[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03110527A - Production of nonlinear optical element - Google Patents

Production of nonlinear optical element

Info

Publication number
JPH03110527A
JPH03110527A JP24816789A JP24816789A JPH03110527A JP H03110527 A JPH03110527 A JP H03110527A JP 24816789 A JP24816789 A JP 24816789A JP 24816789 A JP24816789 A JP 24816789A JP H03110527 A JPH03110527 A JP H03110527A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal compound
optical element
nonlinear optical
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24816789A
Other languages
Japanese (ja)
Inventor
Yasushi Mori
寧 森
Takaki Takato
孝毅 高頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24816789A priority Critical patent/JPH03110527A/en
Publication of JPH03110527A publication Critical patent/JPH03110527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To easily produce the org. nonlinaer optical element having excellent characteristics by cooling a specific liquid crystal compd. down to room temp. while impressing an electric field to the liquid crystal compd. through transparent electrodes provided on transparent substrates, thereby putting the liquid crystal compd. into an oriented solid state. CONSTITUTION:The liquid crystal compd. which has a pyrimidine structure, pyradazine structure, pyrazine structure, tetrazine structure, fluorene structure, fluorenon structure or phenyl cyclohexane strucuture and forms the liquid crystal layer at the room temp. or above is heated to the transition temp. to the liquid crystal phase or above and is injected into the spacing between a pair of the transparent substrates 2 and 2 subjected to an orientation treatment. While the electric field is impressed to the liquid crystal compd. through the transparent electrodes 3, 3 provided on the transparent substrates 2, 2, the liquid crystal compd. is cooled to the room temp. and is put into the solid state. The nonlinear optical element with large area and strong second harmonic is obtainable easily with high reproducibility.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非線形光学素子の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a nonlinear optical element.

(従来の技術) 非線形光学素子は、高調波発生、光スィッチ、光混合な
ど、レーザ光の波長、位相、振幅の変調に利用され、光
を用いた情報処理において重要な役割を果している。
(Prior Art) Nonlinear optical elements are used to modulate the wavelength, phase, and amplitude of laser light, such as harmonic generation, optical switching, and optical mixing, and play an important role in information processing using light.

従来、非線形光学材料としては、L i N b Oi
などの無機化合物が用いられてきたが、変換効率が低い
などその性能が充分ではなかった。このため、高調波発
生においては基本波の光源としてYAGレーザなどの大
出力レーザを用いざるを得なかった。また、電気光学的
変調素子においては変調に必要な印加磁場がkV/ a
mオーダにまで達するなどの問題があった。無機化合物
を用いた非線形光学素子に関しては、A、Yarlv 
 QUAN70MELECTRONIC82ND ED
ITION ” 、John &WIIey、1975
゜などに解説されている。
Conventionally, as a nonlinear optical material, L i N b Oi
Although inorganic compounds such as these have been used, their performance has not been sufficient, such as low conversion efficiency. For this reason, when generating harmonics, it is necessary to use a high-output laser such as a YAG laser as a fundamental wave light source. In addition, in electro-optic modulation elements, the applied magnetic field necessary for modulation is kV/a
There were problems such as reaching up to m order. Regarding nonlinear optical elements using inorganic compounds, A. Yarlv
QUAN70MELECTRONIC82ND ED
ITION”, John & WIIey, 1975
It is explained in ゜ etc.

近年、有機化合物のなかに非線形分極率の大きい化合物
が見出されている。そして、これら有機非線形光学材料
を用いた高効率の2次高調波素子と近赤外半導体レーザ
とを組み合わせた小型青色レーザの実現が有望視されて
いる。有機非線形光学材料に関しては、D、S、Che
sla and J、Zyss’Non1inear 
0pLIcal  Properties of’ O
rganicMolecules  and  Cry
stals  、Acadea+Ic  Press。
In recent years, compounds with large nonlinear polarizability have been discovered among organic compounds. The realization of a compact blue laser that combines a highly efficient second harmonic element using these organic nonlinear optical materials and a near-infrared semiconductor laser is seen as promising. Regarding organic nonlinear optical materials, D, S, Che
sla and J, Zyss'Non1inear
0pLIcal Properties of' O
rganic Molecules and Cry
stals, Acadea+Ic Press.

+987.などの解説書がある。しかし、これらの有機
化合物は、分子自身の双極子モーメントの相互作用の結
果中心対称を持つ結晶構造をとりやすく2次高調波発生
を禁止してしまう、光学素子として利用するに充分な大
きさ及び品質を有する結晶を育成することが困難である
などの問題があった。
+987. There are explanatory manuals such as However, these organic compounds tend to form a crystal structure with central symmetry due to the interaction of the dipole moments of the molecules themselves, which prohibits the generation of second harmonics, and the size and size of these organic compounds are large enough to be used as optical elements. There were problems such as difficulty in growing crystals with high quality.

(発明が解決しようとする課題) 本発明は前記問題点を解決するためになされたものであ
り、優れた特性を有する有機非線形光学素子を製造し得
る方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing an organic nonlinear optical element having excellent characteristics.

[発明の構成] (課題を解決するための手段と作用) 本発明の非線形光学素子の製造方法は、ピリミジン構造
、ピリダジン構造、ピラジン構造、テトラジン構造、フ
ルオレン構造、フルオレノン構造、又はフェニルシクロ
ヘキサン構造を有し、室温以上で液晶層を形成する液晶
化合物を液晶相への転移温度以上に加熱して、1対の配
向処理した透明基板の間隙に注入した後、前記透明基板
に設けられた透明電極を通じて前記液晶化合物に電場を
印加しつつ室温まで冷却し、前記液晶化合物を配向した
固体状態にすることを特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The method for manufacturing a nonlinear optical element of the present invention includes a method for manufacturing a nonlinear optical element that uses a pyrimidine structure, a pyridazine structure, a pyrazine structure, a tetrazine structure, a fluorene structure, a fluorenone structure, or a phenylcyclohexane structure. After heating a liquid crystal compound that forms a liquid crystal layer above room temperature to a temperature above the transition temperature to a liquid crystal phase and injecting it into the gap between a pair of aligned transparent substrates, a transparent electrode provided on the transparent substrates is formed. The method is characterized in that the liquid crystal compound is cooled to room temperature while applying an electric field to the liquid crystal compound to be in an oriented solid state.

本発明において、液晶化合物としては、室温より高温の
特定の温度範囲で強誘電性液晶相であるキラルスメクチ
ック相(SmC”相)となり、室温では固体−となるも
のが用いられる。具体的には、ピリミジン構造、ピリダ
ジン構造、ピラジン構造、テトラジン構造、フルオレン
構造、フルオレノン構造、又はフェニルシクロヘキサン
構造を有する液晶化合物が挙げられる。
In the present invention, the liquid crystal compound used is one that becomes a chiral smectic phase (SmC" phase), which is a ferroelectric liquid crystal phase, in a specific temperature range higher than room temperature, and becomes a solid at room temperature. Specifically, , a pyrimidine structure, a pyridazine structure, a pyrazine structure, a tetrazine structure, a fluorene structure, a fluorenone structure, or a phenylcyclohexane structure.

本発明において、配向処理を施した透明基板とは、液晶
状態にある液晶化合物を基板に対して垂直(垂直配向)
、平行(平行配向)、又は一定の傾斜をもたせて(傾斜
配向)配列させるための処理を施した基板をいう。垂直
配向処理の一般的な方法としては、レシチン、有機シラ
ン化合物、パーフルオロノナン酸クロム錯体などを塗布
する方法が挙げられる。平行配向処理の一般的な方法と
しては、ポリイミド膜を塗布した後、表面を布などでこ
する(ラビングする)方法が挙げられる。
In the present invention, a transparent substrate subjected to alignment treatment refers to a liquid crystal compound in a liquid crystal state perpendicular to the substrate (vertical alignment).
, parallel (parallel alignment), or at a certain angle (tilted alignment). Common methods for vertical alignment include methods of applying lecithin, organic silane compounds, perfluorononanoic acid chromium complexes, and the like. A general method for parallel alignment treatment includes a method of applying a polyimide film and then rubbing the surface with a cloth or the like.

傾斜配向の一般的な方法としては酸化ケイ素(S i 
O)を基板に対して斜め方向から蒸着させる方法が挙げ
られる。
A common method for tilted orientation is silicon oxide (Si
An example of this method is to deposit O) obliquely to the substrate.

本発明において、液晶化合物を液晶相への転移温度以上
に加熱した後、液晶状態から固体状態に凍結させる際、
液晶化合物に印加する電場の大きさは、セルの厚みが数
1の場合、10〜数10Vが適当である。IOV未満で
は液晶化合物を配向させる効果が少なく、数10Vを超
えると絶縁破壊が生じるおそれがある。
In the present invention, when a liquid crystal compound is heated to a temperature higher than the transition temperature to a liquid crystal phase and then frozen from a liquid crystal state to a solid state,
The appropriate magnitude of the electric field applied to the liquid crystal compound is 10 to several 10 V when the cell thickness is several 1. If the voltage is less than IOV, the effect of orienting the liquid crystal compound is small, and if it exceeds several tens of volts, dielectric breakdown may occur.

本発明のように、液晶化合物を等方性液体がら冷却し、
液晶状態を経て固体状態とした場合、固体状態での分子
集合体の構造は液晶状態の構造を反映するため、分子集
合体の構造を容易に制御することができる。したがって
、本発明方法を用いれば、大面積で大きな2次高調波が
得られる非線形光学素子を、容易に、がっ再現性よく製
造することができる。
As in the present invention, a liquid crystal compound is cooled in an isotropic liquid,
When the solid state is achieved through the liquid crystal state, the structure of the molecular assembly in the solid state reflects the structure in the liquid crystal state, and therefore the structure of the molecular assembly can be easily controlled. Therefore, by using the method of the present invention, it is possible to easily manufacture a nonlinear optical element with a large area and a large second harmonic with good reproducibility.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

非線形光学素子として、第1図(a)及び(b)に示す
液晶セル1を作製した。第1図(a)に示すように、上
下2枚のガラス基板2にはそれぞれ透明電極としてIT
O膜3及び液晶配向膜としてポリイミド膜4が形成され
ている。これら2枚のガラス基板2のポリイミド膜4側
を対向させ、両者の間にシール材5及びスペーサー6を
介在させて配置することにより液晶セルが形成されてい
る。上下のガラス基板2、ITO膜3、及びシール材5
は、平面的には第1図(b)に示すように配置されてい
る。また、スペーサー6として直径2庫のものを用い、
セルの厚みを2−としている。
A liquid crystal cell 1 shown in FIGS. 1(a) and 1(b) was prepared as a nonlinear optical element. As shown in FIG. 1(a), the upper and lower glass substrates 2 each have IT as transparent electrodes.
A polyimide film 4 is formed as an O film 3 and a liquid crystal alignment film. A liquid crystal cell is formed by arranging these two glass substrates 2 with their polyimide film 4 sides facing each other with a sealing material 5 and a spacer 6 interposed between them. Upper and lower glass substrates 2, ITO film 3, and sealing material 5
are arranged as shown in FIG. 1(b) in a plan view. In addition, a spacer with a diameter of 2 is used as the spacer 6,
The thickness of the cell is 2-.

以上のようにして作製された液晶セル1を真空チャンバ
ー内に入れ、室温で固体、室温以上の特定の温度範囲で
液晶層を示す液晶化合物を加熱して等方性液体とした後
、チャンバー内で遠隔操作によりこの等方性液体をシー
ル材5で囲まれている空間に充填した。その後、注入口
を封止し、上下のガラス基板2上のITO膜3にリード
線を接続した。
The liquid crystal cell 1 prepared as described above is placed in a vacuum chamber, and the liquid crystal compound, which is solid at room temperature and exhibits a liquid crystal layer in a specific temperature range above room temperature, is heated to become an isotropic liquid, and then placed inside the chamber. Then, the space surrounded by the sealing material 5 was filled with this isotropic liquid by remote control. Thereafter, the injection port was sealed, and lead wires were connected to the ITO films 3 on the upper and lower glass substrates 2.

この液晶セル1を用い、第2図に示す装置により2次高
調波高調波を測定した。第2図において、YAGレーザ
−11から出射した波長1.0844のレーザー光を、
円偏光板(λ/4板) 12により円偏光とした後、偏
光ビームスプリッタ−13により一方向の偏光のみを取
り出し、恒温槽14内に収容した液晶セル1に入射する
。この結果発生した波長0.532aの透過2次高調波
を基本波吸収フィルタI5及び分光器16により基本波
より分離した後、光電子倍増管17及びデジタルオシロ
スコープ1Bによりその強度を測定する。
Using this liquid crystal cell 1, second harmonics were measured using the apparatus shown in FIG. In Figure 2, the laser beam with a wavelength of 1.0844 emitted from the YAG laser-11 is
After the light is circularly polarized by a circularly polarizing plate (λ/4 plate) 12 , only one direction of polarized light is taken out by a polarizing beam splitter 13 and is incident on the liquid crystal cell 1 housed in a thermostatic oven 14 . The resulting transmitted second harmonic having a wavelength of 0.532a is separated from the fundamental wave by a fundamental wave absorption filter I5 and a spectrometer 16, and then its intensity is measured by a photomultiplier tube 17 and a digital oscilloscope 1B.

液晶化合物として第1表に示すものを用い、恒温槽14
内に収容した液晶セル1の液晶化合物を等方性液体及び
固体とした状態で測定を行なった。
Using the liquid crystal compounds shown in Table 1,
Measurements were performed with the liquid crystal compound of the liquid crystal cell 1 housed in the liquid crystal cell 1 in an isotropic liquid and solid state.

液晶化合物を等方性液体から冷却して固体状態にする際
、30vの電圧を印加した。
A voltage of 30 V was applied when the liquid crystal compound was cooled from an isotropic liquid to a solid state.

第1表に各液晶化合物を用いた場合の2次高調波の強度
を示す。第1表の2次高調波強度は、同一強度の基本波
を厚さ1 mmのYカット水晶板へ入射した際に得られ
た2次高調波の強度に対する相対比である。
Table 1 shows the intensity of the second harmonic when each liquid crystal compound is used. The second harmonic intensity in Table 1 is a relative ratio to the intensity of the second harmonic obtained when a fundamental wave of the same intensity is incident on a 1 mm thick Y-cut crystal plate.

第1表から明らかなように、液晶化合物が等方性液体の
状態では2次高調波の強度は0であるのに対し、セル内
部で液晶化合物を等方性液体から室温まで冷却して固体
状態とした場合には2次高調波の強度が増加している。
As is clear from Table 1, when the liquid crystal compound is in an isotropic liquid state, the intensity of the second harmonic is 0, but when the liquid crystal compound is cooled from an isotropic liquid to room temperature inside the cell, it becomes solid. In this case, the intensity of the second harmonic increases.

また、比較のために、各液晶化合物の粉末状態での2次
高調波の強度を測定したところ、0又は極めて低い値で
あった。
In addition, for comparison, when the intensity of the second harmonic of each liquid crystal compound in the powder state was measured, it was found to be 0 or an extremely low value.

これらの結果から、2次高調波の強度を増加させるには
、液晶化合物を等方性液体から室温まで冷却した固体状
態が適していることがわかる。
From these results, it can be seen that a solid state in which the liquid crystal compound is cooled from an isotropic liquid to room temperature is suitable for increasing the intensity of the second harmonic.

[発明の効果〕 以上詳述したように本発明方法を用いれば、大面積で大
きな2次高調波が得られる非線形光学素子を、容易に、
かつ再現性よ(製造することができる。
[Effects of the Invention] As detailed above, by using the method of the present invention, a nonlinear optical element that can obtain large second harmonics in a large area can be easily produced.
and reproducible (can be manufactured).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a>は本発明の実施例において非線形光学素子
として作製された液晶セルの断面図、同図(b)は同図
(a)の平面図、第2図は本発明の実施例において用い
られた2次高調波の測定装置を示す概略構成図である。 1・・・液晶セル、2・・・ガラス基板、3・・・IT
O膜、4・・・ポリイミド膜、5・・・シール材、6・
・・スペーサ、11・・・YAGレーザ−,12・・・
円偏光板(λ/4板)、13・・・偏光ビームスプリッ
タ−14・・・恒温槽、15・・・基本波吸収フィルタ
、1B・・・分光器、17・・・光電子倍増管、18・
・・デジタルオシロスコープ。
FIG. 1(a) is a cross-sectional view of a liquid crystal cell manufactured as a nonlinear optical element in an embodiment of the present invention, FIG. 1(b) is a plan view of FIG. 1(a), and FIG. 2 is an embodiment of the present invention. It is a schematic configuration diagram showing a second harmonic measuring device used in 1. Liquid crystal cell, 2. Glass substrate, 3. IT.
O film, 4... polyimide film, 5... sealing material, 6...
...Spacer, 11...YAG laser, 12...
Circular polarizing plate (λ/4 plate), 13... Polarizing beam splitter 14... Constant temperature chamber, 15... Fundamental wave absorption filter, 1B... Spectrometer, 17... Photomultiplier tube, 18・
··Digital oscilloscope.

Claims (1)

【特許請求の範囲】[Claims] ピリミジン構造、ピリダジン構造、ピラジン構造、テト
ラジン構造、フルオレン構造、フルオレノン構造、又は
フェニルシクロヘキサン構造を有し、室温以上で液晶層
を形成する液晶化合物を液晶相への転移温度以上に加熱
して、1対の配向処理した透明基板の間隙に注入した後
、前記透明基板に設けられた透明電極を通じて前記液晶
化合物に電場を印加しつつ室温まで冷却し、前記液晶化
合物を配向した固体状態にすることを特徴とする非線形
光学素子の製造方法。
A liquid crystal compound having a pyrimidine structure, a pyridazine structure, a pyrazine structure, a tetrazine structure, a fluorene structure, a fluorenone structure, or a phenylcyclohexane structure and which forms a liquid crystal layer at room temperature or above is heated to a temperature above the transition temperature to a liquid crystal phase, After injecting the liquid crystal compound into the gap between the pair of aligned transparent substrates, an electric field is applied to the liquid crystal compound through the transparent electrode provided on the transparent substrate and the liquid crystal compound is cooled to room temperature, thereby turning the liquid crystal compound into an aligned solid state. A method for manufacturing a featured nonlinear optical element.
JP24816789A 1989-09-26 1989-09-26 Production of nonlinear optical element Pending JPH03110527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816789A JPH03110527A (en) 1989-09-26 1989-09-26 Production of nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816789A JPH03110527A (en) 1989-09-26 1989-09-26 Production of nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH03110527A true JPH03110527A (en) 1991-05-10

Family

ID=17174214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816789A Pending JPH03110527A (en) 1989-09-26 1989-09-26 Production of nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH03110527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11619858B2 (en) 2018-09-19 2023-04-04 Panasonic Intellectual Property Management Co., Ltd. Optical device and optical detection system
US11977314B2 (en) 2019-04-25 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Optical device, photodetection system, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11619858B2 (en) 2018-09-19 2023-04-04 Panasonic Intellectual Property Management Co., Ltd. Optical device and optical detection system
US11977314B2 (en) 2019-04-25 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Optical device, photodetection system, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Lock Doped triglycine sulfate for pyroelectric applications
CN107703652A (en) A kind of electrically-controlled liquid crystal based on graphene/Meta Materials coordinated drive is adjustable THz wave absorber and preparation method thereof
JPS58173719A (en) Liquid crystal display
JPH09152612A (en) Liquid crystal element and its manufacture
JPS6151130A (en) Optical system having liquid crystal cell, operation method thereof and usage thereof
JPH0553513A (en) Production of liquid crystal oriented film
EP0301551B1 (en) Nonlinear optical element
JPS61252532A (en) Ferroelectric smectic liquid crystal electrooptic device
CN113867063B (en) Ferroelectric spiral liquid crystal material and method for realizing second harmonic enhancement
US20020135721A1 (en) Liquid crystal device and manufacturing method
JP3156178B2 (en) Polymer thin film alignment method, liquid crystal alignment method, liquid crystal cell manufacturing method, liquid crystal cell and alignment film
JPH10282501A (en) Alignment layer, its formation and liquid crystal display element formed by adopting the aligning layer
JPH03110527A (en) Production of nonlinear optical element
JP3329565B2 (en) Liquid crystal light modulator
US5368782A (en) Method of operating third-order nonlinear optical element
JPS6147930A (en) Liquid crystal electrooptic device
KR100226321B1 (en) Liquid crystalline display and method for preparation thereof
CN113433723A (en) Light intensity modulator, light intensity modulation system and light intensity modulation method
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPS59224823A (en) Liquid-crystal modulating element
KR101992881B1 (en) liquid crystal display device
JPS63228130A (en) Ferroelectric smectic liquid crystal electrooptic device
Denisyuk et al. Electrooptic materials based on thin films of molecular crystals: Advantages and utilization prospects
JPH02304526A (en) Liquid crystal display element
JP4158890B2 (en) Liquid crystal optical element and manufacturing method thereof