[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02203205A - Three-dimensional actuator and scanning type tunnel microscope device - Google Patents

Three-dimensional actuator and scanning type tunnel microscope device

Info

Publication number
JPH02203205A
JPH02203205A JP2417989A JP2417989A JPH02203205A JP H02203205 A JPH02203205 A JP H02203205A JP 2417989 A JP2417989 A JP 2417989A JP 2417989 A JP2417989 A JP 2417989A JP H02203205 A JPH02203205 A JP H02203205A
Authority
JP
Japan
Prior art keywords
probe
area
dimensional actuator
optical fiber
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417989A
Other languages
Japanese (ja)
Inventor
Masaaki Niwa
正昭 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2417989A priority Critical patent/JPH02203205A/en
Publication of JPH02203205A publication Critical patent/JPH02203205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve the dynamic range of measurement resolution greatly by grasping the position of a probe, which uses the three-dimensional actuator structured by mounting an optical fiber on a piezoelectric driving element, on the surface of a sample in real time. CONSTITUTION:The probe 6 is mounted by a support base 8 on the cylinder type piezoelectric driving three-dimensional actuator which has piezoelectric elements 1 and 4, 2 and 5, and 3 for an X direction, a Y direction, and a Z direction. An optical fiber cable 7 is also mounted on this base 8 and its tip is directed to the tip end of the probe 6. The cable 7 is formed by bundling ten thousands of glass fibers and serves as an optical guide and a lens is fitted atop; and an image of the surface area of the sample 9 at the tip end part of the probe 6 is formed on an optical system 10 and the state of the measurement area can be grasped on a TV monitor. Thus, the area to be measured is grasped in advance and the scanning area of the probe 6 is secured to follow the procedure for measurement.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、三次元アクチュエータ及びそれを用いた走査
型トンネル顕微鏡装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a three-dimensional actuator and a scanning tunneling microscope device using the same.

従来の技術 従来の3次元アクチュエータはx、  y1z方向に伸
縮するピエゾ駆動素子を円筒形やトライボッド形に形成
して構成されていた。第2図はその一例で、円筒形3次
元アクチュエータの構成図を示す。x、  y、  z
の各方向に伸びるピエゾ素子13゜14、 15及びX
、  Y方向に伸びるピエゾ素子1B及び17から構成
され、例えば走査型トンネル顕微鏡装置(以下STMと
略称する。)の場合であると、この円筒の外壁に探針1
8を固定台1Bに固定し、試料20の表面に数nmまで
接近させ、その間隙に電圧を印加した事によって流れる
トンネル電流を出力抵抗21で検出し、増幅回路22に
よって増幅させる。このトンネル電流を一定に保つ様に
フィードバックが2方向にピエゾ素子15に電圧の形で
印加され、この状態でX、  X、  Y、  Y、 
 方向のピエゾ素子13. 1B、  14. 17で
2次元的に走査すると試料20の表面のトポロジカルな
情報を得る事ができる。
BACKGROUND OF THE INVENTION Conventional three-dimensional actuators are constructed by forming a piezo drive element that expands and contracts in the x, y, and z directions into a cylindrical or tribod shape. FIG. 2 is an example of this, showing a configuration diagram of a cylindrical three-dimensional actuator. x, y, z
Piezo elements 13, 14, 15 and X extending in each direction of
, consisting of piezo elements 1B and 17 extending in the Y direction. For example, in the case of a scanning tunneling microscope (hereinafter abbreviated as STM), a probe 1 is attached to the outer wall of this cylinder.
8 is fixed on a fixed base 1B and brought close to the surface of the sample 20 to within a few nm, and a voltage is applied across the gap to detect the tunnel current flowing through the output resistor 21 and amplify it by the amplifier circuit 22. Feedback is applied in the form of voltage to the piezo element 15 in two directions to keep this tunnel current constant, and in this state X, X, Y, Y,
Piezo element in direction 13. 1B, 14. By performing two-dimensional scanning at 17, topological information on the surface of the sample 20 can be obtained.

上記の様な87M装置は面内分解能が<10  垂直分
解能はく1 という極めて高い分解能を有する為に逆に
マクロな情報が得られないという欠点を有していた。
The 87M device as described above has an extremely high in-plane resolution of <10 and a vertical resolution of <1, so it has the disadvantage of not being able to obtain macroscopic information.

この欠点はSTMの有する本質的な欠点とされ、トポロ
ジカルな情報が得られた局所表面領域が試料表面のどの
位置で測定したものかについての重要な情報が得られな
い限り、STMの応用分野はかなり限定されるとされて
いた。
This drawback is considered to be an essential drawback of STM, and unless important information about the location on the sample surface where the local surface area from which topological information was obtained is obtained, the field of application of STM will be limited. It was said to be quite limited.

本発明は上記問題点を鑑みて考案されるに至ったもので
ある。
The present invention has been devised in view of the above problems.

発明が解決しようとする課題 本発明が解決しようとする課題はSTM装置で測定して
いる位置を明確に把握する事ができ、ダイナミックレン
ジの大きい分解能を有するSTM装置を実現する点にあ
る。
Problems to be Solved by the Invention The problems to be solved by the present invention are to realize an STM device that can clearly grasp the position being measured by the STM device and has a resolution with a large dynamic range.

課題を解決するための手段 本発明は、ピエゾ駆動素子に光ファイバーを装着した構
造を有する3次元アクチュエータを用いて探針先端の試
料表面上での位置がリアルタイムで把握できるSTM装
置である。
Means for Solving the Problems The present invention is an STM device that can grasp the position of a probe tip on a sample surface in real time using a three-dimensional actuator having a structure in which an optical fiber is attached to a piezo drive element.

作用 本発明を実施する事により、従来まで大きな傷害となっ
ていた分解能のダイナミックレンジが飛躍的に増大し、
試料表面の測定をしたり局所領域での測定が可能となっ
たばかりでなく、試料表面の測定領域に任意の強度の光
を照射する事が可能となった。
Effect By implementing the present invention, the dynamic range of resolution, which has been a major problem in the past, has been dramatically increased.
Not only has it become possible to measure the sample surface or in a local area, but it has also become possible to irradiate the measurement area of the sample surface with light of arbitrary intensity.

実施例 (実施例1) 第1図は本発明の一実施例である。従来と同様に円筒形
のピエゾ駆動式3次元アクチュエータに探針6が支持台
8によって装着されている。上記3次元アクチュエータ
にはX、X方向のピエゾ素子1. 4.  Y、  Y
方向のピエゾ素子2.S、及びX方向のピエゾ素子3が
具備されている。支持台8には光フアイバーケーブル7
が装着されており同ケーブル7の先端は探針6の先端方
向に向いている。試料9と探針6との間に1v程度の電
圧を印加させた状態で両者を約11mmまで近づける両
物質表面の波動関数の重なりによってトンネル電流が流
れはじめる。トンネル電流は出力抵抗11によって電圧
に変換されて出力され、増幅器12等を経てフィードバ
ック回路系に入力される。この際、予め設定したトンネ
ル電圧値0.3nAより大きい電流が流れるとフィード
バック回路によりX方向のピエゾ素子3に印加される電
圧が減少し、探針6は試料9の表面から遠ざかり、指数
関数的にトンネル電流は減少する。逆に0.3nAより
小さい電流しか流れない時は、探針6が試料9の表面に
近づく様にフィードバックがかけられるシステムである
Example (Example 1) FIG. 1 shows an example of the present invention. As in the prior art, a probe 6 is attached to a cylindrical piezo-driven three-dimensional actuator by a support base 8. The three-dimensional actuator includes piezo elements in the X and X directions. 4. Y, Y
piezo element in the direction 2. Piezo elements 3 in the S and X directions are provided. An optical fiber cable 7 is attached to the support stand 8.
is attached, and the tip of the cable 7 is directed toward the tip of the probe 6. With a voltage of about 1 V applied between the sample 9 and the probe 6, the two are brought close to each other to a distance of about 11 mm, and a tunnel current begins to flow due to the overlap of the wave functions on the surfaces of both materials. The tunnel current is converted into a voltage by the output resistor 11 and output, and is input to the feedback circuit system via the amplifier 12 and the like. At this time, if a current larger than the preset tunnel voltage value of 0.3 nA flows, the feedback circuit reduces the voltage applied to the piezo element 3 in the X direction, and the probe 6 moves away from the surface of the sample 9, causing an exponential The tunnel current decreases. Conversely, when a current smaller than 0.3 nA flows, the system applies feedback so that the probe 6 approaches the surface of the sample 9.

この状態でX、X方向のピエゾ素子1,4.及びY、 
 Y方向のピエゾ素子2,3に三角波の電圧を印可して
2次元的に平面走査する。本実施例では5μ1112の
走査範囲であり、大気中にて観測を行った。
In this state, the piezo elements 1, 4 in the X and X directions. and Y,
A triangular wave voltage is applied to the piezo elements 2 and 3 in the Y direction to scan the plane two-dimensionally. In this example, the scanning range was 5μ1112, and the observation was performed in the atmosphere.

ここで、光フアイバーケーブル7は、直径10〜20μ
履のガラス繊維が数百本束ねて形成されており光ガイド
の役割を果たす。更に焦点距離が411111゜直径2
mmのレンズが光ケーブル7の先端に取付けられており
、探針先端部の試料表面領域の像を映し出す事が可能で
ある。又、終端部ではイメージセンナを含む光学系(倍
率は×1〜400倍) 1G上に結像させ電気信号に変
換して、TVモニタで測定領域の様子が把握できる様に
なっている。
Here, the optical fiber cable 7 has a diameter of 10 to 20μ.
The shoes are made of hundreds of glass fibers tied together and serve as a light guide. Furthermore, the focal length is 411111° and the diameter is 2.
A mm lens is attached to the tip of the optical cable 7, making it possible to project an image of the sample surface area at the tip of the probe. Further, at the terminal end, an optical system including an image sensor (magnification: 1 to 400 times) forms an image on 1G and converts it into an electrical signal, so that the state of the measurement area can be seen on a TV monitor.

この装置を用いてLSIのAI配線領域及び51基板領
域を明りょうに区別して表面凹凸を測定する事が出来た
。又、チタンシリサイド材料は熱処理時間を長くすると
TlSi!領域は表面が島状(直径が約50μl)に凝
集してしまう現象が見られる。これを試料として用いた
場合でも、容易にTiS!□領域及びその他の81基板
領域とが区別され、X、Yの粗動機構を用いて探針6の
先端を移動させてから測定し、各々の領域の表面凹凸の
違いを区別する事ができた。
Using this device, it was possible to clearly distinguish between the AI wiring area and the 51 board area of the LSI and measure the surface unevenness. Furthermore, when the heat treatment time is increased, titanium silicide material becomes TlSi! A phenomenon in which the surface of the region aggregates into an island shape (about 50 μl in diameter) is observed. Even when this is used as a sample, TiS! □ area and the other 81 substrate areas, and by moving the tip of the probe 6 using the coarse movement mechanism in X and Y, it is possible to distinguish the differences in the surface unevenness of each area. Ta.

STMは分解能が極めて高い為に、逆に比較的平坦な表
面上の測定には向いているが、大きな段差を有する領域
にまたがって走査すると探針6を試料表面にぶつけてし
まう恐れがある。その為にも予め測定したい領域を把握
した上で探針走査領域を確保し、測定するという手順を
踏む事は極めて有益な事である。
Since STM has an extremely high resolution, it is suitable for measurements on a relatively flat surface, but if it scans across an area with large steps, there is a risk that the probe 6 will hit the sample surface. For this reason, it is extremely beneficial to understand the area to be measured in advance, secure a probe scanning area, and then perform the measurement.

尚、本発明の実施例においてピエゾ駆動素子を円筒形か
らトライボッド形に変えても同様な事が言える。
The same thing can be said even if the piezo drive element in the embodiment of the present invention is changed from a cylindrical shape to a tri-bod shape.

(実施例2) 本発明の実施例1において、束ねた光ファイバ−のうち
の一部を光源用光ガイドとして用いた実施例を示す。第
3図は第1図の光ケーブル7の断面図である。同図にお
いて、斜線で示した領域27の終端は光源に接続されて
おり、この光ガイド領域27からは光が照射される。残
りの領域2Bは実施例1と同様で、探針先端部及び試料
表面部の部分の光学像をイメージセンサを含む光学系1
Gに送る光ガイド領域である。
(Example 2) In Example 1 of the present invention, an example will be shown in which a part of the bundled optical fibers is used as a light guide for a light source. FIG. 3 is a sectional view of the optical cable 7 of FIG. 1. In the figure, the end of the shaded area 27 is connected to a light source, and light is emitted from this light guide area 27. The remaining area 2B is the same as in Example 1, and an optical system 1 including an image sensor captures an optical image of the tip of the probe and the surface of the sample.
This is a light guide area that sends light to G.

光源にレーザーを用いる事により、光照射に基づく表面
構造変化を把握する事が出来る。
By using a laser as a light source, it is possible to understand changes in surface structure due to light irradiation.

(実施例3) 本発明の実施例1.2においては探針e及び光フアイバ
ーケーブル7は別々の物体で形成されていたが、本実施
例の場合は光フアイバ−ケーブル7自体が探針6の役割
を兼ねたタイプの場合である。
(Example 3) In Example 1.2 of the present invention, the probe e and the optical fiber cable 7 were formed of separate objects, but in the case of this example, the optical fiber cable 7 itself is connected to the probe 6. This is the case of the type that also serves the role of

第4図は実施例3の場合を示す。同図において5は実施
例1で示したY方向ピエゾ素子、8は試料表面、8は探
針支持台である。2Bは実施例1における対物レンズで
あり、先端に針状突起物27がある。25は光フアイバ
ーケーブルである。対物レンズ211.27及び光フア
イバーケーブル25の表面には白金をコートしてあり、
光フアイバーケーブルと同時に探針も兼ねる。ここで、
対物レンズ26の先端部には白金コートは除いである。
FIG. 4 shows the case of Example 3. In the figure, 5 is the Y-direction piezo element shown in Example 1, 8 is the sample surface, and 8 is a probe support. 2B is the objective lens in Example 1, and has a needle-like protrusion 27 at its tip. 25 is an optical fiber cable. The surfaces of the objective lens 211.27 and the optical fiber cable 25 are coated with platinum.
It doubles as an optical fiber cable and a probe at the same time. here,
The tip of the objective lens 26 is not coated with platinum.

その他の系は実施例1及び2と同様である。The other systems are the same as in Examples 1 and 2.

本実施例の場合、対物レンズ2B先端部の針状突起物2
7を通してトンネル電流が流れ、測定領域をより高精度
にリアルタイムで観測できる利点がある。特に溶液中の
反応過程を観察する際に適している。
In the case of this embodiment, the needle-like protrusion 2 at the tip of the objective lens 2B
7, which has the advantage that the measurement area can be observed in real time with higher accuracy. It is particularly suitable for observing reaction processes in solutions.

発明の効果 本発明により従来のSTMで障害となっていた測定分解
能のダイナミックレンジを大幅に向上する事が可能とな
り、所望の局所表面領域を測定する事ができ、かつ、光
照射に基づく表面構造変化の測定も容易に実現できる様
になった。
Effects of the Invention The present invention makes it possible to significantly improve the dynamic range of measurement resolution, which has been an obstacle in conventional STM, to measure a desired local surface area, and to improve the surface structure based on light irradiation. Measuring changes has become easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に基づ〈実施例1の実施例の3次元ア
クチュエータ部分の構成図、第2図は、従来の3次元ア
クチュエータ部分の構成図、第3図は、光フアイバーケ
ーブルの断面図、第4図は、実施例4における測定部の
構成図である。 1〜5・・・・ピエゾ素子、6・・・・探針、7・・・
・光フアイバーケーブル、8・・・・支持台、9・・・
試料、lO・・・・光学系。 代理人の氏名 弁理士 栗野重孝 はか1名It図 第 図 Q 第 図
Fig. 1 is a block diagram of a three-dimensional actuator part according to the present invention (Embodiment 1), Fig. 2 is a block diagram of a conventional three-dimensional actuator part, and Fig. 3 is a block diagram of an optical fiber cable. The cross-sectional view, FIG. 4, is a configuration diagram of the measuring section in Example 4. 1 to 5... Piezo element, 6... Probe, 7...
・Optical fiber cable, 8... Support stand, 9...
Sample, lO...Optical system. Name of agent: Patent attorney Shigetaka Kurino (1 person)Figure Q Figure

Claims (2)

【特許請求の範囲】[Claims] (1)ピエゾ駆動素子に光ファイバーを装着させた三次
元アクチュエータ。
(1) A three-dimensional actuator with an optical fiber attached to a piezo drive element.
(2)ピエゾ駆動素子に光ファイバーを装着させた三次
元アクチュエータを搭載した測定位置認識可能な走査型
トンネル顕微鏡装置。
(2) A scanning tunneling microscope device equipped with a three-dimensional actuator in which an optical fiber is attached to a piezo drive element and capable of recognizing measurement positions.
JP2417989A 1989-02-02 1989-02-02 Three-dimensional actuator and scanning type tunnel microscope device Pending JPH02203205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417989A JPH02203205A (en) 1989-02-02 1989-02-02 Three-dimensional actuator and scanning type tunnel microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417989A JPH02203205A (en) 1989-02-02 1989-02-02 Three-dimensional actuator and scanning type tunnel microscope device

Publications (1)

Publication Number Publication Date
JPH02203205A true JPH02203205A (en) 1990-08-13

Family

ID=12131118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417989A Pending JPH02203205A (en) 1989-02-02 1989-02-02 Three-dimensional actuator and scanning type tunnel microscope device

Country Status (1)

Country Link
JP (1) JPH02203205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172002A (en) * 1991-08-22 1992-12-15 Wyko Corporation Optical position sensor for scanning probe microscopes
US5196713A (en) * 1991-08-22 1993-03-23 Wyko Corporation Optical position sensor with corner-cube and servo-feedback for scanning microscopes
WO1994025888A1 (en) * 1993-04-28 1994-11-10 Board Of Regents, The University Of Texas System Optically guided macroscopic-scan-range/nanometer resolution probing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172002A (en) * 1991-08-22 1992-12-15 Wyko Corporation Optical position sensor for scanning probe microscopes
US5196713A (en) * 1991-08-22 1993-03-23 Wyko Corporation Optical position sensor with corner-cube and servo-feedback for scanning microscopes
WO1994025888A1 (en) * 1993-04-28 1994-11-10 Board Of Regents, The University Of Texas System Optically guided macroscopic-scan-range/nanometer resolution probing system
US5426302A (en) * 1993-04-28 1995-06-20 Board Of Regents, University Of Texas Optically guided macroscopic-scan-range/nanometer resolution probing system

Similar Documents

Publication Publication Date Title
JP2574942B2 (en) Electrical probe
US5426302A (en) Optically guided macroscopic-scan-range/nanometer resolution probing system
JPH04233404A (en) Interatomic-power microscope
JPH03235004A (en) Scanning electron microscope with scanning tunneling microscope
CN106645807B (en) Photoelectric coupling environment controllable atomic force microscopic test system
JPH02203205A (en) Three-dimensional actuator and scanning type tunnel microscope device
JP3753215B2 (en) Scanning probe microscope
JP3240309B2 (en) Atomic force microscope prober and atomic force microscope
CN1445525A (en) Detector head of doublet atomic force microscope
JP3189244B2 (en) Near field microscope
EP1436636B1 (en) Method and apparatus for sub-micron imaging and probing on probe station
JP3892184B2 (en) Scanning probe microscope
JP2002168754A (en) Scanning probe microscope apparatus
JPH05249209A (en) Scanning microscope
JP2571624B2 (en) Control method of scanning tunneling microscope
JP3167287B2 (en) Micro vibration applying device, micro vibration applying method and surface state detecting device
JPH06281445A (en) Scanner system
JP2000097838A (en) Surface observation device and surface observation method
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP3512259B2 (en) Scanning probe microscope
JPH0472505A (en) Scanning type inter-atomick force tunneling microscope
JPH0771912A (en) Fine adjustment, and scanning type probe microscope
JP3617242B2 (en) Micro displacement measurement mechanism and micro displacement mechanism
JPH0318702A (en) Scanning type tunnel microscope
JPH08327634A (en) Cantilever, heater employing it, and heating/shape measuring apparatus employing it