[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04259720A - Alloy-type temperature fuse - Google Patents

Alloy-type temperature fuse

Info

Publication number
JPH04259720A
JPH04259720A JP3928491A JP3928491A JPH04259720A JP H04259720 A JPH04259720 A JP H04259720A JP 3928491 A JP3928491 A JP 3928491A JP 3928491 A JP3928491 A JP 3928491A JP H04259720 A JPH04259720 A JP H04259720A
Authority
JP
Japan
Prior art keywords
fuse element
fuse
alloy
flashes
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3928491A
Other languages
Japanese (ja)
Inventor
Toshiaki Kawanishi
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP3928491A priority Critical patent/JPH04259720A/en
Publication of JPH04259720A publication Critical patent/JPH04259720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To speed up operation of a temperature fuse made of a low melting point fusible alloy by using a fuse element having a remaining flash formed at the molding time. CONSTITUTION:A fuse element 2 is made of a low melting point fusible alloy bridge over leads 1 and flashes 21 are formed at two points in the circumferential direction of the fuse element 2. When over current caused in an electric circuit runs in the element 2 and the temperature of the element 2 rises, liquefaction proceeds from the center part to both end parts and at the same time liquefaction is carried out along the flashes 21 since the thermal capacity of the flashes 21 is small. Since the molten metal forms a sphere owing to the surface tension of the metal, the metal in the center part is cut. In this way, liquefaction of the fuse element is accelerated by the flashes 21 and thus the fuse operation can become speedy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は合金型温度ヒュ−ズに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy type thermal fuse.

【0002】0002

【従来の技術】合金型温度ヒュ−ズにおいては、リ−ド
導体間に低融点可溶合金片を橋設し、該低融点可溶合金
片上にフラックスを塗布し、このフラックス塗布低融点
可溶合金片を絶縁ケ−ス又は絶縁被覆層で気密に包囲し
ている。
[Prior Art] In an alloy type thermal fuse, a piece of a low melting point fusible alloy is bridged between the lead conductors, and a flux is applied onto the piece of the low melting point fusible alloy. The molten alloy flakes are hermetically surrounded by an insulating case or an insulating coating layer.

【0003】この合金型温度ヒュ−ズの作動機構は、当
該温度ヒュ−ズによって保護する電気機器が過電流によ
り発熱すると、その発生熱により温度ヒュ−ズが加熱さ
れ、該温度ヒュ−ズの低融点可溶合金片が溶融し、該溶
融金属の表面張力に基づく球状化により溶融金属が分断
され、該分断後の球状化の進行によって分断間ギャップ
が分断間ア−スを遮断し得る距離に達すると、通電が実
質上遮断されることにある。
The operating mechanism of this alloy type thermal fuse is that when the electrical equipment protected by the thermal fuse generates heat due to overcurrent, the thermal fuse is heated by the generated heat. A low-melting-point fusible alloy piece melts, the molten metal is divided into spheroids based on the surface tension of the molten metal, and the distance between the shards allows the gap between the shards to block the ground between the slits as the spheroidization progresses after the sharding. When this point is reached, the current flow is virtually cut off.

【0004】0004

【発明が解決しようとする課題】合金型温度ヒュ−ズに
おいては、電気機器が過電流により発熱した後、上記実
質上の通電遮断までの時間が短いこと、すなわち、作動
迅速性に優れていることが不可欠な要件である。
[Problem to be Solved by the Invention] The alloy type thermal fuse has a short time from when an electric device generates heat due to overcurrent until the current is actually cut off, that is, it has excellent operation speed. This is an essential requirement.

【0005】而るに、本発明者においては、ヒュ−ズエ
レメントに実質的にバリを残存させることが、温度ヒュ
−ズの作動迅速性の向上に極めて有効であることを知っ
た。
[0005] However, the inventor of the present invention has found that allowing burrs to substantially remain on the fuse element is extremely effective in improving the operating speed of a thermal fuse.

【0006】例えば、融点112℃のIn−Sn−Bi
合金からなる外径0.7mmの線状体を2っ割れ金型で
圧縮し、高さ0.1mm,幅0.1mmのバリを2ヵ所
に形成したヒュ−ズエレメントを使用せる合金型温度ヒ
ュ−ズとバリを形成しないヒュ−ズエレメントを使用せ
る合金型温度ヒュ−ズのそれぞれを、120℃に保持し
たシリコンオイル中に浸漬し、該浸漬直後からヒュ−ズ
エレメントが溶断するまでの時間を測定したところ、バ
リを形成したものにおいては、バリを形成しなかったも
のに比べ、上記時間Tを約20%短縮でき、作動迅速性
を飛躍的に向上できることを知った。
For example, In-Sn-Bi with a melting point of 112°C
Alloy mold temperature that uses a fuse element made by compressing a linear body of alloy with an outer diameter of 0.7 mm in a two-split mold and forming burrs with a height of 0.1 mm and a width of 0.1 mm in two places. Each of the alloy-type thermal fuses, which uses a fuse element that does not form fuses and burrs, is immersed in silicone oil maintained at 120°C, and the temperature from immediately after immersion until the fuse element blows is immersed. When the time was measured, it was found that the time T can be shortened by about 20% in the case where burrs were formed, compared to the case without burrs, and the speed of operation could be dramatically improved.

【0007】本発明の目的はかかる知見に基づき合金型
温度ヒュ−ズの作動迅速性を簡易な手段によって飛躍的
に向上させることにある。
Based on this knowledge, the object of the present invention is to dramatically improve the operating speed of an alloy type thermal fuse by simple means.

【0008】[0008]

【課題を解決するための手段】本発明の合金型温度ヒュ
−ズは、低融点可溶合金から成形し、成形時のバリを残
存させてなるヒュ−ズエレメントを用いたことを特徴と
する構成である。
[Means for Solving the Problems] The alloy type thermal fuse of the present invention is characterized in that it uses a fuse element formed from a low melting point fusible alloy, with burrs remaining during forming. It is the composition.

【0009】[0009]

【実施例】以下、本発明の実施例を図面により説明する
。図1は本発明の実施例を示す説明図であり、図2は図
1におけるII−II断面図である。
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II in FIG.

【0010】図1並びに図2において、1,1は一対の
リ−ド導体である。2はリ−ド導体1,1間に溶接によ
り橋設したヒュ−ズエレメントであり、低融点可溶合金
片から成形され、周方向に1800隔てた2ヵ所にバリ
21,21が形成されている。3はヒュ−ズエレメント
2上に塗布したフラックス層である。4は筒状絶縁ケ−
スであり、ヒュ−ズエレメント2上に挿通してある。 5,5は筒状絶縁ケ−ス4と各リ−ド導体との間を封止
する接着剤、例えば、エポキシ樹脂である。上記におい
て、バリ21の高さ並びに幅はヒュ−ズエレメント直径
の5〜30%とされている。
In FIGS. 1 and 2, 1 and 1 are a pair of lead conductors. Reference numeral 2 designates a fuse element which is bridged by welding between the lead conductors 1 and 1, and is formed from a piece of a low melting point fusible alloy, and has burrs 21, 21 formed at two locations 1800 mm apart in the circumferential direction. There is. 3 is a flux layer coated on the fuse element 2. 4 is a cylindrical insulating case
The fuse element 2 is inserted through the fuse element 2. Reference numerals 5 and 5 designate an adhesive, such as an epoxy resin, for sealing between the cylindrical insulating case 4 and each lead conductor. In the above, the height and width of the burr 21 are 5 to 30% of the fuse element diameter.

【0011】上記合金型温度ヒュ−ズのヒュ−ズエレメ
ント2においては、平常時の通電電流によりジュ−ル熱
を発生し、当該ヒュ−ズエレメント2の両端部において
、リ−ド線1を経ての放熱があるので、ヒュ−ズエレメ
ント2の中央部温度がヒュ−ズエレメント両端部の温度
よりも高くなっている。
In the fuse element 2 of the above-mentioned alloy type thermal fuse, Joule heat is generated by the current flowing under normal conditions, and the lead wire 1 is connected at both ends of the fuse element 2. Because of the heat dissipation through the fuse element 2, the temperature at the center of the fuse element 2 is higher than the temperature at both ends of the fuse element.

【0012】而るに、上記合金型温度ヒュ−ズにおいて
、保護すべき電気機器が過電流のために発熱し、該温度
ヒュ−ズが加熱されてヒュ−ズエレメント2が温度上昇
すると、上記平常時での高温部であるヒュ−ズエレメン
ト中央部の表面が最高温度部分となって、最初に液相化
する。この液相化は通常の場合(ヒュ−ズエレメントに
バリがない場合)、ヒュ−ズエレメント中央部から端部
に次第に進行していくのであるが、上記したバリの存在
下では、このバリの熱容量が小さいためにバリが速く温
度上昇して液相化するので、このバリに沿っての液相化
が優先し、このバリの液相化の後に、図3(班点部分は
液相を示す)に示すように、ヒュ−ズエレメント中央部
から両端部に向かう液相化aとバリのヒュ−ズエレメン
ト周方向に向かう液相化bとの同時進行により全体の液
相化が進んでいく。
However, in the above-mentioned alloy type thermal fuse, when the electrical equipment to be protected generates heat due to overcurrent, and the temperature of the fuse element 2 rises due to the heating of the thermal fuse, the above-mentioned The center surface of the fuse element, which is a high temperature area under normal conditions, becomes the highest temperature area and becomes liquid phase first. Normally (if there is no burr on the fuse element), this liquid phase progresses gradually from the center of the fuse element to the ends, but in the presence of the burr described above, this burr Because the heat capacity of the burr is small, the temperature of the burr rises rapidly and turns into a liquid phase, so the liquid phase takes priority along this burr, and after the burr turns into a liquid phase, as shown in Figure 3 (the dotted area shows the liquid phase). As shown in Figure 2), the liquid phase a from the center of the fuse element toward both ends and the liquid phase b from the burr toward the circumferential direction of the fuse element proceed simultaneously, and the entire liquid phase progresses. go.

【0013】他方、上記ヒュ−ズエレメント表面の液相
化と共にヒュ−ズエレメント中心(内部)に向かう液相
化も同時に進行していき、ヒュ−ズエレメント中央部に
おいて中心にまで達する液相化が最初に発生し、この場
合、リ−ド導体とこの液相化ヒュ−ズエレメント中央部
との間が上記バリの早期液相化のために液相でつながっ
ているので、この液相化金属とリ−ド導体(銅)との間
に作用する界面エネルギ−E12(張力)が液相を伝っ
てヒュ−ズエレメント中央部に伝達され、この界面エネ
ルギ−E12と液相自体の表面エネルギ−E2とのため
に溶融ヒュ−ズエレメント中央部に分断力が作用し、こ
の結果、悠々ヒュ−ズエレメントが分断するに至る。
On the other hand, as the surface of the fuse element turns into a liquid phase, the liquid phase towards the center (inside) of the fuse element also progresses, and the liquid phase reaches the center at the center of the fuse element. occurs first, and in this case, the lead conductor and the center of this liquefied fuse element are connected in a liquid phase due to the early liquefaction of the burr, so this liquefaction occurs. Interfacial energy E12 (tension) acting between the metal and the lead conductor (copper) is transmitted to the center of the fuse element through the liquid phase, and this interfacial energy E12 and the surface energy of the liquid phase itself -E2, a breaking force acts on the center of the fused fuse element, and as a result, the fuse element slowly breaks apart.

【0014】これに対して、ヒュ−ズエレメントにバリ
を存在させない場合、ヒュ−ズエレメント中央部におい
て、中心に達する液相化が終了してもリ−ド導体の近傍
部分の液相化が遅く、この近傍部分が液相化して上記界
面エネルギ−E12がそのヒュ−ズエレメント中央部に
作用するのが遅延するために、上記ヒュ−ズエレメント
の分断が遅くなる。
On the other hand, when there is no burr in the fuse element, even if the liquid phase reaches the center of the fuse element, the liquid phase does not occur in the vicinity of the lead conductor. The portion in the vicinity becomes liquid phase at a later time, and the interfacial energy E12 is delayed in acting on the center portion of the fuse element, thereby slowing down the disconnection of the fuse element.

【0015】而して、ヒュ−ズエレメントにバリを残存
させている本発明の合金型温度ヒュ−ズにおいては、バ
リを設けていない従来の合金型温度ヒュ−ズに比べ、作
動迅速性に優れている。
[0015]The alloy type thermal fuse of the present invention, in which burrs remain on the fuse element, operates more quickly than the conventional alloy type thermal fuses that do not have burrs. Are better.

【0016】このことは、次の実施例と比較例との対比
からも確認できる。 実施例 直径0.7mm,長さ6.0mmのIn−Sn−Bi系
共晶合金線(融点:112℃)を2っ割り金型で加圧し
て外周上の1800隔てた2ヵ所に高さ0.1mm,幅
0.1mmのバリを有する直径0.68mmのヒュ−ズ
エレメントに成形した。このヒュ−ズエレメントを直径
0.7mmの一対の銅リ−ド導体間に溶接により橋設し
、このヒュ−ズエレメントにロジンを主成分とするフラ
ックスを塗布し、その上に、内径1.5mm,厚み0.
3mmのセラミックス筒を挿通し、このセラミックス筒
と各リ−ド導体との間をエポキシ樹脂接着剤で封止した
[0016] This can also be confirmed by comparing the following examples and comparative examples. Example: An In-Sn-Bi eutectic alloy wire (melting point: 112°C) with a diameter of 0.7 mm and a length of 6.0 mm is pressurized with a mold that is divided into two halves to form two parts on the outer periphery separated by 1800 mm. It was molded into a fuse element with a diameter of 0.68 mm and a burr of 0.1 mm and width of 0.1 mm. This fuse element is bridged by welding between a pair of copper lead conductors with a diameter of 0.7 mm, a flux containing rosin as a main component is applied to this fuse element, and a flux with an inner diameter of 1 mm is applied onto the fuse element. 5mm, thickness 0.
A 3 mm ceramic cylinder was inserted, and the space between the ceramic cylinder and each lead conductor was sealed with an epoxy resin adhesive.

【0017】比較例 実施例で使用した直径0.7mm,長さ6.0mmのI
n−Sn−Bi系共晶合金線をヒュ−ズエレメントとし
て使用し、バリは形成しなかった。これ以外は実施例に
同じとした。
[0017] Comparative Example I used in the example with a diameter of 0.7 mm and a length of 6.0 mm.
An n-Sn-Bi eutectic alloy wire was used as the fuse element, and no burrs were formed. Other than this, it was the same as the example.

【0018】上記実施例並びに比較例をそれぞれ50箇
づつ製作し、これらのそれぞれにつき、120℃に保持
したシリコンオイル中に浸漬し、2Aの通電下、シリコ
ンオイル中に浸漬したのちヒュ−ズエレメントが溶断す
るまでの時間を測定したところ、実施例品においては、
平均2.20秒であったのに対し、比較例品においては
、2.8秒であった。
[0018] Fifty pieces each of the above examples and comparative examples were manufactured, and each of them was immersed in silicone oil maintained at 120°C, and after being immersed in silicone oil while applying a current of 2A, the fuse element was When we measured the time until it melted, in the example product,
The average time was 2.20 seconds, whereas in the comparative example product it was 2.8 seconds.

【0019】本発明において使用するヒュ−ズエレメン
トは、2つ割りの鋳造金型を使用し、金型鋳造法によっ
て作成することもできる。
The fuse element used in the present invention can also be produced by a die casting method using a two-piece casting mold.

【0020】低融点可溶合金片には、通常共晶合金が使
用されるが、非共晶合金も使用可能であり、この場合、
液相線と固相線との差が5℃以内の範囲の組成を使用す
ることが好ましい。
Generally, eutectic alloys are used as low melting point fusible alloy pieces, but non-eutectic alloys can also be used; in this case,
It is preferable to use a composition in which the difference between the liquidus line and the solidus line is within 5°C.

【0021】本発明の合金型温度ヒュ−ズは前記したケ
−ス型以外に、絶縁樹脂モ−ルド型(互いに並行なリ−
ド導体の先端にヒュ−ズエレメントを橋設し、該ヒュ−
ズエレメントにフラックスを塗布し、このフラックス塗
布ヒュ−ズエレメントを硬化性樹脂でモ−ルドしたもの
)、基板型(絶縁基板の片面に一対の層状電極を設け、
これらの電極間にヒュ−ズエレメントを橋設し、各電極
にリ−ド導体を接続し、ヒュ−ズエレメントにフラック
スを塗布し、絶縁基板の片面上を硬化性樹脂のモ−ルド
等によって被覆したもの)等にも適用できる。
In addition to the case type described above, the alloy type thermal fuse of the present invention has an insulating resin mold type (leads parallel to each other).
A fuse element is bridged to the tip of the lead conductor, and the fuse
Fuse is applied to the fuse element and this flux coated fuse element is molded with hardening resin), board type (a pair of layered electrodes is provided on one side of an insulated substrate,
A fuse element is bridged between these electrodes, a lead conductor is connected to each electrode, flux is applied to the fuse element, and one side of the insulating board is molded with a hardening resin. It can also be applied to coated items).

【0022】[0022]

【発明の効果】本発明の合金型温度ヒュ−ズは上述した
通りの構成であり、低融点可溶合金線材等から成形した
ヒュ−ズエレメントのバリが合金型温度ヒュ−ズの作動
の迅速化に有効であることに着目し、ヒュ−ズエレメン
トのバリを積極的に利用しており、合金型温度ヒュ−ズ
の作動性をよく向上できる。また、バリ取り作業が不要
となり、製造能率上も有利である。
Effects of the Invention The alloy-type thermal fuse of the present invention has the structure as described above, and the burr of the fuse element formed from a low-melting point fusible alloy wire material etc. makes the alloy-type thermal fuse operate quickly. The burr of the fuse element is actively used to improve the operability of the alloy type thermal fuse. Further, deburring work is not required, which is advantageous in terms of manufacturing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】図1におけるII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 1;

【図3】本発明のヒュ−ズエレメントのバリの作用を示
す説明図である。
FIG. 3 is an explanatory diagram showing the effect of burrs on the fuse element of the present invention.

【符号の説明】[Explanation of symbols]

1    リ−ド導体 2    ヒュ−ズエレメント 21  バリ 1 Lead conductor 2 Fuse element 21 Bali

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低融点可溶合金から成形し、成形時のバリ
を残存させてなるヒュ−ズエレメントを用いたことを特
徴とする合金型温度ヒュ−ズ。
1. An alloy-type thermal fuse characterized by using a fuse element formed from a low melting point fusible alloy, with burrs remaining during forming.
JP3928491A 1991-02-08 1991-02-08 Alloy-type temperature fuse Pending JPH04259720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3928491A JPH04259720A (en) 1991-02-08 1991-02-08 Alloy-type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3928491A JPH04259720A (en) 1991-02-08 1991-02-08 Alloy-type temperature fuse

Publications (1)

Publication Number Publication Date
JPH04259720A true JPH04259720A (en) 1992-09-16

Family

ID=12548862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3928491A Pending JPH04259720A (en) 1991-02-08 1991-02-08 Alloy-type temperature fuse

Country Status (1)

Country Link
JP (1) JPH04259720A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142621A (en) * 1984-12-14 1986-06-30 関西日本電気株式会社 Manufacture of temperature fuse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142621A (en) * 1984-12-14 1986-06-30 関西日本電気株式会社 Manufacture of temperature fuse

Similar Documents

Publication Publication Date Title
JP4001757B2 (en) Alloy type temperature fuse
JP3841257B2 (en) Alloy type temperature fuse
JP4223316B2 (en) Secondary battery fuse
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
JP3995058B2 (en) Alloy type temperature fuse
JP2819408B2 (en) Alloy type temperature fuse
JP4162917B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4409705B2 (en) Alloy type temperature fuse
JP4409747B2 (en) Alloy type thermal fuse
JPH04259720A (en) Alloy-type temperature fuse
JP2001143592A (en) Fuse alloy
JPS6030020A (en) Temperature fuse
JP4101536B2 (en) Alloy type thermal fuse
JPH1140025A (en) Thermal alloy fuse
JPH07192593A (en) Alloy type thermal fuse and its manufacture
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
JPH117876A (en) Circuit board type temperature fuse
JP2000182492A (en) Alloy-type temperature fuse
JP2001143589A (en) Alloy fuse
JPS62180929A (en) Miniature fuse
JPH06342620A (en) Thermal fuse
JP2001143591A (en) Alloy fuse
JP2001143588A (en) Alloy fuse
JPH03236132A (en) Alloy type temperature fuse