JPH0729844A - Infrared heating method and equipment for semiconductor substrate - Google Patents
Infrared heating method and equipment for semiconductor substrateInfo
- Publication number
- JPH0729844A JPH0729844A JP17349093A JP17349093A JPH0729844A JP H0729844 A JPH0729844 A JP H0729844A JP 17349093 A JP17349093 A JP 17349093A JP 17349093 A JP17349093 A JP 17349093A JP H0729844 A JPH0729844 A JP H0729844A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- semiconductor substrate
- substrate
- uniform
- transmission window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置の製造に際し
ての半導体基板の赤外線加熱方法及びそれに用いる赤外
線加熱装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared heating method for a semiconductor substrate in manufacturing a semiconductor device and an infrared heating apparatus used for the method.
【0002】近年、半導体デバイスの製造においては、
プロセス技術の高度化に伴い、半導体基板の加熱をより
速い昇温速度で且つより高い温度の均一性のもとで行う
熱処理技術が要求されており、それに答えるために赤外
線加熱装置を用いる基板加熱方法が提供されている。し
かし、半導体基板を赤外線で加熱する場合、基板面内で
均一な温度分布を得ることは容易ではなく、温度の均一
性を確保することが容易な赤外線加熱技術の開発が望ま
れている。In recent years, in the manufacture of semiconductor devices,
With the advancement of process technology, a heat treatment technology for heating a semiconductor substrate at a faster temperature rising rate and at a higher temperature uniformity is required, and in order to respond to this, substrate heating using an infrared heating device is required. A method is provided. However, when a semiconductor substrate is heated by infrared rays, it is not easy to obtain a uniform temperature distribution in the substrate surface, and development of infrared heating technology that can easily ensure temperature uniformity is desired.
【0003】[0003]
【従来の技術】図4は従来の赤外線加熱装置、図5は従
来の赤外線加熱装置の改良例の構成を模式的に示した図
である。2. Description of the Related Art FIG. 4 is a diagram schematically showing the configuration of a conventional infrared heating device, and FIG. 5 is a diagram showing the configuration of an improved example of the conventional infrared heating device.
【0004】半導体装置の製造工程において従来用いら
れていた赤外線加熱装置は、図4に示すように、密閉さ
れた熱処理容器(熱処理室)51の底面に石英等からなる
赤外線透過窓53を有し、この透過窓53上に基板支持ピン
56を介し被処理半導体基板52をほぼ水平に支持し、上記
透過窓53の下部の加熱光源室60に赤外線ランプ54を配置
し、このランプ54から放出される赤外線IRを前記透過窓
53を通して被処理半導体基板52のデバイスパターンの形
成されていない裏面に照射する構成を有していた。な
お、57は赤外線反射板、58はデバイスパターンを示して
いる。As shown in FIG. 4, an infrared heating device conventionally used in the manufacturing process of a semiconductor device has an infrared transmission window 53 made of quartz or the like on the bottom surface of a sealed heat treatment container (heat treatment chamber) 51. , Substrate support pins on this transparent window 53
The semiconductor substrate 52 to be processed is supported substantially horizontally via 56, an infrared lamp 54 is arranged in the heating light source chamber 60 below the transmission window 53, and the infrared IR emitted from the lamp 54 is transferred to the transmission window.
The back surface of the semiconductor substrate 52 to be processed on which the device pattern is not formed is irradiated through 53. Incidentally, 57 indicates an infrared reflection plate, and 58 indicates a device pattern.
【0005】そして、熱処理容器51は、ステンレス等の
金属により四角い箱型に構成され、その内面は赤外線の
反射を良くするために鏡面状態に仕上げられていた。こ
のような従来の赤外線加熱装置において被処理半導体基
板52は、赤外線透過窓53を通して直に裏面に照射される
赤外線IRと、処理容器51の内面で反射して表面に照射さ
れる赤外線IR′によって、両面から加熱される。The heat treatment container 51 is made of a metal such as stainless steel in a rectangular box shape, and its inner surface is mirror-finished to improve reflection of infrared rays. In such a conventional infrared heating device, the semiconductor substrate 52 to be processed has an infrared IR that is directly irradiated to the back surface through the infrared transmission window 53 and an infrared IR ′ that is reflected on the inner surface of the processing container 51 and is irradiated to the front surface. , Heated from both sides.
【0006】その際、赤外線透過窓53を通る赤外線の密
度を均一にすることにより、赤外線透過窓53を通過した
赤外線IRが直に照射される被処理半導体基板52の裏面側
からの赤外線加熱は均一な温度分布でなし得る。At this time, by making the density of the infrared rays passing through the infrared transmitting window 53 uniform, the infrared heating from the back surface side of the semiconductor substrate 52 to be processed which is directly irradiated with the infrared IR passing through the infrared transmitting window 53 is prevented. A uniform temperature distribution can be achieved.
【0007】しかし一方、基板52の表面側からの加熱
は、処理容器51が箱型に形成されてその内面で反射する
赤外線IR′の向きが不規則で基板51の表面に照射される
赤外線の分布が均一にならないために、全面が均一な温
度分布ではなされない。On the other hand, the heating from the surface side of the substrate 52 causes the infrared rays IR 'radiated to the surface of the substrate 51 to be irregular because the infrared rays IR' reflected on the inner surface of the processing vessel 51 are formed in a box shape. Since the distribution is not uniform, the temperature distribution is not uniform over the entire surface.
【0008】そのため上記従来の赤外線加熱装置を用い
て、被処理半導体基板52上で均一な温度分布を得ること
は極めて困難であった。そこで、均一な温度分布を得る
ために、従来、図5に示すような構造の赤外線加熱装置
の改良例が提案された。Therefore, it has been extremely difficult to obtain a uniform temperature distribution on the semiconductor substrate 52 to be processed by using the above conventional infrared heating device. Therefore, in order to obtain a uniform temperature distribution, conventionally, an improved example of an infrared heating device having a structure as shown in FIG. 5 has been proposed.
【0009】この構造が前記従来の構造と異なるのは、
処理容器51の天井面51C を球面状に形成し、処理容器51
の内面で反射した赤外線IR′が均一に被処理半導体基板
52の表面に照射されるようにした点である。その他の構
造は前記従来例と同様で、各符号も第4図と同一対象物
を示している。The difference between this structure and the conventional structure is that
The ceiling surface 51C of the processing container 51 is formed into a spherical shape,
Infrared IR ′ reflected on the inner surface of the substrate is evenly processed semiconductor substrate
This is the point where the surface of 52 is irradiated. Other structures are the same as those of the conventional example, and each reference numeral indicates the same object as in FIG.
【0010】この装置を用いた場合、全面に半導体基板
等の同一物質が表出し全面の赤外線吸収率が均一な裏面
側からの被処理半導体基板の赤外線加熱は、前記従来の
装置同様に均一になされる。When this apparatus is used, the same substance such as a semiconductor substrate is exposed on the entire surface, and the infrared heating of the semiconductor substrate to be processed from the back side where the infrared absorption rate of the entire surface is uniform is uniform as in the conventional apparatus. Done.
【0011】しかしながら、デバイスパターンの形成さ
れている被処理半導体基板52の表面は、赤外線吸収率の
異なる絶縁膜や金属パターンの選択的な存在によって面
内の赤外線吸収率が均一にはなっていない。そのために
図5に示す構造を採用し、処理容器51の内壁で反射して
被処理半導体基板51の表面に照射される赤外線IR′の分
布の均一化を図っても、被処理半導体基板51の表面側か
らの赤外線加熱は必ずしも全面均一にはなされない。However, the in-plane infrared absorptivity is not uniform on the surface of the semiconductor substrate 52 to be processed on which the device pattern is formed due to the selective existence of the insulating film or the metal pattern having a different infrared absorptivity. . Therefore, even if the structure shown in FIG. 5 is adopted and the distribution of the infrared rays IR ′ reflected on the inner wall of the processing container 51 and applied to the surface of the semiconductor substrate 51 to be processed is made uniform, the semiconductor substrate 51 to be processed is Infrared heating from the surface side is not always uniform over the entire surface.
【0012】そのために、この従来の改良例において
も、被処理半導体基板51は面内での均一な温度分布が十
分には得られず、半導体装置の性能や製造歩留りを劣化
させるという問題を生じていた。Therefore, even in this conventional improvement example, the in-plane uniform temperature distribution of the semiconductor substrate 51 to be processed cannot be sufficiently obtained, which causes a problem that the performance and manufacturing yield of the semiconductor device are deteriorated. Was there.
【0013】[0013]
【発明が解決しようとする課題】そこで本発明は、被処
理基板を十分に均一な面内温度分布が得られるように加
熱することが可能な半導体基板の赤外線加熱方法および
赤外線加熱装置を提供することを目的とする。Therefore, the present invention provides an infrared heating method and an infrared heating apparatus for a semiconductor substrate which can heat a substrate to be processed so as to obtain a sufficiently uniform in-plane temperature distribution. The purpose is to
【0014】[0014]
【課題を解決するための手段】上記課題の解決は、密閉
された処理容器内に配置した半導体基板に、該処理容器
の器壁に設けた透過窓から赤外線を照射して該半導体基
板の赤外線加熱を行うに際して、該処理容器の内壁の少
なくとも一部を赤外線吸収物で覆い、且つ前記赤外線の
照射を前記透過窓を介し該半導体基板のデバイスパター
ンが形成されていない裏面に向かって行う本発明による
半導体基板の赤外線加熱方法、若しくは、内部に被処理
基板が配置される処理容器が、器壁に赤外線透過窓を有
し且つ内壁面の少なくとも一部が赤外線吸収物で覆われ
た密閉型容器よりなる本発明による赤外線加熱装置、若
しくは、前記赤外線加熱装置であって、該被処理基板
が、デバイスパターンの形成されていない裏面側を該赤
外線透過窓に対向させて配置される本発明による赤外線
加熱装置によって達成される。In order to solve the above-mentioned problems, a semiconductor substrate arranged in a hermetically sealed processing container is irradiated with infrared rays through a transmission window provided on the vessel wall of the processing container to provide infrared rays to the semiconductor substrate. In the present invention, at the time of heating, at least a part of the inner wall of the processing container is covered with an infrared absorber, and the infrared rays are irradiated toward the back surface of the semiconductor substrate on which the device pattern is not formed, through the transmission window. The method for infrared heating a semiconductor substrate according to claim 1, or a processing container in which a substrate to be processed is arranged has an infrared transparent window on a container wall and at least a part of the inner wall surface is covered with an infrared absorbing material. The infrared heating device according to the present invention, or the infrared heating device according to the present invention, wherein the substrate to be processed has a back surface side on which a device pattern is not formed facing the infrared transmission window. Is accomplished by infrared heating device according to the invention is arranged Te.
【0015】[0015]
【作用】図1は本発明の原理説明用模式断面図で、図
中、1は熱処理容器(熱処理室)、2は被処理半導体基
板、3は赤外線透過窓、4は赤外線ランプ、5は赤外線
吸収物、6は基板支持ピン、7は赤外線反射板、8はデ
バイスパターン、10は加熱光源室を示す。1 is a schematic sectional view for explaining the principle of the present invention, in which 1 is a heat treatment container (heat treatment chamber), 2 is a semiconductor substrate to be processed, 3 is an infrared transmitting window, 4 is an infrared lamp, and 5 is infrared. Absorber, 6 is a substrate support pin, 7 is an infrared reflecting plate, 8 is a device pattern, and 10 is a heating light source chamber.
【0016】本発明に係る半導体基板の赤外線加熱方法
においては、同図に示すように、加熱光源である赤外線
ランプ4より発生する赤外線IRをデバイスパターン8の
ない被処理半導体基板2の裏面に赤外線透過窓3を通し
て均一に照射するようにし、且つ、被処理半導体基板2
の周囲から熱処理容器1の内壁に照射された赤外線IRを
処理容器1の内壁面に被着されている赤外線吸収物5に
より吸収させることで、容器1の内壁で反射して半導体
基板2のデバイスパターン8を有する表面側に照射され
る赤外線を無くしている。従って、従来処理容器の内壁
で反射され、赤外線吸収率の均一でない半導体基板の表
面側から加熱されることによって生じていた被処理基板
面内の加熱温度の不均一性を抑制することが可能にな
る。In the infrared heating method for a semiconductor substrate according to the present invention, as shown in the figure, an infrared IR generated from an infrared lamp 4 serving as a heating light source is transferred to the back surface of the semiconductor substrate 2 to be processed without the device pattern 8. Irradiation is performed uniformly through the transmission window 3, and the semiconductor substrate 2 to be processed 2
Infrared IR irradiating the inner wall of the heat treatment container 1 from the periphery of the is absorbed by the infrared absorber 5 adhered to the inner wall surface of the processing container 1, and is reflected by the inner wall of the container 1 to form the device of the semiconductor substrate 2. Infrared rays emitted to the surface side having the pattern 8 are eliminated. Therefore, it is possible to suppress the non-uniformity of the heating temperature in the surface of the substrate to be processed, which is conventionally caused by being reflected from the inner wall of the processing container and being heated from the surface side of the semiconductor substrate having a non-uniform infrared absorption rate. Become.
【0017】また本発明の赤外線加熱装置においては、
処理容器1の内壁面に赤外線吸収物を被着し、赤外線透
過窓3から入射した赤外線IRが処理容器1の内壁面で反
射して被処理基板に照射されるのを抑止し、被処理基板
2の加熱を専ら赤外線透過窓3から入射した均一な強度
分布を有する赤外線IRのみで直接に行い、加熱の均一性
を図る。またその一例の装置においては、更に、被処理
基板を、デバイスパターンの形成されていない赤外線吸
収率が均一な裏面側を赤外線透過窓3に対向させて配置
し、透過窓3から入射した均一な強度分布を有する赤外
線が被処理基板2の裏面全面に一様に照射されるように
し、前記同様処理容器1の内壁面で反射してくる赤外線
を抑止して赤外線吸収率の不均一な表面側からの被処理
基板2の加熱をなくす効果と合わせて、被処理基板の赤
外線加熱の一層の均一化を図っている。Further, in the infrared heating device of the present invention,
An infrared absorber is deposited on the inner wall surface of the processing container 1 to prevent the infrared IR incident from the infrared transmission window 3 from being reflected on the inner wall surface of the processing container 1 and being irradiated to the substrate to be processed. The heating of No. 2 is directly performed only by the infrared IR having a uniform intensity distribution which is incident from the infrared transmitting window 3 to achieve the heating uniformity. Further, in the apparatus as an example thereof, the substrate to be processed is further arranged such that the back surface side thereof on which the device pattern is not formed and which has a uniform infrared absorption rate is opposed to the infrared transmission window 3, and the uniform incidence of light from the transmission window 3 is made. An infrared ray having an intensity distribution is uniformly irradiated to the entire back surface of the substrate 2 to be processed, and the infrared ray reflected by the inner wall surface of the processing container 1 is suppressed to the surface side having a non-uniform infrared absorption rate as described above. In addition to the effect of eliminating the heating of the substrate 2 to be processed from above, the infrared heating of the substrate to be processed is further homogenized.
【0018】以上により、本発明によれば、赤外線加熱
を用いる半導体プロセスの均一化が図れ、半導体装置の
品質や製造歩留りの向上が期待できる。As described above, according to the present invention, the semiconductor process using infrared heating can be made uniform, and improvement in the quality and manufacturing yield of semiconductor devices can be expected.
【0019】[0019]
【実施例】以下本発明を、図示実施例により具体的に説
明する。図2は本発明に係る赤外線加熱装置の一実施例
の模式断面図、図3は同じく他の実施例の模式断面図で
ある。全図を通じ同一対象物は同一符合で示す。EXAMPLES The present invention will be described in detail below with reference to illustrated examples. FIG. 2 is a schematic sectional view of an embodiment of the infrared heating apparatus according to the present invention, and FIG. 3 is a schematic sectional view of another embodiment of the same. The same object is denoted by the same reference numeral throughout the drawings.
【0020】本発明に係る赤外線加熱装置は例えば図2
に示すように構成される。即ち、例えばステンレス等の
金属からなり密閉され真空排気が可能で、液冷手段19A
を備えた箱型の熱処理容器11の底面が、透明石英等から
なり内部に例えば冷却液流通空間からなる赤外線の透過
を妨げない液冷手段19B を有する赤外線透過窓13で構成
されており、処理容器11の内壁面全面が赤外線吸収物で
ある例えば黒色の炭化珪素(SiC)薄板15で覆われてい
る。そして赤外線透過窓13の上面には同様に透明石英か
らなる基板支持ピン16が設けられ、赤外線加熱される被
処理半導体基板12はこの支持ピン16を介して赤外線透過
窓13上に例えば赤外線透過窓13にほぼ平行に支持され
る。また、加熱光源である複数の赤外線ランプ14は処理
容器11の下部即ち赤外線透過窓13の下部に設けた加熱光
源室20内に赤外線透過窓13に平行して配置され、その後
方には赤外線反射板17を設け、赤外線透過窓13を通過す
る赤外線IRの密度の均一化が図られている。なお、赤外
線ランプ14には例えばタングステンハロゲンランプが用
いられる。An infrared heating device according to the present invention is shown in FIG.
It is configured as shown in. That is, for example, it is made of metal such as stainless steel, is hermetically sealed and can be evacuated, and the liquid cooling means 19A
The bottom surface of the box-shaped heat treatment container 11 provided with is composed of an infrared transmission window 13 having a liquid cooling means 19B which is made of, for example, transparent quartz and which does not prevent the transmission of infrared rays, which is formed of a cooling liquid circulation space, The entire inner wall surface of the container 11 is covered with an infrared absorbing material, for example, a black silicon carbide (SiC) thin plate 15. A substrate supporting pin 16 made of transparent quartz is also provided on the upper surface of the infrared transmitting window 13, and the semiconductor substrate 12 to be infrared-heated is placed on the infrared transmitting window 13 via the supporting pin 16 such as an infrared transmitting window. It is supported almost parallel to 13. Further, a plurality of infrared lamps 14 which are heating light sources are arranged in parallel to the infrared transmission window 13 in the heating light source chamber 20 provided in the lower part of the processing container 11, that is, the lower part of the infrared transmission window 13, and the infrared reflection is provided behind them. A plate 17 is provided so that the density of infrared IR passing through the infrared transmitting window 13 is made uniform. A tungsten halogen lamp, for example, is used as the infrared lamp 14.
【0021】本発明に係る半導体基板の赤外線加熱方法
の一実施例においては、上記の図2に示す赤外線加熱装
置を用い、真空中において被処理半導体基板12の赤外線
加熱がなされる。In one embodiment of the infrared heating method for a semiconductor substrate according to the present invention, the infrared heating apparatus shown in FIG. 2 is used to perform infrared heating of the semiconductor substrate 12 to be processed in vacuum.
【0022】そして被処理半導体基板12には、例えば、
表面に、シリコン面が表出し不純物がイオン注入された
領域(図示せず)とその領域を画定する酸化シリコン膜
(図示せず)とが選択的に設けられて赤外線吸収率が不
均一なデバイスパターン18を有し、裏面全面にシリコン
が表出してなるシリコン基板を適用し、前記不純物のイ
オン注入された領域の急速加熱による活性化処理を行
う。The semiconductor substrate 12 to be processed is, for example,
A device having a non-uniform infrared absorptivity by selectively providing a region (not shown) on the surface of which a silicon surface is exposed and ion-implanted with impurities and a silicon oxide film (not shown) defining the region. A silicon substrate having a pattern 18 and having silicon exposed on the entire back surface is applied, and an activation process is performed by rapid heating of the region into which the impurities are ion-implanted.
【0023】赤外線加熱処理に際しては、赤外線透過窓
13上に基板支持ピン16を介し、デバイスパターンの形成
されておらず全面にシリコンが表出していて赤外線吸収
率の面内分布が均一な裏面を対向させて上記被処理半導
体基板12を支持し、赤外線透過窓13を通しこの被処理半
導体基板12の裏面に向かって、赤外線ランプ14で発生さ
れ赤外線反射板17により密度の均一化が図られた赤外線
IRの照射がなされる。In the infrared heat treatment, an infrared transparent window
Through the substrate support pins 16 on the substrate 13, the device pattern is not formed, silicon is exposed on the entire surface, and the back surface having a uniform in-plane distribution of infrared absorption coefficient is opposed to support the semiconductor substrate 12 to be processed. , Through the infrared transmitting window 13 toward the back surface of the semiconductor substrate 12 to be processed, the infrared rays are generated by the infrared lamp 14 and the density is made uniform by the infrared reflecting plate 17.
IR irradiation is performed.
【0024】この赤外線照射は、例えば被処理半導体基
板12が 800℃程度に昇温する強度で、2〜3分間程度な
され、前記不純物のイオン注入領域を活性化する。その
際、赤外線透過窓13の被処理基板12の周囲に露出する部
分からは熱処理容器11の内壁面に向かって赤外線が照射
されるが、本発明に係る該実施例の赤外線加熱装置にお
いては熱処理容器11の内壁面は黒色で赤外線吸収率の大
きい(90%程度)のSiC 薄板15で覆われているので、処理
容器内壁面からの赤外線の反射は殆ど生じない。また、
該実施例の装置においては熱処理容器11の器壁が液冷手
段19A により冷却され低温度に保たれるので、熱処理容
器11の内壁面からの赤外線の輻射も起こらない。This infrared irradiation is carried out for about 2 to 3 minutes at a strength at which the semiconductor substrate 12 to be processed is heated to about 800 ° C. to activate the ion-implanted region of the impurities. At that time, infrared rays are radiated toward the inner wall surface of the heat treatment container 11 from the portion of the infrared transmission window 13 exposed to the periphery of the substrate to be processed 12, but the heat treatment is performed in the infrared heating device of the embodiment according to the present invention. Since the inner wall surface of the container 11 is covered with the SiC thin plate 15 which is black and has a high infrared absorption rate (about 90%), the infrared light is hardly reflected from the inner wall surface of the processing container. Also,
In the apparatus of this embodiment, since the inner wall of the heat treatment container 11 is cooled by the liquid cooling means 19A and kept at a low temperature, infrared radiation from the inner wall surface of the heat treatment container 11 does not occur.
【0025】従って、被処理半導体基板12の加熱は、面
内の赤外線吸収率が均一な裏面側から均一な照射密度を
有する赤外線でのみなされるので、被処理半導体基板12
は十分に均一な温度分布に加熱される。Therefore, since the heating of the semiconductor substrate 12 to be processed is regarded as the infrared ray having the uniform irradiation density from the back surface side where the in-plane infrared absorption rate is uniform, the semiconductor substrate 12 to be processed is treated.
Are heated to a sufficiently uniform temperature distribution.
【0026】また、図3に示す赤外線加熱装置の他の実
施例においては、熱処理容器内の汚染を防止するため
に、前記実施例同様の金属製の熱処理容器11の内側に、
石英等の清浄化が可能な内部容器21を設け、この内部容
器11の外壁面全面に赤外線吸収物である前記実施例同様
の黒色のSiC 薄板15を被着している。Further, in another embodiment of the infrared heating apparatus shown in FIG. 3, in order to prevent the inside of the heat treatment container from being contaminated, inside the heat treatment container 11 made of metal similar to the above embodiment,
An inner container 21 capable of cleaning quartz or the like is provided, and a black SiC thin plate 15 which is an infrared absorbing material similar to the above embodiment is adhered to the entire outer wall surface of the inner container 11.
【0027】その他の部分の構成は図3に示された前記
実施例の構造と同様である。この構造では、赤外線照射
により赤外線吸収部即ちSiC 薄板15から放出される汚染
物質が被処理半導体基板に付着することがなく、前記実
施例同様の均熱効果に加えて、被処理半導体基板の汚染
を防止する効果が生ずる。The structure of the other parts is the same as the structure of the embodiment shown in FIG. In this structure, the contaminants emitted from the infrared absorption section, that is, the SiC thin plate 15 by infrared irradiation do not adhere to the semiconductor substrate to be processed, and in addition to the soaking effect similar to the above embodiment, the contamination of the semiconductor substrate to be processed is The effect of preventing.
【0028】なお、赤外線吸収物の被着は本実施例のよ
うに処理容器内壁面全面ではなく、内壁面の赤外線が直
に照射される領域のみに限定しても、実施例に近い効果
を得ることは可能である。It should be noted that even if the deposition of the infrared absorbing material is not limited to the entire surface of the inner wall surface of the processing container as in this embodiment, but is limited only to the region of the inner wall surface where the infrared rays are directly irradiated, the effect similar to that of the embodiment is obtained. It is possible to get.
【0029】また、赤外線吸収物は90%以上の赤外線吸
収率を有し、且つ 500〜600 ℃以上の耐熱性を有する物
質が望ましく、実施例に示したSiC 以外にカーボンやグ
ラファイトの塗布膜等も用いられる。Further, the infrared absorbing material is preferably a substance having an infrared absorption rate of 90% or more and heat resistance of 500 to 600 ° C. or more. In addition to SiC shown in the examples, a coating film of carbon or graphite, etc. Is also used.
【0030】また、加熱光源に用いる赤外線ランプに
は、半導体の吸収波長を含み、石英透過窓を透過する
0.3〜5.0 μmの範囲で任意の発光スペクトルを持つ赤
外線ランプが望ましい。Further, the infrared lamp used as the heating light source contains the absorption wavelength of the semiconductor and is transmitted through the quartz transmission window.
An infrared lamp having an arbitrary emission spectrum in the range of 0.3 to 5.0 μm is desirable.
【0031】また、赤外線透過窓を構成する物質材料
は、被処理基板の吸収波長を含む赤外線の透過率が十分
に高い物質であれば、前記石英に限られるものではな
い。The material of the infrared transmitting window is not limited to quartz as long as the material has a sufficiently high infrared transmittance including the absorption wavelength of the substrate to be processed.
【0032】[0032]
【発明の効果】以上説明のように、本発明によれば半導
体基板を赤外線加熱する際に、加熱温度の面内分布を十
分に均一にすることができる。As described above, according to the present invention, when the semiconductor substrate is heated by infrared rays, the in-plane distribution of the heating temperature can be made sufficiently uniform.
【0033】従って本発明によれば、半導体基板を速い
昇温速度で、しかも均一な温度に加熱することが可能に
なり、製造工程に赤外線加熱手段を用いる半導体装置の
品質及び製造歩留りの向上に寄与するところが大きい。Therefore, according to the present invention, the semiconductor substrate can be heated at a high temperature rising rate and at a uniform temperature, and the quality and the manufacturing yield of the semiconductor device using the infrared heating means in the manufacturing process can be improved. There is a big contribution.
【図1】 本発明の原理説明用模式断面図FIG. 1 is a schematic sectional view for explaining the principle of the present invention.
【図2】 本発明に係る赤外線加熱装置の一実施例の模
式断面図FIG. 2 is a schematic sectional view of an embodiment of an infrared heating device according to the present invention.
【図3】 本発明に係る赤外線加熱装置の他の実施例の
模式断面図FIG. 3 is a schematic cross-sectional view of another embodiment of the infrared heating device according to the present invention.
【図4】 従来の赤外線加熱装置の模式断面図FIG. 4 is a schematic sectional view of a conventional infrared heating device.
【図5】 従来の赤外線加熱装置の改良例の模式断面図FIG. 5 is a schematic sectional view of an improved example of a conventional infrared heating device.
1 熱処理容器(熱処理室) 2 被処理半導体基板 3 赤外線透過窓 4 赤外線ランプ 5 赤外線吸収物 6 基板支持ピン 7 赤外線反射板 8 デバイスパターン 10 加熱光源室 1 heat treatment container (heat treatment room) 2 semiconductor substrate to be processed 3 infrared transmission window 4 infrared lamp 5 infrared absorber 6 substrate support pin 7 infrared reflection plate 8 device pattern 10 heating light source room
Claims (3)
基板に、該処理容器の器壁に設けた透過窓から赤外線を
照射して該半導体基板の赤外線加熱を行うに際して、該
処理容器の内壁の少なくとも一部を赤外線吸収物で覆
い、且つ前記赤外線の照射を前記透過窓を介し該半導体
基板のデバイスパターンが形成されていない裏面に向か
って行うことを特徴とする半導体基板の赤外線加熱方
法。1. An inner wall of a processing container when a semiconductor substrate arranged in a closed processing container is irradiated with infrared rays from a transmission window provided on a vessel wall of the processing container to heat the semiconductor substrate by infrared rays. At least a part of which is covered with an infrared absorber, and the irradiation of the infrared rays is performed toward the back surface of the semiconductor substrate on which the device pattern is not formed, through the transmission window.
が、器壁に赤外線透過窓を有し、且つ内壁面の少なくと
も一部が赤外線吸収物で覆われた密閉型容器よりなるこ
とを特徴とする赤外線加熱装置。2. The processing container in which the substrate to be processed is arranged is a hermetically-sealed container having an infrared transmitting window on a container wall and at least a part of the inner wall surface thereof being covered with an infrared absorbing material. A characteristic infrared heating device.
基板が、デバイスパターンの形成されていない裏面側を
該赤外線透過窓に対向させて配置されることを特徴とす
る請求項2記載の赤外線加熱装置。3. The infrared heating apparatus according to claim 2, wherein the substrate to be processed is arranged such that a back surface side on which no device pattern is formed faces the infrared transmission window. Infrared heating device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17349093A JPH0729844A (en) | 1993-07-14 | 1993-07-14 | Infrared heating method and equipment for semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17349093A JPH0729844A (en) | 1993-07-14 | 1993-07-14 | Infrared heating method and equipment for semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0729844A true JPH0729844A (en) | 1995-01-31 |
Family
ID=15961480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17349093A Pending JPH0729844A (en) | 1993-07-14 | 1993-07-14 | Infrared heating method and equipment for semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0729844A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6067931A (en) * | 1996-11-04 | 2000-05-30 | General Electric Company | Thermal processor for semiconductor wafers |
WO2001031694A1 (en) * | 1999-10-28 | 2001-05-03 | Applied Materials Inc. | Apparatus for manufacturing semiconductor device |
JP2009038230A (en) * | 2007-08-02 | 2009-02-19 | Ushio Inc | Light radiation type heat treatment apparatus |
JP2013069990A (en) * | 2011-09-26 | 2013-04-18 | Dainippon Screen Mfg Co Ltd | Thermal treatment apparatus and thermal treatment method |
KR101726379B1 (en) * | 2016-06-29 | 2017-04-13 | 원도희 | Infrared ray steel heater of temperature correction and that method |
-
1993
- 1993-07-14 JP JP17349093A patent/JPH0729844A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6067931A (en) * | 1996-11-04 | 2000-05-30 | General Electric Company | Thermal processor for semiconductor wafers |
WO2001031694A1 (en) * | 1999-10-28 | 2001-05-03 | Applied Materials Inc. | Apparatus for manufacturing semiconductor device |
JP2009038230A (en) * | 2007-08-02 | 2009-02-19 | Ushio Inc | Light radiation type heat treatment apparatus |
JP2013069990A (en) * | 2011-09-26 | 2013-04-18 | Dainippon Screen Mfg Co Ltd | Thermal treatment apparatus and thermal treatment method |
KR101726379B1 (en) * | 2016-06-29 | 2017-04-13 | 원도희 | Infrared ray steel heater of temperature correction and that method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH088212B2 (en) | Vapor deposition equipment in the manufacture of semiconductor integrated devices | |
JP2961123B2 (en) | Rapid heat treatment of semiconductor disks by electromagnetic radiation. | |
GB2126418A (en) | Method for reflow of phosphosilicate glass | |
US5991508A (en) | Thermal processing apparatus with a shield between heater and substrate | |
JP3493880B2 (en) | Radiant heating device and heating method | |
JPH0729844A (en) | Infrared heating method and equipment for semiconductor substrate | |
JPH08139047A (en) | Heat treatment apparatus | |
JPH03291940A (en) | Uniformly heating structure of semiconductor manufacturing device | |
JPH0778830A (en) | Semiconductor manufacturing equipment | |
JPS61129834A (en) | Heat treatment apparatus | |
JPH06260422A (en) | Method and device for heating glass substrate | |
JPS60189927A (en) | Vapor phase reactor | |
JPH1110101A (en) | Photorinsing apparatus | |
US7043148B1 (en) | Wafer heating using edge-on illumination | |
JP2686498B2 (en) | Semiconductor manufacturing equipment | |
JPS6163019A (en) | Formation of semiconductor thin film | |
US6033279A (en) | Method of manufacturing a display device with reduced thermal stress | |
JP3136393B2 (en) | Laser annealing equipment | |
JP4093897B2 (en) | Surface heating type infrared radiation heating device | |
JPH09190981A (en) | Heat treatment device for wafer | |
JPS6027115A (en) | Heat treatment of semiconductor wafer by light irradiation furnace | |
JPS60126822A (en) | Method and apparatus for optical vapor growth | |
JPH03207861A (en) | Heater | |
TW200417270A (en) | Semiconductor processing device | |
JPH0634244U (en) | Microwave plasma processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020702 |