JPH031988B2 - - Google Patents
Info
- Publication number
- JPH031988B2 JPH031988B2 JP60109136A JP10913685A JPH031988B2 JP H031988 B2 JPH031988 B2 JP H031988B2 JP 60109136 A JP60109136 A JP 60109136A JP 10913685 A JP10913685 A JP 10913685A JP H031988 B2 JPH031988 B2 JP H031988B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- thermotherapy
- cancer cells
- temperature
- affected area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 38
- 239000010419 fine particle Substances 0.000 claims description 36
- 206010028980 Neoplasm Diseases 0.000 claims description 35
- 201000011510 cancer Diseases 0.000 claims description 35
- 238000000015 thermotherapy Methods 0.000 claims description 32
- 230000009466 transformation Effects 0.000 claims description 13
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 11
- 230000032258 transport Effects 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004816 latex Substances 0.000 claims description 4
- 229920000126 latex Polymers 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 2
- 238000002560 therapeutic procedure Methods 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 36
- 230000006698 induction Effects 0.000 description 22
- 238000011282 treatment Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 9
- 239000011859 microparticle Substances 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 210000000436 anus Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000011866 long-term treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 101100112085 Arabidopsis thaliana CRT3 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 101100141330 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RNR4 gene Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009217 hyperthermia therapy Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrotherapy Devices (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、誘導加熱式の温熱治療装置に使用す
る温熱治療用被誘導加熱体に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an induction heated body for thermotherapy used in an induction heating type thermotherapy device.
(従来の技術)
癌細胞に対する温熱治療とは、例えば正常細胞
が43℃以上で死滅するのに対し、あらゆる癌細胞
は40℃以上で43℃未満で増殖機能を失う点に着目
して為されるもので、この温熱治療に供される温
熱治療装置としては、癌の発生部位近傍の体表
を、塩水と電極板の入つた袋から成る一対の電極
袋で挟圧し、該電極袋を介して8Mヘルツ程度の
高周波電流を直接人体に流して癌細胞を加熱する
ように構成されたもの、或いは、2450Mヘルツ程
度のマイクロ波を癌細胞近傍の体表に放射し、マ
イクロ波が生体組織に入射する際のエネルギーの
熱変換により、癌細胞を加熱するように構成され
たものが提供されている。(Prior art) Hyperthermia therapy for cancer cells is based on the fact that, for example, normal cells die at temperatures above 43°C, while all cancer cells lose their growth function at temperatures above 40°C and below 43°C. The thermotherapy device used for this thermotherapy uses a pair of electrode bags consisting of a pair of electrode bags containing salt water and an electrode plate to press the body surface near the site of cancer, and then heat the body through the electrode bags. A device configured to heat cancer cells by passing a high-frequency current of about 8 MHz directly into the human body, or a device configured to radiate microwaves of about 2450 MHz to the body surface near cancer cells, and the microwaves to heat the body tissue. Provided are devices configured to heat cancer cells through thermal conversion of incident energy.
しかしながら、この種の温熱治療装置では、体
表近傍の癌細胞だけしか加熱することができず、
体表から15cm程度の深部が限界であるため、癌の
発生部位によつては治療が困難な場合もあり、し
かも、癌細胞だけでなく正常細胞をも加熱するこ
とになるから、特に連続治療、長期治療に際して
は正常細胞への影響が問題となつていた。 However, this type of thermotherapy device can only heat cancer cells near the body surface.
The treatment limit is about 15 cm from the body surface, so depending on the site of cancer, it may be difficult to treat it.Moreover, it heats not only cancer cells but also normal cells, so continuous treatment is especially recommended. However, the effect on normal cells has been a problem during long-term treatment.
そこで、従来から、癌細胞だけを加熱するた
め、生体内の患部に金属棒や金属針などの被誘導
加熱体を入れ、生体を高周波磁界の中に置いて、
該誘導加熱体を加熱して患部を温熱治療する技術
が提案されている。 Conventionally, in order to heat only cancer cells, an induced heating element such as a metal rod or metal needle is inserted into the affected area of the living body, and the living body is placed in a high-frequency magnetic field.
A technique has been proposed to heat the affected area by heating the induction heating element.
(発明が解決しようとする問題点)
ところで、従来誘導加熱式の温熱治療装置に使
用されている被誘導加熱体は、上述のように金属
棒、金属片又は金属針であるから、これらの物を
生体に入れるには、生体の切開、生体への穿刺、
或いは生体肛門からの挿入といつた手段を採らな
ければならなかつた。さらに温度を制御するため
の検出器例えば熱電対などをも生体内部の患部近
傍にまで挿入しなければならなかつた。このた
め、被誘導加熱体を生体に入れるのに手間がかか
るばかりか、患者にも苦痛を与えてしまい、長期
治療や連続治療には困難を伴つていた。しかも、
従来の被誘導加熱体は、金属塊或いはそれに類似
したものだから、患部を斑なく均一に加熱するこ
とも難しく、特に消火器系などの空洞状臓器への
適応性に欠け、患部だけを均一に加熱するという
誘導加熱式温熱治療装置の初期の目的を充分に発
揮させることができなかつた。(Problems to be Solved by the Invention) By the way, the induction heating objects conventionally used in induction heating type thermotherapy devices are metal rods, metal pieces, or metal needles as described above. In order to insert into a living body, incision of the living body, puncture into the living body,
Alternatively, methods such as insertion through the biological anus had to be used. Furthermore, a detector such as a thermocouple for controlling the temperature must also be inserted close to the affected area inside the living body. For this reason, it not only takes time and effort to insert the induction heated body into the living body, but also causes pain to the patient, making long-term treatment or continuous treatment difficult. Moreover,
Conventional induced heating elements are metal lumps or similar materials, so it is difficult to heat the affected area evenly and evenly, and it is particularly difficult to apply heat to hollow organs such as fire extinguisher systems. The initial purpose of the induction heating type thermotherapy device, which was to generate heat, could not be fully realized.
本発明は、上記事情に鑑みてなされたもので、
癌がいかなる部位に発生しようともその部位に簡
単に入れることができ、しかも、高周波磁界内に
おいては患部を均一に加熱することができ、さら
には誘導加熱温度を容易に検出可能にする温熱治
療用被誘導加熱体を得ることを目的とするもので
ある。 The present invention was made in view of the above circumstances, and
For thermotherapy, which can be easily applied to any part of the body where cancer occurs, and can evenly heat the affected area within a high-frequency magnetic field, and furthermore, the induction heating temperature can be easily detected. The purpose is to obtain an object to be heated by induction.
(問題点を解決するための手段)
斯る問題点を解決する手段として、本発明の温
熱治療用被誘導加熱体は、導電性材料を主体とす
る多数の微粒子と、該微粒子に混合して同微粒子
を被加療体の癌細胞から成る患部に移送する移送
体とを含み、前記微粒子には、正常細胞が死滅せ
ず且つ癌細胞が死滅する所望の温度で変態する形
状記憶合金を含め、そして該形状記憶合金を、そ
の変態温度の前後で外形寸法が変化し得るように
予め形状設定しておくものである。(Means for Solving the Problem) As a means for solving the problem, the induced heating element for thermotherapy of the present invention includes a large number of fine particles mainly made of a conductive material, and a mixture of the fine particles mixed with the fine particles. a transporter that transports the microparticles to an affected area consisting of cancer cells of the subject, the microparticles containing a shape memory alloy that transforms at a desired temperature at which normal cells do not die and cancer cells die; The shape of the shape memory alloy is set in advance so that its external dimensions can change before and after its transformation temperature.
(作用)
本発明においては、多数の微粒子を移送体に混
合し、静脈注射、皮下注射或いは口からの注入な
どによつて移送体と共に微粒子を被加療体の癌細
胞から成る患部に移送し、その後高周波磁界内に
入れられることによつて微粒子が発熱して、患部
を加熱治療する。形状記憶合金を主体とする微粒
子は、正常細胞が死滅せず且つ癌細胞が死滅する
所望の変態温度においてその外形寸法が変化し、
この変化を超音波などで検出することにより、苦
痛を与えず容易に誘導加熱温度の検出を可能にす
る。(Function) In the present invention, a large number of fine particles are mixed in a transport body, and the fine particles are transported together with the transport body to the affected area of the patient's cancer cells by intravenous injection, subcutaneous injection, or oral injection, The particles are then placed in a high-frequency magnetic field to generate heat, providing heat treatment to the affected area. Fine particles mainly made of shape memory alloy change their external dimensions at a desired transformation temperature at which normal cells do not die and cancer cells die,
By detecting this change using ultrasonic waves or the like, it is possible to easily detect the induction heating temperature without causing pain.
(実施例)
本発明に係る温熱治療用被誘導加熱体は、第1
図に示すように導電性材料を主体ととする多数の
微粒子1と、該微粒子1に混合して同微粒子1を
被加療体の癌細胞から成る患部、即ち、生体の患
部に移送する移送体2とによつて構成されてい
る。(Example) The induced heating body for thermotherapy according to the present invention has a first
As shown in the figure, a large number of microparticles 1 mainly made of conductive material and a transporter that mixes the microparticles 1 and transports the microparticles 1 to the affected area of the patient's cancer cells, that is, the affected area of the living body. It is composed of 2.
上記微粒子1は、高周波磁界内において渦電流
損によつて発熱するもので、鉄、タングステン、
アルミナ、コバルトクローム合金、ステンレスス
チール、チタン、ニツケル−チタン合金などのよ
うに、毒性やアレルギー反応を示さず化学的に安
定で、血液凝固や溶血を起こさず、発癌性がない
といつたように生物学的に著しい悪影響を及ぼさ
ない金属などを主体とするものであればその材質
は限定されない。尚、この微粒子1を磁性材料と
すれば、治療後に該微粒子1をマグネツトによつ
て血液中などから分離排出することが可能であ
る。 The fine particles 1 generate heat due to eddy current loss in a high frequency magnetic field, and are made of iron, tungsten, etc.
Like alumina, cobalt chromium alloy, stainless steel, titanium, nickel-titanium alloy, etc., they are chemically stable without toxicity or allergic reactions, do not cause blood clotting or hemolysis, and are not carcinogenic. The material is not limited as long as it is mainly made of metal or the like that does not have a significant biologically harmful effect. Incidentally, if the fine particles 1 are made of a magnetic material, it is possible to separate and discharge the fine particles 1 from the blood etc. using a magnet after treatment.
特に、微粒子1としては、正常細胞が死滅せず
且つ癌細胞が死滅する温度例えば40℃以上43℃未
満の所望の温度で逆変態する全方位型の形状記憶
合金(例えばニツケル−チタン合金、銅−亜鉛−
アルミニウム合金)を材料とし、該逆変態温度の
前後で外形寸法が異なるように予め形状設定した
ものを採用することができる。例えば、逆変態温
度前後の形状としては、第2図Aに示すように逆
変態温度以下においては扁平形を呈し、第2図B
に示すように逆変態温度以上では粒形を成すよう
に形状設定することができる。上述の形状設定を
行うには、例えば、形状記憶合金の母相状態、即
ち、逆変態温度以上の温度において第2図Bの形
状を設定しておき、次に逆変態温度よりも低いマ
ルテンサイト変態温度以下の温度で第2図Aに示
す形状に変形させればよい。このように全方位型
の形状記憶合金を使用すれば、逆変態温度の前後
における超音波エコー信号の強弱に基づいて、即
ち、微粒子1からの反射量の変化に基づいて、被
誘導加熱体の温度制御ができるから、熱電対など
の温度検出器を患者に穿設しなくても、容易に、
且つ、高精度な温度制御を行うことが可能にな
る。 In particular, as the fine particles 1, omnidirectional shape memory alloys (e.g., nickel-titanium alloy, copper -Zinc-
An aluminum alloy) may be used as the material, and the shape may be set in advance so that the external dimensions are different before and after the reverse transformation temperature. For example, the shape before and after the reverse transformation temperature is flat as shown in Figure 2A, and below the reverse transformation temperature, and as shown in Figure 2B.
As shown in Figure 2, the shape can be set to form grains at temperatures above the reverse transformation temperature. In order to set the above-mentioned shape, for example, the shape shown in FIG. It may be deformed into the shape shown in FIG. 2A at a temperature below the transformation temperature. If an omnidirectional shape memory alloy is used in this way, the shape of the induced heating object can be determined based on the strength of the ultrasonic echo signal before and after the reverse transformation temperature, that is, based on the change in the amount of reflection from the fine particles 1. Temperature control is possible, so there is no need to insert a temperature sensor such as a thermocouple into the patient.
Moreover, it becomes possible to perform highly accurate temperature control.
また、微粒子1の粒径については、小さい程伝
熱放熱性が良く患部の均一加熱を達成することが
できるが、逆に小さ過ぎると誘導加熱による発熱
性が低下してしまう。実験によれば、粒径100Å
程度までであれば比較的良好な発熱性を維持する
ことができた。尚、前記微粒子の形状設定は第2
図A,Bに限定されず、第2図C,D,Eに示さ
れるように、変態温度近傍で、ロール状から平板
状に、二つ折りから平板状に、そして圧縮コイル
状から伸張コイル状に変化するように形状設定す
ることもができ、さらには棒状と湾曲平板状など
その他適宜に形状設定することができる。 Regarding the particle size of the microparticles 1, the smaller the particle size, the better the heat transfer and heat dissipation properties, and uniform heating of the affected area can be achieved.On the other hand, if the particle size is too small, the heat generation property by induction heating will be reduced. According to experiments, the particle size is 100Å
It was possible to maintain relatively good heat generation properties up to a certain extent. In addition, the shape setting of the fine particles is performed in the second step.
Not limited to Figures A and B, but as shown in Figure 2 C, D, and E, near the transformation temperature, the shape changes from a roll to a flat plate, from folded in half to a flat plate, and from a compressed coil to an expanded coil. It is also possible to set the shape so that the shape changes, and furthermore, the shape can be set as appropriate, such as a rod shape and a curved flat plate shape.
更に、上記微粒子1は、生体適合性の一層の向
上を図るために、表面をラテツクスなどで被覆し
ておくこともできる。特に、移送体2として後述
するモノクローナル抗体を利用する場合には、モ
ノクローナル抗体との親和性を増すラテツクスで
被覆した微粒子1、例えば粒径100Å程度の鉄粉
の回りをメチルメタアクリレート(MMA)を主
体とする合成ラテツクスにOH(水酸基)と
COOH(カルボキシル基)の二つの官能基を持た
せたもので被覆した微粒子1を使用することが望
ましい。 Further, the surface of the fine particles 1 may be coated with latex or the like in order to further improve biocompatibility. In particular, when using a monoclonal antibody, which will be described later, as the transporter 2, methyl methacrylate (MMA) is placed around fine particles 1, for example, iron powder with a particle size of about 100 Å, coated with a latex that increases the affinity for the monoclonal antibody. The main synthetic latex contains OH (hydroxyl groups) and
It is desirable to use fine particles 1 coated with two functional groups, COOH (carboxyl group).
次に上記移送体2について説明する。 Next, the transport body 2 will be explained.
この移送体2は、上記微粒子1を移送する部位
や治療目的によつて種々のものを採用でき、例え
ば、治療部位に相当する特定の癌細胞にだけ付着
するモノクローナル抗体を利用することができ
る。移送体2にモノクローナル抗体を利用すれ
ば、癌細胞が如何なる部位にあろうとも、該モノ
クローナル抗体は確実に所定の癌細胞に結合する
から、正常細胞を全く傷付けずに癌細胞だけを選
択的に温熱治療するという所謂ミサイル療法的効
果を期待することができる。 Various types of transporter 2 can be used depending on the site to which the fine particles 1 are to be transported and the purpose of treatment. For example, monoclonal antibodies that attach only to specific cancer cells corresponding to the treatment site can be used. If a monoclonal antibody is used as the transporter 2, the monoclonal antibody will surely bind to a specific cancer cell no matter where the cancer cell is located, so it can selectively target only cancer cells without damaging normal cells at all. The so-called missile therapy effect of heat treatment can be expected.
また、上記微粒子1を穿刺針を介して直接癌細
胞に分散注入するといつた手段を採る場合には、
成形外科用シリコンや、細胞が取り込む事のでき
る血しようなどの生体適合性の液体を移送体2と
して利用することができる。特にこの場合には、
微粒子1の注入操作が簡単であるばかりでなく、
温熱治療の対象にする部位を任意に設定すること
ができるから、癌の再発の恐れのある細胞をも温
熱治療の対象にすることが可能である。 In addition, when adopting a method such as directly dispersing and injecting the fine particles 1 into cancer cells through a puncture needle,
Plastic surgery silicone or a biocompatible liquid such as blood plasma that can be taken up by cells can be used as the transport body 2. Especially in this case,
Not only is the injection operation of fine particles 1 easy,
Since the target area for thermotherapy can be arbitrarily set, it is also possible to target cells that are at risk of cancer recurrence.
更に、消化器系などの空洞状臓器(胃、腸な
ど)を治療対象とするときには、移送体2は、微
粒子1を安定的い拡散保持することができる生体
適合性の高粘性液体、例えばバリウム溶液にする
ことができる。バリウム溶液のような高粘性液体
であれば、患者の口から注入して空洞状臓器内に
溜つても、微粒子1が臓器内に沈澱することなく
充分に拡散するから、高周波磁界内においては臓
器内を均一に加熱でき、空洞状臓器への適応性に
優れる。 Furthermore, when treating hollow organs such as the digestive system (stomach, intestines, etc.), the transport body 2 is made of a biocompatible high viscosity liquid that can stably diffuse and retain the fine particles 1, such as barium. Can be made into a solution. If it is a highly viscous liquid such as a barium solution, even if it is injected through the patient's mouth and accumulates in a hollow organ, the fine particles 1 will be sufficiently diffused without settling inside the organ. It can heat the inside evenly and has excellent adaptability to hollow organs.
ここで上記温熱治療用被誘導加熱体を使用する
温熱治療装置について説明する。 Here, a thermotherapy device using the above-mentioned induced heating body for thermotherapy will be explained.
先ず、温熱治療装置をブロツク図で示す第3図
及びその外観を示す第4図において、この温熱治
療装置は、高周波電流印加回路3を介して高周波
電流が印加される誘導子4により、上記温熱治療
用被誘導加熱体が注入されている被加療体5の癌
細胞から成る患部6を、該微粒子1を介して加熱
する誘導加熱手段7を備えている。上記誘導子4
は、ベースフレーム8に固定配置した環状フレー
ム9の開口10内に設けられていて、該開口10
内に位置した環状フレーム9上に枢支された3本
のローラ11(第3図においては1本、第4図に
おいては2本を図示)で回転自在に支持されてい
る筒状の導電性基体12外周面に複数回巻回され
て成り、該誘電性基体12の筒内に高周波磁界を
形成するようになつている。そして、誘電性基体
12は、該誘電性基体12に挿通配置した非導電
性材料から成るベツド13に載置される被加療体
5の患部6に対して、高周波磁界を均一に与える
ようにするため、上記ローラ11の一つが可逆モ
ータ14に接続され、モータ駆動回路15を介し
て1回転毎に正逆転する構造を有する。なお、高
周波磁界を均一に与えるための構造としては、上
記とは逆に誘電性基体12を固定しておき、ベツ
ド13を該誘電性基体12に対して偏心した状態
で回転させるようにすることもできる。 First, in FIG. 3, which shows a block diagram of the thermotherapy device, and FIG. 4, which shows its appearance, this thermotherapy device applies the above-mentioned heat by an inductor 4 to which a high-frequency current is applied via a high-frequency current application circuit 3. It is equipped with an induction heating means 7 that heats, via the fine particles 1, an affected area 6 made of cancer cells of a patient 5 into which a therapeutic induction heating object has been injected. Above inductor 4
is provided in an opening 10 of an annular frame 9 fixedly arranged on the base frame 8, and the opening 10
A cylindrical conductive conductor is rotatably supported by three rollers 11 (one in FIG. 3 and two in FIG. 4) pivotally supported on an annular frame 9 located inside. It is wound a plurality of times around the outer peripheral surface of the dielectric base 12 to form a high frequency magnetic field within the cylinder of the dielectric base 12. The dielectric base 12 is configured to uniformly apply a high-frequency magnetic field to the affected area 6 of the patient 5 placed on the bed 13 made of a non-conductive material and inserted through the dielectric base 12. Therefore, one of the rollers 11 is connected to a reversible motor 14, and has a structure in which it rotates forward and reverse every rotation via a motor drive circuit 15. In addition, as a structure for applying a high frequency magnetic field uniformly, contrary to the above, the dielectric base 12 is fixed, and the bed 13 is rotated in an eccentric state with respect to the dielectric base 12. You can also do it.
上記誘導加熱手段7によつて加熱する患部6の
温度は、あらゆる癌細胞が増殖能力を失う40℃以
上43℃未満に設定されるもので、そのために、先
ず、該患部6の温度を検出する温度検出手段16
が設けられている。 The temperature of the affected area 6 heated by the induction heating means 7 is set to 40°C or higher and lower than 43°C, at which all cancer cells lose their ability to proliferate.To this end, first, the temperature of the affected area 6 is detected. Temperature detection means 16
is provided.
本実施例に従えば、形状記憶合金から成る微粒
子1を用いるから、上述した逆変態温度前後にお
る微粒子1からのエコー信号を検出する超音波プ
ローブ20、及びそのエコー信号の強弱の変化に
基づいて温度検出のための処理を行う信号処理部
21などから成る超音波検出装置によつて前記温
度検出手段16を構成することができる。尚、上
記信号処理部21は、コントロールパネル30上
での処理モードの切換を行つた場合には、通常の
超音波診断装置と同様に被加療体5の断層像をコ
ントロールパネル30上のCRT31に適宜の画
像表示モードで表示できるようになつており、図
示はしないが、上記超音波検出装置には、送信
部、送受信切換部、高周波増幅部、検波部、ビデ
オ増幅部が装備されている。 According to this embodiment, since the fine particles 1 made of a shape memory alloy are used, the ultrasonic probe 20 detects the echo signals from the fine particles 1 at around the above-mentioned reverse transformation temperature, and based on the change in the strength of the echo signals, The temperature detection means 16 can be constituted by an ultrasonic detection device including a signal processing section 21 that performs processing for temperature detection. Note that, when the processing mode is switched on the control panel 30, the signal processing section 21 transmits the tomographic image of the subject 5 to the CRT 31 on the control panel 30, as in a normal ultrasound diagnostic apparatus. Although not shown, the ultrasonic detection device is equipped with a transmitting section, a transmitting/receiving switching section, a high frequency amplifying section, a detecting section, and a video amplifying section.
尚、癌細胞から成る患部6に穿刺可能な長さを
有すると共に電磁遮蔽物質で被覆した熱電対と、
この熱電対からの熱起電力による電流を入力して
温度を測定する温度測定回路とによつて構成した
別の温度検出手段を併用することは妨げられな
い。この場合、熱電対としては、直径が0.25mmの
アルメル・クロメルを電磁遮蔽物質から成るイン
コネル封管に絶縁した状態で封入した構造を採用
することができる。特に、熱電対を主体としたも
のは、簡単な構造でありながら比較的制度の高い
温度測定を行うことができ、更に、外径寸法が
0.5mm程度であるから容易に被加療体5に穿刺す
ることが可能で、しかも、電磁遮蔽物質で被覆さ
れているから高周波磁界内にあつても異常に発熱
することはなく、体表から患部へ至る穿刺経路が
高温化してしまうことはない。 In addition, a thermocouple having a length that can be punctured into the affected area 6 consisting of cancer cells and coated with an electromagnetic shielding material,
It is not precluded to use together another temperature detection means constituted by a temperature measurement circuit which measures the temperature by inputting the current generated by the thermoelectromotive force from the thermocouple. In this case, the thermocouple may have a structure in which alumel/chromel having a diameter of 0.25 mm is insulated and sealed in an Inconel sealed tube made of an electromagnetic shielding material. In particular, thermocouple-based devices have a simple structure but can measure temperature with relatively high accuracy, and they also have a small outer diameter.
Since it is approximately 0.5 mm, it can be easily punctured into the patient 5, and since it is coated with an electromagnetic shielding material, it will not generate abnormal heat even if it is in a high frequency magnetic field. The puncture route leading to the needle will not become hot.
併用可能なさらに別の温度検出手段としては、
比熱や熱伝導率などの熱的特性の点において生体
類次の液体たとえば生理食塩水中に微粒子1を注
入して成るフアントムを、非加療体5の体表近傍
に配置し、このフアントムの温度を熱電対で計測
し、その結果から患部6の温度をシミユレートし
て得る構造、或いは、比加療体5の皮下に、治療
に使用する温熱治療用被誘導加熱体と同じものを
注入し、その部位を熱電対で代用測定するような
構造を採用してもよい。尚、上述したように高周
波磁界を患部6の各部に対して均一に与えること
ができようにするため上記誘電性基対12は可逆
回転するから、患部とは異なつた部位における代
用測定であつてもその誤差を最小限に押さえるこ
とが可能である。 Another temperature detection means that can be used in combination is
A phantom made by injecting microparticles 1 into a liquid, such as physiological saline, which is comparable to that of living organisms in terms of thermal properties such as specific heat and thermal conductivity, is placed near the body surface of the non-treated subject 5, and the temperature of this phantom is adjusted. A structure that measures the temperature with a thermocouple and simulates the temperature of the affected area 6 from the result, or injects the same induction heating element for thermotherapy used for treatment under the skin of the specific treatment body 5, and measures the temperature of the affected area 6. Alternatively, a structure may be adopted in which the temperature is measured using a thermocouple instead. As mentioned above, the dielectric base pair 12 is reversibly rotated in order to uniformly apply the high-frequency magnetic field to each part of the affected area 6. It is also possible to minimize the error.
そして、上記温度検出手段16からの検出情報
に基づいて上記誘導加熱手段7へ印加する高周波
電流を制御するための制御手段22として、例え
ばCPU23、メモリ24、入力回路25、出力
回路26から成るマイクロコンピユータ27と、
該CPU23からの制御信号に基づいて高周波電
流の周波数制御を行う周波数制御回路28とを有
している。尚、マイクロコンピユータ27及び周
波数制御回路28は、上記高周波電流印加回路
3、モータ駆動回路15、並びに信号処理部21
と共に第4図に示す如くコントロールボツクス2
9内に収納され、このコントロールボツクス29
の上部にはコントロールパネル30及びCRT3
1が配置されている。 The control means 22 for controlling the high frequency current applied to the induction heating means 7 based on the detection information from the temperature detection means 16 is a microcontroller comprising, for example, a CPU 23, a memory 24, an input circuit 25, and an output circuit 26. computer 27;
It has a frequency control circuit 28 that performs frequency control of high frequency current based on a control signal from the CPU 23. The microcomputer 27 and the frequency control circuit 28 are connected to the high frequency current application circuit 3, the motor drive circuit 15, and the signal processing section 21.
and control box 2 as shown in Figure 4.
9, and this control box 29
The control panel 30 and CRT3 are on the top of the
1 is placed.
次に、以上のように構成した温熱治療用被誘導
加熱体の作用を温熱治療装置の作用と共に説明す
る。 Next, the operation of the induced heating body for thermotherapy constructed as above will be explained together with the operation of the thermotherapy apparatus.
先ず、ベツド13に被過労体5を載置し、次い
で、多数の微粒子1を移送体2に混合し、静脈注
射、皮下注射或いは口からの注入などによつて移
送体2と共に微粒子1を被加療体5の癌細胞から
成る患部6に移送する。このとき、患部6に注入
する温熱治療用被誘導加熱体は、治療部位や治療
目的に応じて上述した複数種類の微粒子1と移送
体2との中から適宜組み合わせて選択することが
でき、更に、温熱治療用被誘導加熱体を患部6に
入れるときには、従来のように切開手術、穿刺、
肛門からの挿入といつた手間のかかる作業が不要
で、しかも、患者に苦痛を与えることもない。 First, the overworked body 5 is placed on the bed 13, and then a large number of fine particles 1 are mixed into the transport body 2, and the fine particles 1 are covered with the transport body 2 by intravenous injection, subcutaneous injection, or oral injection. The treatment body 5 is transferred to an affected area 6 consisting of cancer cells. At this time, the induced heating body for thermotherapy to be injected into the affected area 6 can be selected from among the plurality of types of fine particles 1 and transfer body 2 described above depending on the treatment area and treatment purpose, and furthermore, When inserting the guided heated body for thermotherapy into the affected area 6, conventional incision surgery, puncture,
There is no need for laborious work such as insertion through the anus, and it does not cause any pain to the patient.
ここで、例えば温熱治療用被誘導加熱体とし
て、形状記憶合金から成る微粒子1とバリウ溶液
で成る移送体2とを混合したものを採用したとす
れば、先ず、温熱治療用誘導加熱体が所定の臓器
に到達したことを、CRT31上に映し出された
臓器の断層像を見て確認する。そして、誘導子4
に高周波電流を印加すると、微粒子1が渦電流損
によつて発熱して患部6が加熱される。このと
き、超音波プローブ20で患部6の温度を検出
し、その検出情報に基づいて印加高周波電流の周
波数制御が行われるから、患部6は、予め設定さ
れた40℃以上43℃未満の所定の温度に維持され
る。従つて、患部6のみが、それを構成する癌細
胞の増殖機能を停止させるに足る温度で加熱され
ることになり、癌が被加療体5の如何なる部位に
発生していようとも、正常細胞に何等悪影響が及
ぼすことなく、癌細胞だけを斑なく加熱治療する
ことができる。 Here, for example, if a mixture of fine particles 1 made of a shape memory alloy and a transfer body 2 made of a barium solution is adopted as the induction heating body for thermotherapy, first, the induction heating body for thermotherapy is placed in a predetermined position. Confirm that the target organ has been reached by looking at the tomographic image of the organ displayed on the CRT31. And inductor 4
When a high frequency current is applied to the particulates 1, the particles 1 generate heat due to eddy current loss, and the affected area 6 is heated. At this time, the temperature of the affected area 6 is detected by the ultrasonic probe 20, and the frequency of the applied high-frequency current is controlled based on the detected information. maintained at temperature. Therefore, only the affected area 6 is heated to a temperature sufficient to stop the growth function of the cancer cells that constitute it, and no matter where cancer occurs in the patient 5, normal cells are heated. It is possible to uniformly heat treat cancer cells without causing any adverse effects.
尚、超音波プローブ20による温度測定は、超
音波プローブ20が高周波磁界の影響を受けない
ようにするため、環状フレーム9の開口10の外
側で行うことが望ましいが、把持部を電磁遮蔽物
質で被覆した超音波プローブ20を利用すれば、
一層安定的に温度測定を行うことができる。 Note that temperature measurement using the ultrasonic probe 20 is preferably performed outside the opening 10 of the annular frame 9 in order to prevent the ultrasonic probe 20 from being affected by high-frequency magnetic fields. If the coated ultrasonic probe 20 is used,
Temperature measurement can be performed more stably.
以上のようにして温熱治療を行うとき、温熱治
療用被誘導加熱体を構成する微粒子1は患部6の
中で分散しているら、比較的大きな金属片などを
患部6に埋め込んで加熱するものに比べ、癌細胞
全体を斑なく加熱治療することができ、患部だけ
を加熱するという誘導加熱式温熱治療装置の所期
の目的を効果的に達成させることができる。しか
も、従来のように金属片などを患部に埋め込むた
めの切開手術なども不要で、温熱治療用被誘導加
熱体を簡単に被加療体5に入れることができるか
ら、一回の治療時間の短縮を図ることができると
共に、患者に苦痛を与えることがなく、複数回に
分けた継続治療にも好適である。 When performing thermotherapy as described above, if the fine particles 1 constituting the induced heating body for thermotherapy are dispersed within the affected area 6, a relatively large piece of metal or the like is embedded in the affected area 6 and heated. In comparison, the entire cancer cell can be heat-treated without spotting, and the intended purpose of the induction heating thermotherapy device, which is to heat only the affected area, can be effectively achieved. In addition, there is no need for incision surgery to embed metal pieces or the like in the affected area as in the past, and the induction heated body for thermotherapy can be easily inserted into the treated body 5, reducing the time required for one treatment. In addition, it does not cause pain to the patient, and is suitable for continuous treatment divided into multiple sessions.
(発明の効果)
以上説明したように本発明の温熱治療用被誘導
加熱体は、正常細胞が死滅せず且つ癌細胞が死滅
する所望の温度で変態する形状記憶合金を導電性
材料として含み、該該形状記憶合金は、その変態
温度の前後で外形寸法が変化し得るように予め形
状設定されているから、癌がいかなる部位に発生
していようともその部位に簡単に入れることがで
き、しかも、高周波磁界内においては患部を均一
に加熱することができさらには超音波などを利用
することにより苦痛を与えず簡単に誘導加熱温度
を検出することができるという効果を得るもので
ある。(Effects of the Invention) As explained above, the induced heating body for thermotherapy of the present invention includes, as a conductive material, a shape memory alloy that transforms at a desired temperature at which normal cells do not die and cancer cells die. Since the shape memory alloy is preset in shape so that its external dimensions can change before and after its transformation temperature, it can be easily inserted into any site where cancer occurs. The effect is that the affected area can be heated uniformly in a high-frequency magnetic field, and that the induction heating temperature can be easily detected without causing pain by using ultrasonic waves or the like.
第1図は本発明に係る温熱治療用被誘導加熱体
の構成説明図、第2図A,Bは形状記憶合金から
成る微粒子の逆変態温度以下での形状を示す斜視
図、同逆変態温度以上での形状を示す斜視図、第
2図C,D,Eは夫々微粒子のその他の形状設定
例を示す斜視図、第3図は本発明に係る温熱治療
用被誘導加熱体を使用する温熱治療装置の一例を
示す構成ブロツク図、第4図は同装置の外観斜視
図である。
1……微粒子、2……移送体、4……誘導子、
5……被加療体、6……患部、7……誘導加熱手
段、16……検出手段、20……超音波プロー
ブ、21……信号処理部、22……制御手段、2
7……マイクロコンピユータ、28……周波数制
御回路。
FIG. 1 is an explanatory diagram of the configuration of the induced heating body for thermotherapy according to the present invention, and FIGS. 2A and 2B are perspective views showing the shape of fine particles made of a shape memory alloy at a temperature below the reverse transformation temperature. FIG. 2C, D, and E are perspective views showing other examples of fine particle shape setting, and FIG. 3 is a perspective view showing the above shape, and FIG. FIG. 4 is a block diagram showing an example of the treatment device, and is a perspective view of the appearance of the device. 1... fine particles, 2... transporter, 4... inductor,
5... Subject to be treated, 6... Affected area, 7... Induction heating means, 16... Detection means, 20... Ultrasonic probe, 21... Signal processing section, 22... Control means, 2
7...Microcomputer, 28...Frequency control circuit.
Claims (1)
微粒子に混合して同微粒子を被加療体の癌細胞か
ら成る患部に移送する移送体とを含み、 前記微粒子は、正常細胞が死滅せず且つ癌細胞
が死滅する所望の温度で変態する形状記憶合金を
含み、該変態温度の前後で外形寸法が変化し得る
ように予め形状設定されて成るものである、 ことを特徴とする温熱治療用被誘導加熱体。 2 前記微粒子は、官能基を持つたラテツクスで
表面が被覆されて成るものである、 ことを特徴とする特許請求の範囲第1項記載の温
熱治療用被誘導加熱体。 3 前記移送体は、前記微粒子を拡散させる生体
適合性の高粘性液体である、 ことを特徴とする特許請求の範囲第1項又は第2
項記載の温熱治療用被誘導加熱体。 4 前記高粘性液体は、バリウム溶液である、 ことを特徴とする特許請求の範囲第3項記載の温
熱治療用被誘導加熱体。 5 前記移送体は、特定癌細胞と結合するモノク
ローナル抗体である、 ことを特徴とする特許請求の範囲第1項記載の温
熱治療用被誘導加熱体。[Scope of Claims] 1. A method comprising: a large number of fine particles mainly made of a conductive material; and a transporter that mixes with the fine particles and transports the fine particles to an affected area consisting of cancer cells of a subject; It contains a shape memory alloy that transforms at a desired temperature at which normal cells do not die but cancer cells die, and the shape is set in advance so that the external dimensions can change before and after the transformation temperature. Features of an induced heating element for thermal therapy. 2. The induced heating element for thermotherapy according to claim 1, wherein the surface of the fine particles is coated with latex having a functional group. 3. Claim 1 or 2, characterized in that the transport body is a biocompatible high viscosity liquid that diffuses the fine particles.
The induced heating body for thermotherapy described in 2. 4. The induced heating body for thermotherapy according to claim 3, wherein the highly viscous liquid is a barium solution. 5. The guided heating element for thermotherapy according to claim 1, wherein the transporter is a monoclonal antibody that binds to specific cancer cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10913685A JPS61265153A (en) | 1985-05-21 | 1985-05-21 | Induction heater for warming treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10913685A JPS61265153A (en) | 1985-05-21 | 1985-05-21 | Induction heater for warming treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61265153A JPS61265153A (en) | 1986-11-22 |
JPH031988B2 true JPH031988B2 (en) | 1991-01-11 |
Family
ID=14502498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10913685A Granted JPS61265153A (en) | 1985-05-21 | 1985-05-21 | Induction heater for warming treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61265153A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003266501A1 (en) * | 2002-08-16 | 2004-03-03 | Admetec Co., Ltd. | Heating method and heating apparatus therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511509A (en) * | 1978-07-07 | 1980-01-26 | Toomasu Gorudon Robaato | Cancer therapy |
JPS55160720A (en) * | 1979-05-29 | 1980-12-13 | Mochida Pharmaceut Co Ltd | Remedial composition for cancer and its remedial device |
JPS61158931A (en) * | 1985-01-04 | 1986-07-18 | Seiko Epson Corp | Remedy for tumor |
-
1985
- 1985-05-21 JP JP10913685A patent/JPS61265153A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511509A (en) * | 1978-07-07 | 1980-01-26 | Toomasu Gorudon Robaato | Cancer therapy |
JPS55160720A (en) * | 1979-05-29 | 1980-12-13 | Mochida Pharmaceut Co Ltd | Remedial composition for cancer and its remedial device |
JPS61158931A (en) * | 1985-01-04 | 1986-07-18 | Seiko Epson Corp | Remedy for tumor |
Also Published As
Publication number | Publication date |
---|---|
JPS61265153A (en) | 1986-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Habash et al. | Thermal therapy, part 2: hyperthermia techniques | |
US7292893B2 (en) | Apparatus and method for the treatment of infectious disease in keratinized tissue | |
Oliveira et al. | Magnetic fluid hyperthermia for bladder cancer: a preclinical dosimetry study | |
Storm et al. | Clinical RF hyperthermia by magnetic-loop induction: A new approach to human cancer therapy | |
WO2007047247A1 (en) | Minimum time feedback control of efficacy and safety of thermal therapies | |
Shimm et al. | Scanned focussed ultrasound hyperthermia: initial clinical results | |
JPH0718357A (en) | Combined functional material device | |
Silcox et al. | MRI-guided ultrasonic heating allows spatial control of exogenous luciferase in canine prostate | |
JPH031988B2 (en) | ||
Anhalt et al. | Patterns of changes of tumour temperatures during clinical hyperthermia: implications for treatment planning, evaluation and control | |
Matsuki et al. | Local hyperthermia based on soft heating method utilizing temperature-sensitive ferrite rod | |
Straube et al. | An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation | |
Paulus et al. | Thermal ablation of canine prostate using interstitial temperature self-regulating seeds: new treatment for prostate cancer | |
CN108578893B (en) | Magnetic hysteresis heating treatment device for ultrasonic positioning in cavity | |
Shoval et al. | Magnetic nanoparticles-based acoustical detection and hyperthermic treatment of cancer, in vitro and in vivo studies | |
Koga et al. | Interstitial Radiofrequency Hyperthermia for Brain Tumors—Preliminary Laboratory Studies and Clinical Application— | |
JPH0349716Y2 (en) | ||
Guerquin-Kern et al. | Experimental characterization of helical coils as hyperthermia applicators | |
Cook | RF/microwave absorbing nanoparticles and hyperthermia | |
JP3190358B2 (en) | Thermal treatment equipment | |
Tseng et al. | Hyperthermia cancer therapy utilizing superparamagnetic nanoparticles | |
Gibbs Jr | Externally induced hyperthermia | |
Urdaneta | Enhanced Microwave Hyperthermia using Nanoparticles | |
JPH0425026B2 (en) | ||
JPS63305863A (en) | Hyperthermia apparatus |