JPH0317087B2 - - Google Patents
Info
- Publication number
- JPH0317087B2 JPH0317087B2 JP57178840A JP17884082A JPH0317087B2 JP H0317087 B2 JPH0317087 B2 JP H0317087B2 JP 57178840 A JP57178840 A JP 57178840A JP 17884082 A JP17884082 A JP 17884082A JP H0317087 B2 JPH0317087 B2 JP H0317087B2
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- humidity
- gauge
- strain gauge
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010408 film Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 11
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 238000003795 desorption Methods 0.000 claims description 5
- 239000012528 membrane Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 230000004043 responsiveness Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910000570 Cupronickel Inorganic materials 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/10—Measuring moisture content, e.g. by measuring change in length of hygroscopic filament; Hygrometers
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
【発明の詳細な説明】 本発明は湿度センサーに関するものである。[Detailed description of the invention] The present invention relates to a humidity sensor.
その目的は、感湿部と検出部を独立させて組合
せた湿度センサーであつて、湿度変化が直接電気
信号として検出でき、しかも応答性にすぐれ速み
やかな湿度測定を可能とし、外気や汚れその他の
雰囲気ガスの影響も受けにくく耐久性が大で、な
おかつ量産に適していて安価に生産し得るという
新規かつ有用な湿度センサーを提供することにあ
る。 Its purpose is to create a humidity sensor that independently combines a humidity sensing part and a detection part. It can detect changes in humidity directly as an electrical signal, has excellent responsiveness, and can quickly measure humidity. It is an object of the present invention to provide a new and useful humidity sensor that is not easily affected by atmospheric gases, has great durability, is suitable for mass production, and can be produced at low cost.
古くより湿度計に利用されて来た毛髪式感知手
段や湿球式感知手段は、湿度変化に対する応答性
が遅いという欠点があるため、近年、塩化リチウ
ム、セラミツク、高分子フイルム等の吸脱湿に拌
なう電気伝導率や静電容量値の変化を電気信号と
して取出す方式の湿度センサーが開発され、これ
らを利用した湿度計、露点計などが市販される様
になつて来た。 Hair-type sensing means and wet-bulb sensing means, which have been used in hygrometers for a long time, have the disadvantage of slow response to changes in humidity. Humidity sensors that extract changes in electrical conductivity and capacitance as electrical signals have been developed, and hygrometers, dew point meters, etc. that utilize these sensors have become commercially available.
しかし、この従来方式の湿度センサーは感湿部
そのものの電気的性質を利用しているため、雰囲
気ガスとりわけ炭酸ガス、亜硫酸ガス、二酸化窒
素など湿潤時にイオン化する気体の影響を受けて
電気信号に狂いを生じやすいという欠点があり、
塵埃などの影響も受けやすく寿命も短かいもの
で、また応答性も決して満足すべきものではな
く、さらに静電容量値の変化による方式のものは
引出し電極を感湿膜上に形成することが必要なも
のもあるなど製造上に難点がある、等の種々なる
問題を有していたのである。 However, since this conventional humidity sensor uses the electrical properties of the humidity sensor itself, the electrical signal may be distorted due to the influence of atmospheric gases, especially gases that ionize when humid, such as carbon dioxide, sulfur dioxide, and nitrogen dioxide. The disadvantage is that it tends to cause
They are easily affected by dust, have a short lifespan, and have unsatisfactory responsiveness.Furthermore, those that rely on changes in capacitance require the extraction electrode to be formed on a moisture-sensitive film. They had various problems, including manufacturing difficulties.
本発明者は上記の点に留意し、抵抗式ひずみゲ
ージが曲げ変形の際に抵抗値変化を生じることに
着目し鋭意研究した結果、感湿膜とこのひずみゲ
ージとを組合せ感湿部と検出部を独立させた構造
からなる湿度センサーを発明したのである。 With the above points in mind, the inventors of the present invention focused on the fact that resistance-type strain gauges cause changes in resistance value during bending deformation, and as a result of intensive research, they combined a moisture-sensitive membrane and this strain gauge to detect humidity. He invented a humidity sensor with a structure with independent parts.
本発明は、吸湿性の小さいかつ弾性を有する絶
縁基板上にひずみゲージ抵抗パターンを形成させ
てなるひずみゲージの該パターンの表面と露出し
ている該絶縁基板上とに、プラズマ重合反応にて
着膜させた有機質薄膜の感湿膜を設け、該感湿膜
と該絶縁基板との吸脱湿の際の膨脹率の差によつ
て生じるそりの量を前記ひずみゲージの抵抗値変
化として検出することを特徴とする湿度センサ
ー、を要旨とするものである。 The present invention provides a strain gauge in which a strain gauge resistance pattern is formed on an insulating substrate that has low hygroscopicity and elasticity, and is bonded to the surface of the pattern and the exposed insulating substrate by a plasma polymerization reaction. A moisture-sensitive film made of a thin organic film is provided, and the amount of warpage caused by the difference in expansion rate during moisture absorption and desorption between the moisture-sensitive film and the insulating substrate is detected as a change in the resistance value of the strain gauge. The gist of the present invention is a humidity sensor characterized by the following.
本発明を図面を参照して説明する。 The present invention will be explained with reference to the drawings.
第1図は本発明センサーに利用されるひずみゲ
ージの一例を示した正面拡大図である。 FIG. 1 is an enlarged front view showing an example of a strain gauge used in the sensor of the present invention.
この図の様に本発明に使用するひずみゲージa
は絶縁基板1の片面にゲージ抵抗2をパターンと
して形成させたものである。 As shown in this figure, strain gauge a used in the present invention
In this example, a gauge resistor 2 is formed as a pattern on one side of an insulating substrate 1.
この絶縁基板1は吸湿性の小さいかつ弾性を有
する材質であることが必要で、例えばプラスチツ
クフイルム、極めて薄いガラス板或いはセラミツ
ク板、又は表面に絶縁処理を施こした金属板など
が使用できるものである。 This insulating substrate 1 needs to be made of a material with low hygroscopicity and elasticity; for example, a plastic film, an extremely thin glass plate, a ceramic plate, or a metal plate whose surface has been subjected to insulation treatment can be used. be.
また、この絶縁基板1の片面にパターンとして
形成されるゲージ抵抗2は、屈曲することによつ
て電気抵抗値が変化する各種公知の金属、合金な
どによつて作成してやればよく、例えば銅ニツケ
ル合金が好ましい材料として使用できるものであ
る。 Further, the gauge resistor 2 formed as a pattern on one side of the insulating substrate 1 may be made of various known metals, alloys, etc. whose electrical resistance value changes when bent, such as a copper-nickel alloy. can be used as the preferred material.
なお、第1図の3は接続用引出し線である。 Note that 3 in FIG. 1 is a connection lead line.
第2図は本発明センサーの1実施例の側面断面
拡大図である。 FIG. 2 is an enlarged side sectional view of one embodiment of the sensor of the present invention.
この図の様に、本発明センサーは例えば前記の
ひずみゲージaを2個使用して絶縁基板1同志を
接着して両面にゲージ抵抗2,2′が設置された
ものとし、その表面にゲージ保護フイルム4を設
けてさらに片面のゲージ抵抗2側だけにプラズマ
重合反応による薄膜形成手段にて有機質薄膜であ
る感湿膜5を着膜させたものとなつている。 As shown in this figure, the sensor of the present invention uses, for example, two strain gauges a and insulating substrates 1 are bonded together, and gauge resistors 2 and 2' are installed on both sides, and the gauge is protected on the surface. A film 4 is provided, and a moisture-sensitive film 5, which is an organic thin film, is further deposited on only one side of the gauge resistor 2 using a thin film forming means using a plasma polymerization reaction.
つまりこの図の実施例はひずみゲージaを2個
組合せて両面にゲージ抵抗2,2′を有するもの
とし、その一方だけの全面に感湿膜5をプラズマ
重合反応によつて形成しているのである。 In other words, in the embodiment shown in this figure, two strain gauges a are combined and have gauge resistors 2 and 2' on both sides, and a moisture-sensitive film 5 is formed on the entire surface of only one of them by plasma polymerization reaction. be.
このプラズマ重合による感湿膜5は吸湿して膨
脹し脱湿して短縮し元へ戻るという特性がかなり
顕著に現われる有機質薄膜であり、例えばアリル
アミンの重合体、アクリルアミドの重合体、アク
リロニトリルの重合体、など窒素含有モノマーを
プラズマ重合して得られる有機質薄膜が良好な結
果を示し、本発明者の実験では特にアリルアミン
をプラズマ重合させたものが最もすぐれた感湿膜
として利用できるものであつた。 The moisture-sensitive film 5 formed by plasma polymerization is an organic thin film that exhibits the characteristic of absorbing moisture, expanding, dehumidifying, shortening, and returning to its original state. For example, it is made of allylamine polymer, acrylamide polymer, acrylonitrile polymer Organic thin films obtained by plasma polymerization of nitrogen-containing monomers such as , etc. have shown good results, and in experiments conducted by the present inventors, in particular, those obtained by plasma polymerization of allylamine have been found to be the most excellent moisture-sensitive films that can be used.
この感湿膜5の厚さは極めて薄く、例えば上記
のアリルアミンのプラズマ重合薄膜では1000〜
5000Åの厚さのものでよく、この様に非常に薄い
膜であるため湿気の吸脱が速くすぐれた応答性を
有する湿度センサーとなるのである。 The thickness of this moisture-sensitive film 5 is extremely thin, for example, in the case of the plasma-polymerized thin film of allylamine mentioned above, the thickness is 1000~
It only needs to be 5000 Å thick, and because it is such a very thin film, it absorbs and releases moisture quickly, making it a humidity sensor with excellent responsiveness.
第3図は第2図の実施例のものが吸湿してそり
を生じたときの様子を示した側面断面拡大図であ
る。 FIG. 3 is an enlarged side sectional view showing how the embodiment shown in FIG. 2 absorbs moisture and warps.
この図の様に、感湿膜5が吸湿して大きく膨脹
しても絶縁基板1がほとんど吸湿しないので膨脹
は僅かであり、この膨脹率の差によりこのセンサ
ーはゲージ抵抗2′側が内側になつてつまり感湿
膜5側が外側になつて屈曲するのである。 As shown in this figure, even if the moisture sensitive film 5 absorbs moisture and expands greatly, the expansion is slight because the insulating substrate 1 hardly absorbs moisture, and due to this difference in expansion rate, the gauge resistor 2' side of this sensor is on the inside. In other words, the moisture sensitive membrane 5 side is bent outward.
その結果、内側のゲージ抵抗2′はその電気抵
抗値が減少し外側のゲージ抵抗2はその電気抵抗
値が増加するのである。この抵抗値の増減は当然
にこのセンサーのそりの度合によつて変化し、こ
のそりの度合は感湿膜5の吸湿度合によつて決定
されるのである。 As a result, the electrical resistance value of the inner gauge resistor 2' decreases, and the electrical resistance value of the outer gauge resistor 2 increases. The increase or decrease in resistance value naturally changes depending on the degree of warpage of the sensor, and the degree of warpage is determined by the degree of moisture absorption of the moisture-sensitive film 5.
つまり感湿膜5の吸脱湿による膨脹収縮がひず
みゲージaのそり変化を引き起こし、これをゲー
ジ抵抗値の変化という電気信号でもつて直接とら
えることができるものとなるのである。 In other words, the expansion and contraction of the moisture-sensitive membrane 5 due to moisture absorption and desorption causes a warpage change in the strain gauge a, and this can be directly detected as an electrical signal in the form of a change in the gauge resistance value.
以上説明した様に本発明はひずみゲージと感湿
膜を組合せた湿度センサーであり、湿度によつて
伸縮する感湿膜とこれを抵抗値変化として取出す
検出部とを相互に独立させて一体化しているとい
う全く新規な技術思想であり、感湿膜の電気的性
質とは関係なく湿度を直接電気信号に変えるた
め、その構造上雰囲気ガスや汚れの影響は極めて
少なく検出値の信頼性が高く、耐久性もすぐれた
ものとなるのである。 As explained above, the present invention is a humidity sensor that combines a strain gauge and a moisture-sensitive membrane, and the moisture-sensitive membrane that expands and contracts depending on humidity and the detection section that extracts this as a change in resistance value are integrated independently of each other. This is a completely new technical idea that converts humidity directly into an electrical signal regardless of the electrical properties of the moisture-sensitive membrane, so the influence of atmospheric gases and dirt is extremely small due to its structure, and the reliability of detected values is high. It also has excellent durability.
さらに、本発明ではそり量を感知するひずみゲ
ージは感湿膜の下面にあり、つまり感知するため
の素子は感湿膜の外面には存在せず、感湿膜の全
表面が外面に露出しており、したがつて感湿膜の
感度は高く吸脱湿を妨害するものは何もなく、そ
の応答性にすぐれた影響を与えているのである。 Furthermore, in the present invention, the strain gauge that senses the amount of warpage is located on the lower surface of the moisture-sensitive membrane, meaning that the sensing element is not present on the outer surface of the moisture-sensitive membrane, and the entire surface of the moisture-sensitive membrane is exposed to the outside. Therefore, the sensitivity of the moisture-sensitive membrane is high, and there is nothing that interferes with moisture absorption and desorption, which has an excellent effect on its responsiveness.
また、本発明センサーは製造上もひずみゲージ
部と感湿部が特性上何ら影響を及ぼし合わないた
め製造上のトラブルも少なく、感湿膜の形成は薄
膜技術におけるプラズマ反応装置がそのまま利用
できその工程も従来技術と同様であり、さらに再
現性も良く、その膜厚も任意に設定できるなど、
非常にすぐれた量産性を有し、安価な湿度センサ
ーの生産が可能となるものである。 In addition, the sensor of the present invention has fewer manufacturing troubles because the strain gauge part and the humidity sensing part do not affect each other in terms of characteristics, and the plasma reaction device of thin film technology can be used as is to form the humidity sensitive film. The process is the same as the conventional technology, and the reproducibility is also good, and the film thickness can be set arbitrarily.
It has excellent mass productivity and enables the production of inexpensive humidity sensors.
本発明センサーは前述した如くその感湿膜はき
わめて薄いものであるため吸脱湿速度が速く応答
性のすぐれた湿度検出を達成できるものである。 As mentioned above, the sensor of the present invention has an extremely thin moisture-sensitive film, so that the moisture absorption and desorption rate is fast, and humidity detection with excellent responsiveness can be achieved.
以上の如く本発明センサーは種々なる効果と有
用性を発揮するものである。 As described above, the sensor of the present invention exhibits various effects and usefulness.
実施例
絶縁基板1として厚さ50μのマイラーフイルム
を使用しゲージ抵抗2として銅ニツケル合金によ
るゲージパターンを形成してその表面に保護フイ
ルム4を接着したひずみゲージaを2枚準備し、
この2枚の絶縁基板1同志を接着剤で貼合わし両
面構造のひずみゲージを作成した。Example Two strain gauges a were prepared using a Mylar film with a thickness of 50μ as the insulating substrate 1, forming a gauge pattern of copper-nickel alloy as the gauge resistor 2, and bonding a protective film 4 to the surface of the gauge pattern.
These two insulating substrates 1 were bonded together with an adhesive to create a strain gauge with a double-sided structure.
ついでこの両面ひずみゲージの片面に、プラズ
マ重合反応薄膜形成装置にてアリルアミンを重合
させつつ沈着させ膜厚3000Åの感湿膜5を着膜し
第2図の如き本発明湿度センサーを製作した。 Next, on one side of this double-sided strain gauge, allylamine was polymerized and deposited using a plasma polymerization thin film forming apparatus to form a moisture sensitive film 5 having a thickness of 3000 Å, thereby producing a humidity sensor of the present invention as shown in FIG.
この湿度センサーを2個組合せて第4図の如き
検出回路を作成した。 A detection circuit as shown in FIG. 4 was created by combining two of these humidity sensors.
つまり検出回路は4個のゲージ抵抗(120Ω)
で構成するフルブリツジ回路としゲージ出力を1
ゲージの場合の4倍とし、さらに温度変化による
ドリフトの補正が行える様にした。 In other words, the detection circuit consists of 4 gauge resistors (120Ω)
The gauge output is 1.
It is four times the size of a gauge, and it is also possible to compensate for drift due to temperature changes.
なお、図のR1,R2は一方の湿度センサー内の
ゲージ抵抗を示し、R3,R4は他方の湿度センサ
ー内のゲージ抵抗を示している。すなわち吸湿時
にはR1とR3は抵抗増加を示しR2とR4は抵抗減少
を示すもので、脱湿時にはその逆をそれぞれ示す
ものである。 Note that R 1 and R 2 in the figure indicate the gauge resistance within one humidity sensor, and R 3 and R 4 indicate the gauge resistance within the other humidity sensor. That is, when moisture is absorbed, R 1 and R 3 show an increase in resistance, and R 2 and R 4 show a decrease in resistance, and when moisture is removed, the opposite is shown.
また第4図のPはアンプ及びレコーダーを表わ
し、ここにセンサー出力が検出されるのである。 Further, P in FIG. 4 represents an amplifier and a recorder, where the sensor output is detected.
この検出回路を使用して相対湿度(RH)とセ
ンサー出力(μV)との関係を調べたところ第5
図の如き結果が得られた。 When we investigated the relationship between relative humidity (RH) and sensor output (μV) using this detection circuit, we found that
The results shown in the figure were obtained.
なお、湿度測定用の一定湿度雰囲気には各種の
塩飽和水溶液の湿度定点を用いた。 Note that humidity fixed points of various salt-saturated aqueous solutions were used as constant humidity atmosphere for humidity measurement.
この第5図に示した様に0%RHから98%RH
までの変化は、低湿度側でやや勾配の大きい高湿
度側で勾配の小さい曲線となつたが、明らかに湿
度変化をセンサー出力変化としてとらえることが
できるものであつた。 As shown in Figure 5, from 0%RH to 98%RH.
The changes up to this point were curves with a slightly steeper slope on the low humidity side and a smaller slope on the high humidity side, but it was clear that humidity changes could be interpreted as changes in sensor output.
また、この測定時の応答速度は吸湿時で10〜20
秒と非常に速く、脱湿時で40〜60秒となり吸湿時
に比べてやや遅いがそれでも1分以内に応答する
ので、従来品に比べてかなり速い応答性であると
結論された。なお、絶縁基板としてさらに吸湿性
の僅少なるものを使用してやればこの応答速度は
一層短縮できるものである。 Also, the response speed during this measurement is 10 to 20 when moisture is absorbed.
It was concluded that the response time was very fast (about 40 to 60 seconds when dehumidifying), which was slightly slower than when absorbing moisture, but it still responded within 1 minute, so it had a much faster response time than conventional products. Note that this response speed can be further reduced by using an insulating substrate that is less hygroscopic.
また、上記センサーを同一湿度で雰囲気ガス
(主として炭酸ガスの濃度)による影響を調べた
ところ、センサー出力として得られる値はほとん
ど変化しないものであつた。 Furthermore, when the above-mentioned sensor was examined for the influence of atmospheric gas (mainly the concentration of carbon dioxide gas) at the same humidity, the value obtained as the sensor output hardly changed.
第1図は本発明センサーに利用されるひずみゲ
ージの一例を示した正面拡大図である。第2図は
本発明センサーの1実施例の側面断面拡大図であ
る。第3図は第2図の実施例のものが吸湿してそ
りを生じたときの様子を示した側面断面拡大図で
ある。
1……絶縁基板、2……ゲージ抵抗、3……接
続用引出し線、a……1,2,3よりなるひずみ
ゲージ、4……ゲージ保護フイルム、5……感湿
膜、
第4図は本発明の実施例における検出回路図で
ある。第5図は第4図の検出回路で求めた相対湿
度(RH)とセンサー出力(μV)の関係を示し
たグラフである。
FIG. 1 is an enlarged front view showing an example of a strain gauge used in the sensor of the present invention. FIG. 2 is an enlarged side sectional view of one embodiment of the sensor of the present invention. FIG. 3 is an enlarged side sectional view showing how the embodiment shown in FIG. 2 absorbs moisture and warps. 1... Insulating substrate, 2... Gauge resistor, 3... Connection lead wire, a... Strain gauge consisting of 1, 2, and 3, 4... Gauge protection film, 5... Moisture sensitive film, Fig. 4 1 is a detection circuit diagram in an embodiment of the present invention. FIG. 5 is a graph showing the relationship between the relative humidity (RH) determined by the detection circuit of FIG. 4 and the sensor output (μV).
Claims (1)
にひずみゲージ抵抗パターンを形成させてなるひ
ずみゲージの該パターン表面と露出している該絶
縁基板上とに、プラズマ重合反応にて着膜させた
有機質薄膜の感湿膜を設け、該感湿膜と該絶縁基
板との吸脱湿の際の膨脹率の差によつて生じるそ
りの量を前記ひずみゲージの抵抗値変化として検
出することを特徴とする湿度センサー。 2 有機質薄膜の感湿膜が、アリルアミンのプラ
ズマ重合薄膜である特許請求の範囲第1項記載の
湿度センサー。[Claims] 1. A strain gauge in which a strain gauge resistance pattern is formed on an elastic insulating substrate with low hygroscopicity. A moisture-sensitive film made of an organic thin film is provided, and the amount of warpage caused by the difference in expansion rate during moisture absorption and desorption between the moisture-sensitive film and the insulating substrate is expressed as a change in the resistance value of the strain gauge. A humidity sensor that detects humidity. 2. The humidity sensor according to claim 1, wherein the moisture sensitive organic thin film is a plasma polymerized thin film of allylamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17884082A JPS5967445A (en) | 1982-10-12 | 1982-10-12 | Humidity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17884082A JPS5967445A (en) | 1982-10-12 | 1982-10-12 | Humidity sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5967445A JPS5967445A (en) | 1984-04-17 |
JPH0317087B2 true JPH0317087B2 (en) | 1991-03-07 |
Family
ID=16055579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17884082A Granted JPS5967445A (en) | 1982-10-12 | 1982-10-12 | Humidity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5967445A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129445A (en) * | 1984-11-26 | 1986-06-17 | Nissan Motor Co Ltd | Air fuel ratio controller |
JPS61237044A (en) * | 1985-04-12 | 1986-10-22 | Hamamatsu Photonics Kk | Moisture detection element and manufacture thereof |
JPS62192645A (en) * | 1986-02-20 | 1987-08-24 | Naoharu Ikeda | Humidity detector |
JP2962738B2 (en) * | 1989-06-27 | 1999-10-12 | 三洋電機株式会社 | Humidity detector |
AU6770394A (en) * | 1993-05-25 | 1994-12-20 | Rosemount Inc. | Organic chemical sensor |
JP4665144B2 (en) * | 2005-03-31 | 2011-04-06 | 独立行政法人物質・材料研究機構 | Humidity sensor using stress change with volume expansion of polymer film |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5054376A (en) * | 1973-09-10 | 1975-05-14 | ||
JPS54158289A (en) * | 1978-06-05 | 1979-12-13 | Hitachi Ltd | Humidity detector |
-
1982
- 1982-10-12 JP JP17884082A patent/JPS5967445A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5054376A (en) * | 1973-09-10 | 1975-05-14 | ||
JPS54158289A (en) * | 1978-06-05 | 1979-12-13 | Hitachi Ltd | Humidity detector |
Also Published As
Publication number | Publication date |
---|---|
JPS5967445A (en) | 1984-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5563341A (en) | Vapor pressure sensor and method | |
US5369995A (en) | Humidity sensor | |
US6222376B1 (en) | Capacitive moisture detector and method of making the same | |
CN106841331B (en) | A kind of flexible capacitive humidity sensor and preparation method thereof | |
CN206601357U (en) | A kind of flexible capacitance type humidity sensor | |
JPH0317087B2 (en) | ||
JPH11502922A (en) | Sensitive substances and devices for detecting organic components and solvent vapors in air | |
JP5156287B2 (en) | Humidity detecting element and method for manufacturing humidity detecting element | |
JPS6156952A (en) | Moisture sensitive resistor element | |
US4529642A (en) | Moisture sensitive resistive element | |
JPH11160266A (en) | Gas sensor | |
JP2601409Y2 (en) | Temperature and humidity sensor | |
US3820402A (en) | Electrical pressure transducer | |
JP2630836B2 (en) | Semiconductor humidity sensor | |
US20060055502A1 (en) | Humidity sensor | |
JP2516277Y2 (en) | Sensor | |
EP0701123A1 (en) | Formaldehyde vapour detector | |
JPS6118850A (en) | Humidity and dew condensation detection element | |
JP2529136B2 (en) | Moisture-sensitive element and manufacturing method thereof | |
JPH03239938A (en) | capacitive pressure sensor | |
JP2529137B2 (en) | Moisture-sensitive element and manufacturing method thereof | |
JPH0341345A (en) | Weight and dew condensation sensor | |
JPS6063452A (en) | moisture sensing element | |
JP2915518B2 (en) | Temperature compensation type oil detection sensor | |
JPH04244951A (en) | Dewing sensor and preparation thereof |