[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03229103A - Surface measuring instrument - Google Patents

Surface measuring instrument

Info

Publication number
JPH03229103A
JPH03229103A JP2585790A JP2585790A JPH03229103A JP H03229103 A JPH03229103 A JP H03229103A JP 2585790 A JP2585790 A JP 2585790A JP 2585790 A JP2585790 A JP 2585790A JP H03229103 A JPH03229103 A JP H03229103A
Authority
JP
Japan
Prior art keywords
probe
piezoelectric element
sample
voltage
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2585790A
Other languages
Japanese (ja)
Inventor
Tatsuaki Kuroda
黒田 達明
Miyoko Watanabe
渡辺 美代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2585790A priority Critical patent/JPH03229103A/en
Publication of JPH03229103A publication Critical patent/JPH03229103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To measure atomic arrangements by the same measuring instrument to resolution of 10<-1>Angstrom and to make a continuous scan over a wide range of >=1 mum by switching a voltage applied to a driving piezoelectric element for placing a probe in scanning operation in plural stages. CONSTITUTION:This surface measuring instrument consists of a probe scanning means 1 which places the probe 7 fitted to a microscope main body 6 in scanning operation and a micrometer 10 for finely adjusting the distance between a sample 9 supported on a sample support base 8 and the probe 7, and a power circuit 2 which applies the voltage to the piezoelectric element for driving the probe scanning means 1 is provided with a waveform generating circuit 3 and a high-voltage amplifier 5 through a changeover switch 4 so that they can be driven independently in an X, a Y, and a Z direction. The amplification factor of the voltage applied to respective piezoelectric elements for driving can be switched in plural stages, so when the power source output is made small when a narrow range is measured and made large when a wide range is measured to make a wide-range scan and measures an atomic level continuously by the sample measuring instrument.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、表面測定装置に係り、特に固体の表面構造お
よび表面電子状態を測定する走査型トンネル顕微鏡等の
表面測定装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a surface measurement device, and particularly to a surface measurement device such as a scanning tunneling microscope that measures the surface structure and surface electronic state of a solid. Regarding.

(従来の技術) 固体表面の1つ1つの原子を測定する手段の1つとして
、走査型トンネル顕微鏡が開発されている(サーフイス
サイエンス、126巻、ベージ236:G−ビニツヒ(
G、Binnig))。
(Prior Art) A scanning tunneling microscope has been developed as a means of measuring each atom on the surface of a solid (Surface Science, Vol. 126, Page 236: G-Vinnitz (
G, Binnig)).

これは、先端が尖った電気伝導性の探針を電気伝導性固
体からなる試料の表面から約10人上で走査しながら、
トンネル電流を測定することにより、試料表面の構造と
電子状態とを原子レベルで測定するものである。
This involves scanning an electrically conductive probe with a sharp tip about 10 times above the surface of an electrically conductive solid sample.
By measuring the tunnel current, the structure and electronic state of the sample surface can be measured at the atomic level.

この探針を試料の表面から約10A上で走査するために
、探針と機械的に接続された圧電素子が用いられる。こ
の圧電素子に一定の印加電圧で必要な数のパルスを印加
し、所定の距離の走査を行う方法がとられている。圧電
素子の印加電圧に対する変位感度は、圧電素子の形状と
電極の大きさで選択することができる。試料表面を広い
範囲(≧1μ麿)にわたって走査するような表面測定装
置では、感度の良い圧電素子を用いる必要かあった。し
かしながら、印加電圧を発生する回路のノイスレヘルが
表面測定装置の分解能を決めてしまうため、このような
装置においては分解能が犠牲になっていた。すなわち、
感度の良い圧電素子を用いた場合、一定の大きさの波形
の印加電圧にン、■してわずかなノイスがのっていても
圧電素子か大きく変位するため微小領域を精度良く走査
することか不可能となる。
A piezoelectric element mechanically connected to the probe is used to scan the probe at about 10 A above the surface of the sample. A method is used in which a required number of pulses are applied to the piezoelectric element at a constant applied voltage to scan a predetermined distance. The displacement sensitivity of the piezoelectric element to the applied voltage can be selected by the shape of the piezoelectric element and the size of the electrodes. In a surface measuring device that scans a sample surface over a wide range (≧1 μm), it is necessary to use a piezoelectric element with high sensitivity. However, since the noise level of the circuit that generates the applied voltage determines the resolution of the surface measuring device, the resolution is sacrificed in such devices. That is,
When using a piezoelectric element with good sensitivity, even if there is a slight noise on the applied voltage with a constant waveform, the piezoelectric element will displace greatly, so it is difficult to scan a minute area with high precision. It becomes impossible.

一方、狭い範囲を原子レベルで測定することを11的と
する表面測定装置においては圧電素子の感度の低いもの
か用いられてきている。しかじながI)、この場合には
広い範囲にわたる走査は望めない。
On the other hand, piezoelectric elements with low sensitivity have been used in surface measuring devices whose purpose is to measure a narrow range at the atomic level. However, in this case, scanning over a wide range cannot be expected.

しかしながら、表面計1定においては、原子レヘルての
測定と、試料面上の広い範囲にわたる走査とを交互に必
要とする場合かしはしばである。
However, in a single surface measurement, it is often necessary to alternately measure the atomic level and scan a wide range on the sample surface.

例えば、試料か全体にわたっては清浄でない場合、ある
いは1ilFI定中に試料表面に傷をつけてしまった場
合、原子レヘルの測定を中断して広い範囲の走査を行い
、表面の綺麗な部分を捜し出す必要かある。
For example, if the entire sample is not clean, or if the sample surface is scratched during 1ilFI measurement, it is necessary to interrupt the atomic level measurement and scan a wide range to find a clean part of the surface. There is.

また、大きなスケールの構造と、原子配列との両方を測
定する必要のある場合、広い範囲にわたる走査と原子レ
ベルの測定とを連続して行う必要が生しる。
Furthermore, when it is necessary to measure both large-scale structures and atomic arrangements, it becomes necessary to continuously perform scanning over a wide range and measurement at the atomic level.

(発明が解決しようとする速題) このように、従来の走査型トンネル顕微鏡をはじめとす
る表面測定装置では、走査領域を広くするためには微小
な領域を精度良く走査することができず、逆に微小な領
域を精度良く走査するためには、広い範囲の走査は望め
ないという問題があった。
(Quick problem to be solved by the invention) As described above, with conventional surface measurement devices such as scanning tunneling microscopes, in order to widen the scanning area, it is not possible to scan a minute area with high precision. On the other hand, there is a problem in that in order to scan a minute area with high precision, it is not possible to scan a wide range.

本発明は、前記実情に鑑みてなされたもので、原子スケ
ールを10−1人程度の分解能で71’jll定し得る
能力を持ちながら、かつ1μm以上にわたる広い範囲の
走査を行うことのできる表面測定装置を提供することを
目的とする。
The present invention has been made in view of the above-mentioned circumstances, and has the ability to define 71'jll on the atomic scale with a resolution of approximately 10-1 people, and is capable of scanning a wide range of 1 μm or more. The purpose is to provide a measuring device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) そこて本発明ては、探針を走査するための駆動用圧電素
子への印加電圧を複数段に切り替え可能となるようにし
ている。
(Means for Solving the Problems) Therefore, in the present invention, the voltage applied to the drive piezoelectric element for scanning the probe can be switched in multiple stages.

望ましくは、印加電圧の増幅率を複数段に切り替え可能
とし、駆動用圧電素子への印加電圧か複数段に切り替え
可能となるようにしている。
Desirably, the amplification factor of the applied voltage can be switched in multiple stages, and the voltage applied to the driving piezoelectric element can also be switched in multiple stages.

(作用) 上記構成によれば、圧電素子への印加電圧を複数段に切
り替えることが可能であるため、狭い範囲(10〜10
0八程度)を測定するときは、走査のための電源出力を
小さくし、広範囲の測定を行うときは電源出力を大きく
するようにすれば、同一のM1定装置で、広い範囲にわ
たる走査と原子レベルの測定とを連続して行なうことか
可能となる。
(Function) According to the above configuration, since it is possible to switch the voltage applied to the piezoelectric element in multiple stages, the voltage applied to the piezoelectric element can be switched in a narrow range (10 to 10
08), the power supply output for scanning can be reduced, and when measuring a wide range, the power supply output can be increased. It becomes possible to perform level measurements continuously.

(実施例) 以下、本発明の実施例について図面を参照しつつ詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明実施例の走査型トンネル顕微鏡を示す
図である。
FIG. 1 is a diagram showing a scanning tunneling microscope according to an embodiment of the present invention.

この走査型トンネル顕微鏡は、探針走査手段1を構成す
るX方向駆動圧電素子1 Y方向駆動圧電素子に電圧を
印加するための各電源回路2が、波形発生回路3と、切
り替えスイッチ4を介してこれに接続可能な高圧増幅器
5とから構成されていることを特徴とするものであり、
他部については、通常の走査型トンネル顕微鏡と同様に
構成されている。ここで電源回路は、X方向駆動圧電素
子。
In this scanning tunneling microscope, each power supply circuit 2 for applying voltage to an X-direction driving piezoelectric element 1 and a Y-direction driving piezoelectric element constituting a probe scanning means 1 is connected to a waveform generating circuit 3 and a changeover switch 4. and a high voltage amplifier 5 connectable to the high voltage amplifier 5.
The other parts are constructed in the same way as a normal scanning tunneling microscope. Here, the power supply circuit is an X-direction driven piezoelectric element.

Y方向駆動圧電素子、Z方向駆動圧電素子に対してそれ
ぞれ独立して設けられているが、簡略化のために1組の
み示す。なお、探針と試料との間隔を制御するためのZ
方向駆動圧電素子に対する電源回路は、波形発生回路3
のみてよい。
Although they are provided independently for the Y-direction driving piezoelectric element and the Z-direction driving piezoelectric element, only one set is shown for the sake of simplification. Note that Z is used to control the distance between the probe and the sample.
A power supply circuit for the directional drive piezoelectric element is a waveform generation circuit 3.
You can look at it.

すなわち、熱膨張率の小さいインバー合金にッケル、マ
ンガン1炭素および他の元素を含む鉄からなる合金)と
からなる顕微鏡本体6と、この顕微鏡本体6に取り付け
られ探針7を走査する探針走査手段1と、先端に試料支
持台8を備え、試料9と探針との距離の粗動を行うマイ
クロメータ10とから構成される装置 さらに、これらX方向駆動圧電素子、Y方向駆動圧電素
子および2方向駆動圧電素子は、第2図に示すような円
筒型圧電素子(レヴユーオヴサイエンティフィックイン
スッルメント誌、57巻、1688ページ)によって構
成されている。この円筒型圧電素子は、円筒状の圧電体
11と、この外側面に相対向して形成されたX電極12
x、13xと、さらにこの外側面に沿ってこのX電極位
置から906回転した位置に相対向して形成されたY電
極12y、13yと、円筒内壁に形成されたZ電極12
zとから構成されており、X電極12x、13x問およ
びY電極12y、13y間にそれぞれ前述した電源回路
2が接続され、XY力方向駆動を行うと共に、2電極1
2zと前記4つの電極12x、13x、12y、13y
との間に波形発生回路3が接続されている。そして、X
電極12x、13x間に電圧を印加することにより圧電
体に圧電効果が発生し、この圧電体に固定された探針の
X方向の空間的位置が変化し、Y電極12y、13y間
に電圧を印加することにより探針のY方向の空間的位置
が変化し、Z電極12zと前記4つの電極との間に電圧
を印加することにより探針のZ方向の空間的位置か変化
する。この圧電素子の感度はおよび50人/■である。
That is, a microscope body 6 is made of an invar alloy with a small coefficient of thermal expansion (an alloy made of iron containing iron, manganese, carbon, and other elements), and a probe scanning probe attached to the microscope body 6 and scanning a probe 7. A device comprising means 1 and a micrometer 10 having a sample support stand 8 at its tip and performing coarse movement of the distance between the sample 9 and the probe. The bidirectional driving piezoelectric element is constituted by a cylindrical piezoelectric element as shown in FIG. 2 (Review of Scientific Instruments, Vol. 57, p. 1688). This cylindrical piezoelectric element includes a cylindrical piezoelectric body 11 and an X electrode 12 formed oppositely on the outer surface of the piezoelectric body 11.
x, 13x, Y electrodes 12y, 13y formed opposite to each other at a position 906 rotations from the X electrode position along the outer surface, and a Z electrode 12 formed on the inner wall of the cylinder.
The power supply circuit 2 described above is connected between the X electrodes 12x and 13x and the Y electrodes 12y and 13y, and performs drive in the XY force direction, and the two electrodes 1
2z and the four electrodes 12x, 13x, 12y, 13y
A waveform generation circuit 3 is connected between the two. And X
By applying a voltage between the electrodes 12x and 13x, a piezoelectric effect is generated in the piezoelectric body, the spatial position of the probe fixed to the piezoelectric body in the X direction changes, and a voltage is applied between the Y electrodes 12y and 13y. By applying a voltage, the spatial position of the probe in the Y direction changes, and by applying a voltage between the Z electrode 12z and the four electrodes, the spatial position of the probe in the Z direction changes. The sensitivity of this piezoelectric element is 50 persons/■.

そして、波形発生回路は最大出力電圧5vであるが、ス
イッチ4を介して高圧増幅器5を通すことにより100
倍に増幅することかできるようになっており、500V
まての広いレンジをカバーすることができる。
The waveform generation circuit has a maximum output voltage of 5V, but by passing the high voltage amplifier 5 through the switch 4, the maximum output voltage can be increased to 100V.
It is now possible to amplify the voltage by 500V.
It can cover a wide range.

測定に際しては、まず、試料としてのグラファイトを試
料支持台に設置し、トンネル電流が流れる距離(探針−
試料間隔数人)までマイクロメータ10によって、大体
の位置合わせを行った後、圧電素子の2電極に電圧を印
加し、2方向すなわち探針と試料表面との距離の微調整
を行う。
For measurement, first, the graphite sample is placed on a sample support stand, and the distance through which the tunneling current flows (from the tip to the tip) is measured.
After roughly aligning the sample using the micrometer 10 to a distance of several samples, a voltage is applied to the two electrodes of the piezoelectric element to finely adjust the distance between the probe and the sample surface in two directions.

この後、探針走査手段1をX方向駆動圧電素子。After this, the probe scanning means 1 is moved to the X direction driving piezoelectric element.

Y方向駆動圧電素子として、駆動すべくX電極12x、
13x問およびY電極12y、13y間にそれぞれ前述
した電源回路2を用いて第3図(a)および第3図(b
)に示すような信号を印加する。
As a Y direction drive piezoelectric element, an X electrode 12x to be driven,
3(a) and 3(b) using the power supply circuit 2 described above between the 13x electrodes and the Y electrodes 12y and 13y, respectively.
) is applied.

このとき、スイッチ4を介して高圧増幅器5を通すこと
により100倍に増幅することができるようになってお
り、最大振幅500Vまでの広いレンジをカバーするこ
とができる。そして第3図(a)に示した信号波形によ
り、X方向に探針が走査され、走査速度および走査幅が
決定され、第3図(b)に示した信号波形により、Y方
向すなわち走査線の間隔が決定される。
At this time, the signal can be amplified 100 times by passing it through the high voltage amplifier 5 via the switch 4, and can cover a wide range up to a maximum amplitude of 500V. Then, the probe is scanned in the X direction according to the signal waveform shown in FIG. 3(a), the scanning speed and scanning width are determined, and the signal waveform shown in FIG. The interval between is determined.

このように、所定の信号を印加することによって、試料
表面に平行なXY力方向探針を走査し、このときのトン
ネル電流を測定して、試料表面の原子像を測定すること
ができる。
In this way, by applying a predetermined signal, it is possible to scan the XY force direction probe parallel to the sample surface, measure the tunneling current at this time, and measure the atomic image on the sample surface.

また、グラファイト表面に金を蒸着して平均5000へ
の間隔で100人程大の直径の島を形成した試料におい
て島の縁を測定する場合、まず、X電極12x、13x
問およびY電極12y、13y間の電源回路2のスイッ
チ4を切り替え高圧増幅器5を通して500Vの電圧を
印加し、1μ蒙×1μmの広範囲にわたって走査を行い
、試料表面上から、平坦でかつ島の分布が一様であるよ
うな領域を探す。
In addition, when measuring the edges of the islands in a sample in which gold was deposited on the graphite surface to form islands with a diameter of about 100 people at an average spacing of 5000, first the X electrodes 12x, 13x
A voltage of 500V was applied through the high-voltage amplifier 5 by switching the switch 4 of the power supply circuit 2 between the Q and Y electrodes 12y and 13y, and scanning was performed over a wide area of 1 μm x 1 μm to obtain a flat and island distribution from the sample surface. Find a region where is uniform.

続いて、この領域を、印加電圧を50Vにして1000
人X100O人の走査範囲で観察を行い、得たSTM像
からAuの島の縁の観察に適したlO人×10への領域
を探しだす。
Subsequently, this region was
Observation is performed in a scanning range of 100 people x 100 people, and an area of 10 people x 10 suitable for observing the edge of the Au island is found from the obtained STM image.

この後、この探し出された領域を中心としてX電極12
x、13x問およびY電極12y、13y間の電源回路
2のスイッチ4を切り替え、最大振幅2■の電圧を印加
し、10人×1人走査を行い、原子スケールでの観察を
行う。すなわち、トンネル電流を2電極12Zにフィー
ドバックし、走査中にトンネル電流か一定になるように
して圧電素子への印加電圧測定を行った結果を第4図に
示す。ここでは、横方向にV、(X電極間の印加電圧)
、縦方向にVy  (y電極間の印加電圧)+V t 
 (z電極間の印加電圧)をとり、プロットしたもので
ある。
After this, the X electrode 12 is centered around this found area.
The switch 4 of the power supply circuit 2 between the x and 13x electrodes and the Y electrodes 12y and 13y is switched, a voltage with a maximum amplitude of 2cm is applied, and 10 persons x 1 person is scanned to perform observation on the atomic scale. That is, FIG. 4 shows the results of measuring the voltage applied to the piezoelectric element by feeding back the tunnel current to the two electrodes 12Z and keeping the tunnel current constant during scanning. Here, V in the lateral direction, (voltage applied between the X electrodes)
, Vy (applied voltage between y electrodes) + V t in the vertical direction
(voltage applied between the z electrodes) was taken and plotted.

このようにして、広範囲の走査と狭い範囲での原子スケ
ールでの走査との両方を行うことにより極めて容易に高
精度の測定を行うことが可能となる。
In this way, by performing both wide-range scanning and narrow-range scanning on the atomic scale, it becomes possible to perform highly accurate measurements extremely easily.

これに対し、高圧増幅器を使用することなく原子スケー
ルで測定しようとすると、走査領域に島の縁が捕らえら
れることは極めて希であった。
On the other hand, when attempting to perform measurements at the atomic scale without using a high-voltage amplifier, it was extremely rare for the edges of the islands to be captured in the scanning region.

なお、この例では、X方向およびY方向の両方について
印加電圧の切り替えを行うようにしたが、いずれか一方
でもよいことはいうまでもない。
In this example, the applied voltage is switched in both the X direction and the Y direction, but it goes without saying that it may be applied in either direction.

また、この例では、走査型トンネル顕微鏡について説明
したが、これに限定されることなく、第1図に示したの
と同様の装置を用いて探針と試料との間の静電容量を検
出する走査型静電容量顕微鏡、あるいは探針の原子と試
料の原子との間の引力および斥力を測定する原子間力顕
微鏡等他の表面測定装置にも適用可能である。
In addition, although this example describes a scanning tunneling microscope, the capacitance between the probe and the sample can be detected using a device similar to that shown in Figure 1 without being limited thereto. It can also be applied to other surface measurement devices such as a scanning capacitance microscope that measures the attraction and repulsion between the atoms of the probe and the atoms of the sample, such as an atomic force microscope that measures the attraction and repulsion between the atoms of the probe and the atoms of the sample.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明の表面測定装置によれ
ば、探針を駆動するための圧電素子への印加電圧を複数
段に切り替え可能となるようにしているため、同一の測
定装置で、広い範囲にわたる走査と原子レベルのMl定
とを連続して行なうことが可能となる。
As explained above, according to the surface measuring device of the present invention, since the voltage applied to the piezoelectric element for driving the probe can be switched in multiple stages, the same measuring device can It becomes possible to continuously scan a wide range and determine Ml at the atomic level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の走査型トンネル顕微鏡を示す図
、第2図はその圧電素子を示す図、第3図(a)および
第3図(b)は波形発生回路の出力を示す図、第4図は
本発明の走査型トンネル顕微鏡を用いた測定結果を示す
図である。 1・・・探針走査手段、2・・・電源回路、3・・・波
形発生回路、4・・・切り替えスイッチ、5・・・高圧
増幅器、6・・・顕微鏡本体、7・・・探針、8・・・
試料支持台、9試料、10・・・マイクロメータ、 第 ! 図 第2図 電圧 Vx 第 図 第4図 X
FIG. 1 is a diagram showing a scanning tunneling microscope according to an embodiment of the present invention, FIG. 2 is a diagram showing its piezoelectric element, and FIGS. 3(a) and 3(b) are diagrams showing the output of a waveform generation circuit. , FIG. 4 is a diagram showing measurement results using the scanning tunneling microscope of the present invention. DESCRIPTION OF SYMBOLS 1... Probe scanning means, 2... Power supply circuit, 3... Waveform generation circuit, 4... Changeover switch, 5... High voltage amplifier, 6... Microscope body, 7... Exploration Needle, 8...
Sample support stand, 9 samples, 10...micrometer, No.! Figure 2 Voltage Vx Figure 4

Claims (1)

【特許請求の範囲】 表面測定用の探針と、 前記探針と試料表面との間の距離を調整するための粗動
機構と、 前記探針を前記試料表面上で走査する圧電素子を用いた
駆動手段とを具備し、 前記探針を試料の表面近傍で走査しながら、試料表面の
形状あるいは物性を測定するようにした表面測定装置に
おいて、 前記圧電素子に印加するための電源回路が印加電圧を複
数段に切り替え可能となるように構成されていることを
特徴とする表面測定装置。
[Claims] A probe for surface measurement, a coarse movement mechanism for adjusting the distance between the probe and the sample surface, and a piezoelectric element for scanning the probe over the sample surface. A surface measuring device comprising: a drive means configured to measure the shape or physical properties of a sample surface while scanning the probe near the surface of the sample; a power supply circuit for applying voltage to the piezoelectric element; A surface measuring device characterized in that it is configured to be able to switch voltage in multiple stages.
JP2585790A 1990-02-05 1990-02-05 Surface measuring instrument Pending JPH03229103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2585790A JPH03229103A (en) 1990-02-05 1990-02-05 Surface measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2585790A JPH03229103A (en) 1990-02-05 1990-02-05 Surface measuring instrument

Publications (1)

Publication Number Publication Date
JPH03229103A true JPH03229103A (en) 1991-10-11

Family

ID=12177492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2585790A Pending JPH03229103A (en) 1990-02-05 1990-02-05 Surface measuring instrument

Country Status (1)

Country Link
JP (1) JPH03229103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058016A (en) * 2004-08-17 2006-03-02 Jeol Ltd Scanning probe microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058016A (en) * 2004-08-17 2006-03-02 Jeol Ltd Scanning probe microscope

Similar Documents

Publication Publication Date Title
EP0410131B1 (en) Near-field lorentz force microscopy
US4992728A (en) Electrical probe incorporating scanning proximity microscope
US5426302A (en) Optically guided macroscopic-scan-range/nanometer resolution probing system
JP2516292B2 (en) Atomic force microscope
JP2915554B2 (en) Barrier height measurement device
JPH06507718A (en) How to assemble integrated and aligned tunnel chip pairs
KR20190057442A (en) Multiple integrated tips scanning probe microscope
Grube et al. Stability, resolution, and tip–tip imaging by a dual-probe scanning tunneling microscope
JPH0651831A (en) Two-dimensional position adjusting device
JP3070216B2 (en) Surface microscope and microscopic method
JPH03229103A (en) Surface measuring instrument
JPH03122514A (en) Observing apparatus for surface
JP3240309B2 (en) Atomic force microscope prober and atomic force microscope
JP2869508B2 (en) Scanning probe microscope with magnetic field control
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
Ren et al. Scanning Kelvin Microscope: a new method for surface investigations
JP3084924B2 (en) Atomic force microscope
JPH0850872A (en) Sample surface observation method, interatomic force microscope, fine working method, and fine working device
JPH09171027A (en) Scanning probe microscope
JPH0771913A (en) Fine adjustment, and scanning type probe microscope
JP3114902B2 (en) High-resolution and high-precision measuring device using a scanning tunneling microscope
JPH02203205A (en) Three-dimensional actuator and scanning type tunnel microscope device
JPH02262001A (en) Piezoelectric-element driving type probe apparatus and driving method thereof
JP2585598B2 (en) Magnetic field measurement device
JPH09166603A (en) Scanning probe microscope