JPH03164496A - Substrate heater for molecular beam epitaxial device - Google Patents
Substrate heater for molecular beam epitaxial deviceInfo
- Publication number
- JPH03164496A JPH03164496A JP30311789A JP30311789A JPH03164496A JP H03164496 A JPH03164496 A JP H03164496A JP 30311789 A JP30311789 A JP 30311789A JP 30311789 A JP30311789 A JP 30311789A JP H03164496 A JPH03164496 A JP H03164496A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- heater
- board
- central part
- increasing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 174
- 238000010438 heat treatment Methods 0.000 claims abstract description 51
- 230000005484 gravity Effects 0.000 claims abstract 2
- 230000005855 radiation Effects 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 5
- 239000012212 insulator Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、分子線エピタキシャル装置の基板加熱装置に
係り、特に、基板の温度分布を均一に、かつ、効率よく
加熱するのに好適な分子線エピタキシャル装置の基板加
熱装置に関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a substrate heating device for a molecular beam epitaxial device, and in particular, to a substrate heating device for a molecular beam epitaxial device. The present invention relates to a substrate heating device for a line epitaxial device.
従来の装置は、特開昭57−30320号および昭60
−112691号公報に記載のように、基板の温度を均
一に加熱するためにヒータと基板との間に加熱均一化部
材(加熱板と称する。)を設けている。しかし、加熱板
を挿入すると、ヒータからのふく射熱で加熱板を加熱し
、さらに、加熱板のふく射熱で基板を加熱するため、加
熱板が無い場合に比較して、可能な基板の最高加熱温度
は低くなり、基板を所定の温度にするための消費電力が
多くなる。Conventional devices are disclosed in Japanese Patent Application Laid-Open Nos. 57-30320 and 1983.
As described in Japanese Patent No. 112691, a heating equalizing member (referred to as a heating plate) is provided between a heater and a substrate in order to uniformly heat the substrate. However, when a heating plate is inserted, the radiant heat from the heater heats the heating plate, and the radiant heat from the heating plate also heats the board, so the maximum possible heating temperature of the board is lower than when there is no heating plate. As a result, the power consumption to bring the board to a predetermined temperature increases.
その結果、所定の温度に基板表面を保持しようとした場
合に加熱板を用いると、加熱板を用いない場合に比較し
て、相対的なヒータの温度を高くする必要がある。この
ため、ヒータやその周辺部からの放出ガスが多くなり、
放出されたガスが基板表面に付着し表面欠陥等の不具合
の生じる原因となる。また、ヒータ材料が徐々に加熱板
に蒸着し、加熱板自体の透過率、ふく耐重9反射率など
が変化し経時的に加熱効率が変わるので基板温度を再現
性良く制御できないという不具合もある。第2図は、従
来用いられている特開昭63−116419号公報に記
載の分子線エピタキシャル装置の断面図、第3図に、そ
の基板加熱装置で基板保持部材に基板を置いた状態での
加熱した際の基板の温度分布線図を示す。As a result, when a heating plate is used to maintain the substrate surface at a predetermined temperature, the relative temperature of the heater needs to be higher than when no heating plate is used. As a result, more gas is released from the heater and its surroundings.
The released gas adheres to the substrate surface, causing problems such as surface defects. Another problem is that the heater material is gradually deposited on the heating plate, and the transmittance and reflectance of the heating plate itself change, causing the heating efficiency to change over time, making it impossible to control the substrate temperature with good reproducibility. Figure 2 is a cross-sectional view of a conventionally used molecular beam epitaxial apparatus described in JP-A No. 63-116419, and Figure 3 is a cross-sectional view of a conventional molecular beam epitaxial apparatus described in JP-A-63-116419. A temperature distribution diagram of the substrate when heated is shown.
第2図に示すように、基板1は基板保持枠19に確実に
保持されている。基板は基板に対向して配置されたヒー
タ6aおよび6bによって加熱される。これらのヒータ
は、パイロリティック窒化ボロン(以下PBNという)
などの絶縁物で作られたヒータベース7の上に固定され
ている。ヒータ6aの位置とヒータ6bとは、基板投影
面上で基板に対して重ならないような位置関係となって
いる。基板の温度制御は、熱電対8によって行われ、第
2図の例では、熱電対8の碍子9を中央に配置し、ヒー
タベース7、加熱板5、および、熱シールド板10は支
柱兼スペーサによって固定された構造となっていた。こ
の基板加熱装置のヒータの特徴は、一系統のヒータでは
発熱部と発熱部との間に対向する基板に低温領域と高温
領域とが生じるため、加熱板へ基板の低温領域に対向し
た部分にヒータを取り付けてヒータを二重構造とし、二
系統のヒータによって基板を均一に加熱できるようにし
たものもある。As shown in FIG. 2, the substrate 1 is securely held by the substrate holding frame 19. The substrate is heated by heaters 6a and 6b placed opposite the substrate. These heaters are made of pyrolytic boron nitride (hereinafter referred to as PBN).
It is fixed on a heater base 7 made of an insulating material such as. The position of the heater 6a and the heater 6b are such that they do not overlap with respect to the substrate on the substrate projection plane. Temperature control of the board is performed by a thermocouple 8. In the example shown in FIG. 2, the insulator 9 of the thermocouple 8 is placed in the center, and the heater base 7, heating plate 5, and heat shield plate 10 are used as pillars and spacers. It had a fixed structure. The characteristic of the heater of this substrate heating device is that in a single heater system, a low temperature region and a high temperature region are generated on the substrate facing the heat generating section, so the heating plate is connected to the part of the substrate facing the low temperature region. Some devices are equipped with a heater and have a dual heater structure, allowing the two systems of heaters to heat the substrate uniformly.
また、特開昭63−242993号公報に記載のように
、基板を保持している部材に基板外周部から熱が放出さ
れるため、基板の温度を均一に加熱できるよう基板加熱
用ヒータとは別に、基板外周部を電子ビームによって加
熱する例もある。さらに、特開昭59−3921 、特
開昭59−3922 、特開昭59−3934 。In addition, as described in Japanese Patent Application Laid-open No. 63-242993, heat is released from the outer circumference of the substrate to the member holding the substrate, so a heater for heating the substrate is used to uniformly heat the temperature of the substrate. Separately, there is also an example in which the outer periphery of the substrate is heated by an electron beam. Furthermore, JP-A-59-3921, JP-A-59-3922, and JP-A-59-3934.
特開昭59−3935号公報に記載のように、基板の外
周部をランプなどによって加熱するという方法もある。There is also a method of heating the outer periphery of the substrate with a lamp or the like, as described in Japanese Patent Application Laid-Open No. 59-3935.
これらの方法は、特開昭59−243816号公報に記
載のように、基板の周辺の温度が低下するという前提条
件があって成り立つものである。従って、従来の基板の
保持方法では、基板の両面から基板を締め付けて固定し
ているが、基板を保持する部材に基板を乗せるだけの保
持方法では、基板外周部から基板を保持する部材を通し
て熱の放出は減少してしまう。その結果、基板を保持す
る部材に対向した部分の基板の温度は、基板中央部の温
度に比較して高くなってしまう。従って、基板外周部の
温度は中央部の温度に比較しては高くなってしまい、基
板全体を均一に加熱できないという問題がある。These methods are effective on the precondition that the temperature around the substrate is lowered, as described in Japanese Patent Application Laid-Open No. 59-243816. Therefore, in the conventional method of holding a board, the board is tightened and fixed from both sides of the board, but in the holding method of simply placing the board on a member that holds the board, heat is passed from the outer periphery of the board through the member that holds the board. The release of will be reduced. As a result, the temperature of the portion of the substrate facing the member holding the substrate becomes higher than the temperature of the central portion of the substrate. Therefore, the temperature at the outer periphery of the substrate is higher than the temperature at the center, and there is a problem that the entire substrate cannot be uniformly heated.
上記従来技術による分子線エピタキシャル装置の基板加
熱装置は、基板を均一に加熱することに重点を置いてい
るが、基板を保持する部材の上に基板を乗せるだけの基
板保持方法を採用した場合の、基板中央部の温度低下に
ついて考慮されていなかった。すなわち、従来の基板加
熱装置では。The conventional substrate heating device for molecular beam epitaxial equipment described above focuses on uniformly heating the substrate, but when a substrate holding method is adopted in which the substrate is simply placed on a member that holds the substrate, , the temperature drop at the center of the board was not taken into account. That is, in the conventional substrate heating device.
基板の両側から基板を締め付けて固定しているため、特
開昭63−242993号公報に記載のように、基板を
保持している部材に基板外周部から熱が放出される。そ
の結果、基板の温度を均一に加熱できるよう基板加熱用
ヒータとは別に、基板外周部を電子ビームによって加熱
する必要があった。しかし、基板を保持する部材の上に
基板を乗せるだけの基板保持方法では、基板外周部から
放出される熱量が少なくなり、基板の中央部に比較して
基板の外周部の温度が高くなるため、エピタキシャル成
長時に膜質の欠陥の原因となってしまう。Since the substrate is tightened and fixed from both sides of the substrate, heat is released from the outer periphery of the substrate to the member holding the substrate, as described in Japanese Patent Application Laid-Open No. 63-242993. As a result, in order to uniformly heat the substrate, it was necessary to heat the outer peripheral portion of the substrate with an electron beam, in addition to the heater for heating the substrate. However, with the board holding method where the board is simply placed on a member that holds the board, the amount of heat released from the outer periphery of the board is small, and the temperature of the outer periphery of the board is higher than that of the center of the board. , which causes defects in film quality during epitaxial growth.
また、従来技術では基板の加熱に用いるヒータ外周部の
ヒータ密度を向上させたり、外周部に別の加熱機構を取
り付けた例もあるが、基板中央部の温度低下には対処し
ていない。In addition, in the prior art, there are examples in which the heater density at the outer periphery of the heater used for heating the substrate is improved or another heating mechanism is attached to the outer periphery, but this does not address the temperature drop at the center of the substrate.
本発明の目的は、基板を均一に加熱する分子線エピタキ
シャル装置の基板加熱装置を提供することにある。An object of the present invention is to provide a substrate heating device for a molecular beam epitaxial device that uniformly heats a substrate.
基板の加熱温度の均一化を達成するために、本発明にか
かる分子線エピタキシャル装置の基板加熱装置では、基
板に対向する基板加熱用ヒータのふく射熱量を、基板投
影面上における中央部で向上させるように、基板中央部
で基板とヒータとの距離を小さくする、基板中央部の裏
面に基板よりふく対重の高い材料を取り付ける、基板中
央部に対するヒータの基板に対向するヒータ面積を増加
する。基板中央部に対向するヒータの抵抗を太きくする
、ヒータの電力供給を中央部と外周部とに区別して二系
統以上とすることによって達成される。In order to achieve uniform heating temperature of the substrate, in the substrate heating device of the molecular beam epitaxial apparatus according to the present invention, the amount of heat radiated from the heater for heating the substrate facing the substrate is increased in the central part on the substrate projection surface. In this way, the distance between the substrate and the heater is reduced at the center of the substrate, a material with a higher weight than the substrate is attached to the back surface of the center of the substrate, and the area of the heater facing the substrate is increased with respect to the center of the substrate. This is achieved by increasing the resistance of the heater facing the center of the substrate, and by dividing the power supply of the heater into two or more systems, one for the center and the other for the outer periphery.
また、基板を保持する部材に冷却機構を取り付けて冷却
することにより、基板を保持する部材の温度を低下させ
、基板外周部がら常に一定の熱量を放出することによっ
て、基板中央部の温度を相対的に上昇させることや、基
板を保持する部材と基板との接触部分を少なくし、基板
と基板を保持する部材との間の距離を広げることにより
、基板の外部分からも基板中央部と同様にふく射によっ
て熱を放出することが可能となり、基板を基板投影面上
において効率よく均一に加熱するという目的が達成され
る。In addition, by attaching a cooling mechanism to the member that holds the board and cooling it, the temperature of the member that holds the board is lowered, and by constantly emitting a constant amount of heat from the outer periphery of the board, the temperature of the center of the board can be adjusted relative to the temperature of the center part of the board. By increasing the distance between the board and the board, reducing the contact area between the board and the board, and widening the distance between the board and the board, the external part of the board can be treated as well as the center of the board. It becomes possible to radiate heat by radiation, and the purpose of efficiently and uniformly heating the substrate on the substrate projection surface is achieved.
本発明では、基板を加熱するヒータの基板投影面上にお
けるヒータ密度を中央部で高くする。ヒータの抵抗を中
央部で大きくすると、ヒータと基板との距離を中央部で
近づけているので、ヒータから基板へのふく射熱量は基
板の中央部で大きくなっている。また、ヒータがら基板
へのふく射熱量を(Qhν)とすれば、Qhwは第1式
に従い、ヒータから基板へのふく射熱量はヒータの表面
積。In the present invention, the heater density on the substrate projection surface of the heater that heats the substrate is increased in the central portion. When the resistance of the heater is increased at the center, the distance between the heater and the substrate is shortened at the center, so the amount of heat radiated from the heater to the substrate is increased at the center of the substrate. Also, if the amount of heat radiated from the heater to the substrate is (Qhν), then Qhw follows the first equation, and the amount of heat radiated from the heater to the substrate is the surface area of the heater.
ヒータから基板へのふく射の形態係数、ヒータのふく射
率および基板のふく射率に比例しており、ヒータの温度
と基板の温度との四乗の差にも比例している。また、ヒ
ータがら基板への形態係数は第2式に示されるように、
ヒータと基板との距離が近づけば大きい値となり、ヒー
タと基板との距離を近づけることでふく射熱量Qhυは
大きくなる。It is proportional to the view factor of radiation from the heater to the substrate, the radiation coefficient of the heater, and the radiation coefficient of the substrate, and is also proportional to the fourth power difference between the temperature of the heater and the temperature of the substrate. Also, the view factor from the heater to the substrate is as shown in the second equation:
The closer the distance between the heater and the substrate, the greater the value, and the closer the distance between the heater and the substrate, the greater the amount of radiated heat Qhυ.
Qhw=Ah*Fhw* the aw14.88”
((Th/ 100 )’ (Twh/ 100 )
’)■Ah (イ):ヒータの表面積
Fhw :ヒータがら基板へのふく射熱の形態係
数
εh ;ヒータのふく射率
εν :基板のふく射率
Th (K):ヒータの温度
Tti (K) :基板の温度
Fh誓=1/2R1[R1”+R22+L2=((R1
”+R2Z+L”)”−4R1傘R2)”/2] @
R1(m):ヒータの半径
R2(m):基板の半径
L (m) :ヒータと基板との距離従って、基
板を加熱するヒータの基板投影面上におけるヒータ密度
、ヒータの抵抗およびヒータと基板との距離を、中央部
で高く、大きくあるいは近づけることで、従来使用され
ていたヒータによる加熱方式で不足する、基板の中央部
のふく射熱量を多くすることが可能となり、基板投影面
上における基板の温度を均一化するという作用がある。Qhw=Ah*Fhw* the aw14.88”
((Th/100)' (Twh/100)
')■Ah (a): Surface area of the heater Fhw: View coefficient of heat radiated from the heater to the substrate εh; Emissivity of the heater εν: Emissivity of the substrate Th (K): Temperature of the heater Tti (K): Temperature of the substrate Fh oath=1/2R1[R1”+R22+L2=((R1
"+R2Z+L")"-4R1 umbrella R2)"/2] @
R1 (m): Radius of the heater R2 (m): Radius of the substrate L (m): Distance between the heater and the substrate Therefore, the heater density on the substrate projection plane of the heater that heats the substrate, the resistance of the heater, and the heater and the substrate By making the distance between the substrate higher, larger, or closer at the center, it is possible to increase the amount of heat radiated from the center of the substrate, which is insufficient with conventional heating methods using heaters, and the distance between the substrate and the substrate on the projection surface can be increased. It has the effect of making the temperature uniform.
また、基板からの熱放出について検討すると。Also, consider heat release from the board.
基板からシュラウドへの熱放出量をQtzsとすれば第
1式と同様に求めることができる。基板からシュラウド
への熱放出に関しては単位面積当りほぼ一定として問題
ないが、基板外周部においては基板から基板を保持する
部材に放出される熱量は、基板を保持する部材が高温と
なっているために、基板中央部からシュラウドへ放出さ
れる熱量に比較して非常に少なくなる。従って、基板と
基板を保持する部材との接触部の面積を最小とし、基板
外周部からもシュラウドが見えるようにすることで、基
板のふく射による熱放出が基板全体でほぼ均一となり、
基板投影面上における基板の温度分布を少なくするとい
う作用がある。If the amount of heat released from the substrate to the shroud is Qtzs, it can be calculated in the same way as the first equation. There is no problem with heat release from the board to the shroud as it is almost constant per unit area, but at the outer periphery of the board, the amount of heat released from the board to the member holding the board is because the member holding the board is at a high temperature. In addition, the amount of heat released from the center of the board to the shroud is extremely small. Therefore, by minimizing the area of the contact area between the board and the member that holds the board, and by making the shroud visible from the outer periphery of the board, heat release due to radiation from the board can be made almost uniform over the entire board.
This has the effect of reducing the temperature distribution of the substrate on the substrate projection surface.
以下、本発明の各実施例を第1図および第3図から第1
0図を用いて説明する。Embodiments of the present invention will be described below from FIGS. 1 and 3.
This will be explained using Figure 0.
まず、第1図は、本発明の基板加熱装置を分子線エピタ
キシャル装置の試料ホルダに設置したときの縦断面図で
ある。基板1は基板を保持する部材3の上に乗せられて
おり基板を保持する部材は基板ホルダ2に保持され、さ
らにホルダ保持具4によって固定され、図中に示してい
ない駆動機構により回転(自転)運動が可能である。ヒ
ータ6は高融点金属のタングステン、タンタルやカーボ
などからなり、これらはPBNなどの絶縁物からなるヒ
ータベース7に固定されている。また、ヒータベースに
対してタンタル等の高融点金属がらなる熱シールド板1
0を配置している。さらに、基板の温度制御を行うため
に温度計測を行う熱電対8が試料ホルダの中央部に碍子
9を介して取り付けである。以下に基板中央部のふく射
熱量を大きくするための実施例を述べる。First, FIG. 1 is a longitudinal sectional view when the substrate heating device of the present invention is installed in a sample holder of a molecular beam epitaxial device. The substrate 1 is placed on a member 3 that holds the substrate, and the member that holds the substrate is held by the substrate holder 2 and further fixed by a holder holder 4, and is rotated (rotated) by a drive mechanism not shown in the figure. ) Exercise is possible. The heater 6 is made of a high melting point metal such as tungsten, tantalum, or carbon, and is fixed to a heater base 7 made of an insulator such as PBN. Also, a heat shield plate 1 made of high melting point metal such as tantalum is provided for the heater base.
0 is placed. Further, a thermocouple 8 for measuring temperature in order to control the temperature of the substrate is attached to the center of the sample holder via an insulator 9. An example for increasing the amount of heat radiated from the center of the substrate will be described below.
第4図は、ヒータ6を固定しているヒータベース7aを
中央部で厚くすることにより、ヒータと基板との距離を
近づけることが可能となる。その結果、基板中央部にお
けるヒータから基板へのふく射熱量を多くするという目
的が達成され、基板投影面上において基板の温度分布を
均一にすることが可能となる。In FIG. 4, by increasing the thickness of the heater base 7a to which the heater 6 is fixed at the center, it is possible to reduce the distance between the heater and the substrate. As a result, the purpose of increasing the amount of heat radiated from the heater to the substrate at the center of the substrate is achieved, and it becomes possible to make the temperature distribution of the substrate uniform on the substrate projection surface.
第5図は、加熱される基板1の中央部に基板よりふく射
率の高いカーボンなどの材料12を配置し、ヒータのふ
く射熱量を基板の中央部で多くしたものである。その結
果、基板中央部におけるヒータから基板へのふく射熱量
を多くするという目的が達成され、基板投影面上におい
て基板の温度分布を均一にすることが可能となる6
第6図は、ヒータ6cの基板1に対するヒータ密度を基
板投影面上で変化させて、基板の中央部で高くすること
によって、基板中央部におけるヒータから基板へのふく
射熱量を多くするという目的が達成され、基板投影面上
において基板の温度分布を均一にすることが可能となる
。In FIG. 5, a material 12 such as carbon having a higher emissivity than the substrate is placed in the center of the substrate 1 to be heated, so that the amount of heat radiated by the heater is increased in the center of the substrate. As a result, the purpose of increasing the amount of heat radiated from the heater to the substrate at the center of the substrate is achieved, and it becomes possible to make the temperature distribution of the substrate uniform on the substrate projection surface. By varying the heater density with respect to the substrate 1 on the substrate projection surface and increasing it at the center of the substrate, the purpose of increasing the amount of heat radiated from the heater to the substrate at the center of the substrate is achieved. It becomes possible to make the temperature distribution of the substrate uniform.
第7図は、ヒータ6dの抵抗を基板投影面上で外周部に
対して中央部で大きくすることにより、基板中央部に対
するヒータの温度を外周部に比較して高くすることが可
能となる。その結果、基板中央部におけるヒータから基
板へのふく射熱量を多くするという目的が達成され、基
板投影面上において基板の温度分布を均一にすることが
可能となる。FIG. 7 shows that by increasing the resistance of the heater 6d at the center of the substrate on the substrate projection plane relative to the outer periphery, the temperature of the heater 6d at the center of the substrate can be made higher than at the outer periphery. As a result, the purpose of increasing the amount of heat radiated from the heater to the substrate at the center of the substrate is achieved, and it becomes possible to make the temperature distribution of the substrate uniform on the substrate projection surface.
第8図は、ヒータの電力供給を内周部と外周部とに区別
し、ヒータへの電力供給を基板投影面上に複数系統独立
して制御することにより、ヒータ(中央部)6eの温度
をヒータ(外周部)6fの温度より高くすることが可能
となり、基板中央部の、ヒータから基板へのふく射熱量
を多くするという目的が達成され、基板投影面上におい
て基板の温度分布を均一にすることが可能となる。FIG. 8 shows that the temperature of the heater (center) 6e can be adjusted by distinguishing the power supply to the heater into the inner circumferential part and the outer circumferential part, and controlling the power supply to the heater independently from multiple systems on the substrate projection surface. This makes it possible to make the temperature higher than that of the heater (outer periphery) 6f, achieving the purpose of increasing the amount of heat radiated from the heater to the substrate at the center of the substrate, and making the temperature distribution of the substrate uniform on the substrate projection surface. It becomes possible to do so.
第9図は、基板ホルダ2に保持されている基板を支持す
る部材3に対して冷却機構13(例えばCu、Ag等、
熱伝導率の高い金属)を取り付けて、基板を支持する部
材の温度制御を行うことにより、基板の外周部から基板
を支持する部材へ常に一定量の熱が放出することが可能
となる。その結果、基板の中央部と比較して外周部でも
、単位面積当りでほぼ同程度の熱放出を行うことが可能
となり、基板投影面上で基板の温度の面内分布を均一に
することが可能となる。FIG. 9 shows a cooling mechanism 13 (for example, Cu, Ag, etc.)
By attaching a metal with high thermal conductivity and controlling the temperature of the member supporting the substrate, it is possible to always release a certain amount of heat from the outer periphery of the board to the member supporting the board. As a result, it is possible to radiate approximately the same amount of heat per unit area at the outer periphery of the board as compared to the center, and it is possible to make the in-plane temperature distribution of the board uniform on the board projection plane. It becomes possible.
第10図は、基板ホルダ2に保持されている基板を支持
する部材3aの基板1との接触部の面積を最小とし、基
板の全ての面からシュラウドに熱が放出されるようにし
たものであり、基板の外周部からも熱がふく射によって
放出するようにしたものである。その結果、基板の外周
部で放出されるふく射熱量は、単位面積当り基板の中央
部とほぼ同程度となり、基板投影面上で基板の温度の面
内分布を均一にすることを可能としたものである。In FIG. 10, the area of the contact area with the substrate 1 of the member 3a that supports the substrate held in the substrate holder 2 is minimized so that heat is radiated from all surfaces of the substrate to the shroud. Heat is also released from the outer periphery of the board by radiation. As a result, the amount of radiant heat emitted at the outer periphery of the board is approximately the same per unit area as at the center of the board, making it possible to make the in-plane temperature distribution of the board uniform on the board projection plane. It is.
本発明によれば、分子線エピタキシャル装置の基板加熱
装置において、基板加熱に用いるヒータのふく射熱量を
前記基板の中央部で多くしたことにより、基板投影面上
で基板の温度の面内分布を少なくすることにより、エピ
タキシャル成長時における膜質の欠陥を少なくするとい
う効果がある。According to the present invention, in a substrate heating device for a molecular beam epitaxial apparatus, the amount of heat radiated by the heater used for heating the substrate is increased at the center of the substrate, thereby reducing the in-plane temperature distribution of the substrate on the substrate projection plane. This has the effect of reducing defects in film quality during epitaxial growth.
第1図は本発明による分子線エピタキシャル装置の基板
加熱装置の断面図、第2図は従来の分子線エピタキシャ
ル装置の基板加熱装置の断面図、第3図は基板加熱装置
基板の投影面上における温度分布図、第4図は本発明に
よる一実施例の、ヒータを固定しているヒータベースを
中央部で厚くした基板加熱装置の断面図、第5図は本発
明による一実施例の、基板の中央部にふく射率の高い材
料を取り付けた基板加熱装置の断面図、第6図は本発明
による一実施例の、ヒータ密度を基板の中央部で高くし
た基板加熱装置の断面図、第7図は本発明による一実施
例の、ヒータの抵抗を外周部に対して中央部で大きくし
た基板加熱装置の断面図、第8図は本発明による一実施
例の、ヒータの電力供給を内周部と外周部とで区別した
基板加熱装置の断面図、第9図は本発明による一実施例
の基板を支持する部材に冷却機構を取り付けた基板加熱
装置の断面図、第10図は本発明による一実施例の、基
板を支持する部材の基板との接触部を鋭角状とした基板
加熱装置の断面図である。
1・・・基板、2・・・基板ホルダ、3・・・基板を保
持する部材、4・・・ホルダ保持具、5・・・加熱板、
6・・・ヒータ、7・・・ヒータベース、8・・・熱電
対、9・・・碍子、10・・・熱シールド板、11・・
・電流導入ボルト、12・・・ふく対重の高い材料、1
3・・・冷却機構、14・・・絶縁板、15・・・本体
外枠、16・・・支柱兼スペーサ、17・・・治具、1
8・・・係止部材、19・・・基板保持枠。FIG. 1 is a sectional view of a substrate heating device of a molecular beam epitaxial device according to the present invention, FIG. 2 is a sectional view of a substrate heating device of a conventional molecular beam epitaxial device, and FIG. 3 is a sectional view of a substrate heating device of a substrate heating device on a projection plane of a substrate. FIG. 4 is a cross-sectional view of a substrate heating device in which the heater base on which the heater is fixed is thickened in the center, according to an embodiment of the present invention, and FIG. FIG. 6 is a cross-sectional view of a substrate heating device in which a material with high radiation rate is attached to the center of the substrate. FIG. The figure is a sectional view of a substrate heating device according to an embodiment of the present invention, in which the resistance of the heater is larger in the center than in the outer periphery, and FIG. FIG. 9 is a cross-sectional view of a substrate heating device in which a cooling mechanism is attached to a member that supports a substrate according to an embodiment of the present invention, and FIG. 10 is a cross-sectional view of a substrate heating device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a substrate heating device in which the contact portion of the member supporting the substrate with the substrate is shaped at an acute angle, according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Substrate holder, 3... Member which holds a board, 4... Holder holder, 5... Heating plate,
6... Heater, 7... Heater base, 8... Thermocouple, 9... Insulator, 10... Heat shield plate, 11...
・Current introduction bolt, 12...Material with high load vs. weight, 1
3... Cooling mechanism, 14... Insulating plate, 15... Main body outer frame, 16... Support and spacer, 17... Jig, 1
8... Locking member, 19... Board holding frame.
Claims (1)
持された基板と、前記基板を加熱するヒータより成る分
子線エピタキシャル装置の基板加熱装置において、 前記基板のエピタキシャル成長面を重力方向とし、前記
基板ホルダに乗せることによつて保持される前記基板を
加熱する前記ヒータのふく射熱量を、前記基板の中央部
で多くしたことを特徴とする分子線エピタキシャル装置
の基板加熱装置。[Claims] 1. A substrate heating device for a molecular beam epitaxial apparatus comprising a substrate holder that holds a substrate, a substrate held by the substrate holder, and a heater that heats the substrate, comprising: A substrate heating device for a molecular beam epitaxial apparatus, characterized in that the amount of heat radiated by the heater for heating the substrate held by placing it on the substrate holder is increased at the center of the substrate in the direction of gravity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30311789A JPH03164496A (en) | 1989-11-24 | 1989-11-24 | Substrate heater for molecular beam epitaxial device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30311789A JPH03164496A (en) | 1989-11-24 | 1989-11-24 | Substrate heater for molecular beam epitaxial device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03164496A true JPH03164496A (en) | 1991-07-16 |
Family
ID=17917088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30311789A Pending JPH03164496A (en) | 1989-11-24 | 1989-11-24 | Substrate heater for molecular beam epitaxial device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03164496A (en) |
-
1989
- 1989-11-24 JP JP30311789A patent/JPH03164496A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3484651B2 (en) | Heating device and heating method | |
CN1924079B (en) | Linear type deposition source | |
JP2940047B2 (en) | Heat treatment apparatus and heat treatment method | |
JPH10504936A (en) | Rapid heat treatment apparatus and method | |
GB2181459A (en) | Method and apparatus for substrate heating in an axially symmetric epitaxial deposition apparatus | |
US4469529A (en) | Method for heating semiconductor wafer by means of application of radiated light with supplemental circumferential heating | |
US4535227A (en) | Method for heating semiconductor wafer by means of application of radiated light | |
JP3068914B2 (en) | Vapor phase growth equipment | |
JPH036367A (en) | Evaporation substrate-heating apparatus and boat-supporting structurein vacuum evaporator | |
TW200921754A (en) | Filament lamp and light irradiation type heat treatment device | |
WO2020212398A2 (en) | Source arrangement, deposition apparatus and method for depositing source material | |
JPH03164496A (en) | Substrate heater for molecular beam epitaxial device | |
JPH06260422A (en) | Method and device for heating glass substrate | |
JPH0555145A (en) | Substrate heater | |
JPS59152619A (en) | Substrate heater and method for molecular beam epitaxy | |
JPH0338029A (en) | Vapor growth equipment | |
KR100331023B1 (en) | Heater module with cooling system | |
JPH0820868A (en) | Vacuum soaking heater | |
JPS63241921A (en) | Substrate heating device for molecular beam epitaxy system | |
KR100679679B1 (en) | Infrared heating element and substrate heater type vacuum chamber | |
JPS62160461A (en) | Heating source for manufacturing electrophotographic sensitive body | |
JPH0729844A (en) | Infrared heating method and equipment for semiconductor substrate | |
JPS6298610A (en) | Substrate heating mechanism for crystal growth | |
CN109314073A (en) | Substrate supporting element for bearing support | |
JPH0389307A (en) | Holding base and holding method for optical element |