に被せた絶縁筒であり、例えばセラミックス管を使用
することができる。5.5は絶縁筒各端と各リード線と
の間を封止せる硬化性樹脂、例えばエポキシ樹脂である
。FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. 1st
In the figure, 1 and 1 are a pair of lead wires. 2 is a fuse element bridged between lead wires by welding,
d, or a non-eutectic low melting point fusible alloy with a temperature difference between the solidus temperature and the liquidus temperature of 1 to 4° C. with respect to the Sn-PbBi-Cd eutectic alloy. 3 is the flux applied on the fuse element. 4 is an insulating tube placed over the fuse element, and for example, a ceramic tube can be used. 5.5 is a curable resin, such as an epoxy resin, for sealing between each end of the insulating tube and each lead wire.
上記ヒユーズエレメントは上記の非共晶低融点可溶合金
を丸線状に押出成形し、これを線引きすることによって
製造できる。The above-mentioned fuse element can be manufactured by extruding the above-mentioned non-eutectic low melting point fusible alloy into a round wire shape and drawing this into a wire.
上記温度ヒユーズは、保護すべき電気機器に取着して使
用する。この取着状態において、電気機器が過電流のた
めに発熱し、許容温度限度にまで加熱されたときのヒユ
ーズエレメント温度が液相線温度となるようにヒユーズ
エレメントの合金系を選択しである。The above temperature fuse is used by being attached to the electrical equipment to be protected. In this installed state, the alloy system of the fuse element is selected so that when the electrical equipment generates heat due to overcurrent and is heated to the permissible temperature limit, the fuse element temperature will be the liquidus temperature.
而して、電気機器に許容温度限度で制限される過電流が
流れると、ヒユーズエレメントが表面から中心部に向か
って液相化していくが、ヒユーズエレメントに液相線温
度と固相線温度との差が1℃以上の非共晶合金を用いて
いるので、ヒユーズエレメント表面が液相になったとき
、その液相線温度よりやや低いヒユーズエレメント中心
部は、非共晶合金組成における低融点成分の融液に高融
点成分の微小結晶が共存した状態にあり、この共存状態
相の強度が極めて低いので、ヒユーズエレメントがある
程度の深さまで液相化されれば、その液相の球状化表面
張力のために、ヒユーズエレメント中心部の上記の共存
状態部分が破断され、ヒユーズエレメント全体が液相化
される以前に分断か開始され、それたけ早く電流を遮断
てきる。When an overcurrent limited by the permissible temperature limit flows through an electrical device, the fuse element turns into a liquid phase from the surface toward the center, but the fuse element has a liquidus temperature and a solidus temperature. Since we use a non-eutectic alloy in which the difference in Microcrystals of high-melting-point components coexist in the melt of the components, and the strength of this coexisting phase is extremely low, so if the fuse element is liquefied to a certain depth, the spheroidized surface of the liquid phase Due to the tension, the above-mentioned coexistence state portion in the center of the fuse element is ruptured, and division begins before the entire fuse element becomes liquid phase, and the current is cut off as soon as possible.
この電流遮断速度の高速化は次の試験結果からも明らか
である。This increase in current interruption speed is also evident from the following test results.
ヒユーズエレメントに使用した非共晶合金の組成はP
b : 32ffi 1%、Sn:32重量?≦、Cd
:16重量%であって、固相線温度は149°C,液相
線温度は145℃である。この三元素の共晶組成は、P
b:32重量%、S n : 50重量?≦、Cd:1
8重量%であり共晶点は145℃である。The composition of the non-eutectic alloy used for the fuse element is P
b: 32ffi 1%, Sn: 32 weight? ≦, Cd
:16% by weight, the solidus temperature is 149°C, and the liquidus temperature is 145°C. The eutectic composition of these three elements is P
b: 32% by weight, Sn: 50% by weight? ≦, Cd:1
8% by weight, and the eutectic point is 145°C.
使用した温度ヒユーズの形式は第1図に示す直線タイプ
であり、ヒユーズエレメントの長さは3mm、直径は0
,6mmとし、リード線には、直径0.5mmの銅線を
用い、絶縁筒には内径(直径) 1.4mm、厚さ0.
3mmのセラミックス管を用い、封止樹脂にはエポキシ
樹脂を、フラックスにはチメチルアミン塩酸塩を1重量
%添加したW・Wロジンを使用した。The type of temperature fuse used was the linear type shown in Figure 1, the length of the fuse element was 3 mm, and the diameter was 0.
, 6 mm, the lead wire is a copper wire with a diameter of 0.5 mm, and the insulating cylinder has an inner diameter (diameter) of 1.4 mm and a thickness of 0.5 mm.
A 3 mm ceramic tube was used, an epoxy resin was used as the sealing resin, and W.W rosin containing 1% by weight of thimethylamine hydrochloride was used as the flux.
この直線タイプ温度ヒユーズを10@、温度160℃の
オイルバス中に浸漬し、浸漬直後から分断までの時間を
測定したところ、平均値で2.5秒であった。これに対
し、ヒユーズエレメントに共晶組成を用いた以外、上記
の本発明品と同じとした比較別品につき、同様に、バス
浸漬直後から分断までの時間を測定したところ平均5.
0秒であり、本発明品の場合に較べ長い時間であった。This linear type temperature fuse was immersed in an oil bath at a temperature of 160° C. and the time from immediately after immersion until disconnection was measured, and the average value was 2.5 seconds. On the other hand, for a comparative product that was the same as the above-mentioned product of the present invention except that a eutectic composition was used for the fuse element, the time from immediately after immersion in the bath until separation was similarly measured, and the average time was 5.
The time was 0 seconds, which was longer than that of the product of the present invention.
本発明の適用範囲は、上記した直線タイプに限定される
ものではない。例えば、第2図に示すように、平行な一
対のリード線1,1の先端部にヒユーズエレメント2を
溶接により橋設し、ヒユーズエレメント上にフラックス
3を塗布し、一端開口の絶縁ケース4をヒユーズエレメ
ント上に被せ、ゲース4の一端開口41とリード線1.
1との間を硬化性樹脂5で封止する形式、第3図に示す
ように、平行な一対のリード線1.1の先端部にヒユー
ズエレメント2を溶接により橋設し、ヒユーズエレメン
ト上にフラックス3を塗布し、これらの外部に硬化性樹
脂5をデツピング塗装する形式、或いは、第4図に示す
ように、耐熱性の絶縁基板との片面上に一対の膜状電極
7.7を設け、各電極7にリード線lをハンダ付けし、
これら電極間にヒユーズエレメント2を溶接により橋設
し、ヒユーズエレメント上にフラッス3を塗布し、絶縁
基板の片面上に硬化性樹脂5をモールド被覆する形式等
を使用できる。The scope of application of the present invention is not limited to the above-mentioned straight line type. For example, as shown in Fig. 2, a fuse element 2 is bridged by welding to the tips of a pair of parallel lead wires 1, 1, a flux 3 is applied on the fuse element, and an insulating case 4 with one end open is installed. Cover the fuse element with one end opening 41 of the gauge 4 and the lead wire 1.
As shown in Fig. 3, a fuse element 2 is bridged by welding to the tips of a pair of parallel lead wires 1.1, and is placed on the fuse element. A method is to apply flux 3 and then apply a curable resin 5 to the outside by applying a layer of depping, or, as shown in FIG. , solder the lead wire l to each electrode 7,
A method may be used in which a fuse element 2 is bridged between these electrodes by welding, a flash 3 is applied on the fuse element, and a curable resin 5 is molded and coated on one side of an insulating substrate.
〈発明の効果〉
本発明に係る合金型温度ヒユーズは上述した通りの構成
であり、従来のSn−Pb、Sn−PbBi−Sn−P
b−Cd、またはSn−Pb−Bi−Cd系共晶合金に
対して固相線温度と液相線温度との差が1 ”C以上の
非共晶低融点可溶合金をヒユーズエレメントに使用し、
その液相線温度でエレメントを溶断させているので、ヒ
ユーズエレメント全体の液相化をまたずにエレメント表
面からある程度の深さまで液相化が進んだ段階でエレメ
ントを分断させ得、ヒユーズエレメントの分断をそれだ
け早く行なわしめ得る。従って、温度ヒユーズの電流遮
断速度を高速化でき、保護すべき機器の損傷度をそれだ
け軽度にとどめ得る。また、非共晶合金に固相線温度と
液相線温度との差か4℃以下のものを使用しているから
、ヒユーズエレメントを巣の発生なく押出成形し得(こ
の温度差以上では−様な冷却凝固が困難であり、巣の発
生が避けられない)、ヒユーズエレメントの品質をよく
保証できる。<Effects of the Invention> The alloy-type temperature fuse according to the present invention has the configuration as described above, and has a structure similar to that of the conventional Sn-Pb, Sn-PbBi-Sn-P.
b-Cd or Sn-Pb-Bi-Cd based eutectic alloy, a non-eutectic low melting point fusible alloy with a difference between solidus temperature and liquidus temperature of 1"C or more is used for the fuse element. death,
Since the element is fused at the liquidus temperature, the element can be separated when the liquid phase has progressed to a certain depth from the surface of the element, without the entire fuse element becoming liquid phase. can be done as quickly as possible. Therefore, the speed of cutting off the current of the temperature fuse can be increased, and the degree of damage to the equipment to be protected can be kept to a corresponding degree. In addition, since we use a non-eutectic alloy with a difference between the solidus temperature and the liquidus temperature of 4°C or less, the fuse element can be extruded without forming cavities (if the temperature difference exceeds this temperature - The quality of the fuse element can be well guaranteed.
れ本発明の実施例を示す説明図である。 2・・・ヒユーズエレメント。 FIG. 2 is an explanatory diagram showing an embodiment of the present invention. 2... Fuse element.
Claims (1)
たはSn−Pb−Bi−Cd系共晶合金に対して固相線
温度と液相線温度との差が1〜4℃である非共晶低融点
可溶合金をヒューズエレメントとしたことを特徴とする
合金型温度ヒューズ。The difference between the solidus temperature and liquidus temperature is 1 to 4°C for Sn-Pb, Sn-Pb-Bi, Sn-Pb-Cd, or Sn-Pb-Bi-Cd-based eutectic alloy. An alloy type thermal fuse characterized by using a non-eutectic low melting point fusible alloy as the fuse element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3340090A JPH03236132A (en) | 1990-02-13 | 1990-02-13 | Alloy type temperature fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3340090A JPH03236132A (en) | 1990-02-13 | 1990-02-13 | Alloy type temperature fuse |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03236132A true JPH03236132A (en) | 1991-10-22 |
Family
ID=12385548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3340090A Pending JPH03236132A (en) | 1990-02-13 | 1990-02-13 | Alloy type temperature fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03236132A (en) |
-
1990
- 1990-02-13 JP JP3340090A patent/JPH03236132A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4230194B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP2004176106A (en) | Alloy type thermal fuse, and material for thermal fuse element | |
US6774761B2 (en) | Alloy type thermal fuse and fuse element thereof | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP3995058B2 (en) | Alloy type temperature fuse | |
JP4360666B2 (en) | Alloy type thermal fuse and wire for thermal fuse element | |
JP2004176105A (en) | Alloy type thermal fuse, and material for thermal fuse element | |
JP2003328066A (en) | Alloy type temperature fuse | |
JP4230204B2 (en) | Alloy type thermal fuse and material for thermal fuse element | |
JPH03236132A (en) | Alloy type temperature fuse | |
JPS6030020A (en) | Temperature fuse | |
JP2000182492A (en) | Alloy-type temperature fuse | |
US7160504B2 (en) | Alloy type thermal fuse and fuse element thereof | |
JPH07192593A (en) | Alloy type thermal fuse and its manufacture | |
JP3483030B2 (en) | Thermal fuse and wire for thermal fuse element | |
JP2001143592A (en) | Fuse alloy | |
JPH1140025A (en) | Thermal alloy fuse | |
JPH086354Y2 (en) | Alloy type thermal fuse | |
JPH086353Y2 (en) | Thermal fuse | |
JP4435439B2 (en) | Method for mounting fuse element and fuse built-in electric component | |
JPH04206412A (en) | Thermal fuse and manufacture thereof | |
JPH07105813A (en) | Thermal fuse | |
JPH04259720A (en) | Alloy-type temperature fuse | |
JPH04163818A (en) | Alloy type temperature fuse | |
JP2004213928A (en) | Alloy for thermal fuse |