JPH03102249A - Method and apparatus for detecting foreign matter - Google Patents
Method and apparatus for detecting foreign matterInfo
- Publication number
- JPH03102249A JPH03102249A JP1239928A JP23992889A JPH03102249A JP H03102249 A JPH03102249 A JP H03102249A JP 1239928 A JP1239928 A JP 1239928A JP 23992889 A JP23992889 A JP 23992889A JP H03102249 A JPH03102249 A JP H03102249A
- Authority
- JP
- Japan
- Prior art keywords
- illumination
- lens
- detector
- light
- foreign
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000005286 illumination Methods 0.000 claims abstract description 97
- 238000001514 detection method Methods 0.000 claims abstract description 46
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000007689 inspection Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 abstract description 4
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 18
- 239000000523 sample Substances 0.000 description 17
- 230000035945 sensitivity Effects 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体LSIウエノ)またはマスク上の異物を
検出する異物検査方法およびその装置に係り、特にLS
I製造中間工程でのパターン付きウエハ等上の徴小異物
を高速・高感度で検出する異物検査に好適な異物検出方
法およびその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a foreign matter inspection method and apparatus for detecting foreign matter on semiconductor LSI chips or masks, and particularly relates to
The present invention relates to a foreign matter detection method and apparatus suitable for foreign matter inspection that detects small foreign matter on patterned wafers, etc. at high speed and with high sensitivity during intermediate manufacturing steps.
従来のLSI製造の中間工程でのパターン付きウエハ上
の異物検査作業は製品歩留り向上および信頼性向上のた
めに不可欠である。このパターン付きウエハ上の微小な
異物を自動的に検出する異物検査方法およびその装置は
、特開昭61 − 104243号公報に配載のように
異物に対して散乱効果の大きな照明Lと、散乱効果の小
さな照F!AHの2種照明を行い、照明Lによる散乱光
は異物で発生し易く、照明Hによる散乱光はパターンで
発生し易いことに着目して、照明L,Hによる散乱光信
号の比を検出することにより、微細な異物を安定・高感
度に検出できる。また散乱光検出器として、各々の画素
の受光部の大きさが5x5μm2(試料面上に換算)程
度以下の複数の光電変換固体撮像素子を使用し、各々の
画素の受光部からの出力を同時に並列比較処理すること
により、高速性を劣化せずに高感度に異物検査を行える
。つぎに上記従来技術を更に発展させた例を第11図な
いし第14図により説明する。Inspection of foreign substances on patterned wafers in the intermediate process of conventional LSI manufacturing is essential for improving product yield and reliability. This foreign object inspection method and apparatus for automatically detecting minute foreign objects on a patterned wafer are disclosed in Japanese Patent Application Laid-open No. 104243/1983, using illumination L that has a large scattering effect on foreign objects and scattering. A small effect light F! Two types of AH illumination are performed, and the ratio of the scattered light signals due to illuminations L and H is detected, noting that the scattered light caused by illumination L is likely to be generated by foreign objects, and the scattered light caused by illumination H is likely to be generated by patterns. This allows for stable and highly sensitive detection of minute foreign matter. In addition, as a scattered light detector, multiple photoelectric conversion solid-state image sensors with a light receiving area of each pixel having a size of approximately 5 x 5 μm2 (converted to the sample surface) or less are used, and the output from the light receiving area of each pixel is simultaneously detected. By performing parallel comparison processing, foreign matter inspection can be performed with high sensitivity without deteriorating high speed. Next, an example in which the above-mentioned conventional technique is further developed will be explained with reference to FIGS. 11 to 14.
第11図は従来の異物検査方法およびその装置を更に発
展させた例を示す照明・検出系の斜視図である。gu図
において、従来の照明L,Hにそれぞれ斜方照明.Wr
射照明を用いた発展例を示し、例えば同時に斜方S偏光
照明15c(波長λ,)と落射S偏光照明11(波長λ
,)を同一試料点に照明して、色分離プリズム150と
検光子151 L . 151 Hで散乱光12のうち
のP偏光成分のみを検出器20L,20 Hにより検出
して比較する。FIG. 11 is a perspective view of an illumination/detection system showing a further developed example of the conventional foreign matter inspection method and apparatus. In the gu diagram, conventional illumination L and H are each equipped with oblique illumination. Wr.
An example of development using incident illumination will be shown. For example, oblique S-polarized illumination 15c (wavelength
, ) to the same sample point, and color separation prism 150 and analyzer 151 L . At 151H, only the P-polarized component of the scattered light 12 is detected by detectors 20L and 20H and compared.
第12図は第11図の異物検出原理の説明図で、検出器
20L,20H(例えば1個の画素t)の出力とその2
値化法を示す。第12図aは異物13a.13bが存在
する例えばSiウエハ上に斜方S偏光照8A15Cを照
射した場合を示し、第12図bはその場合の出力信号V
Lを示し、第12図Cはその2値化信号Sdを示す。こ
の場合にはパターン散乱光12 pと同程度の散乱光1
2を生じる微小異物13は検出不能である。第12図d
は同一場所に落射S偏光照明11を照射した場合を示し
、第12図eはその場合の出力信号v1を示す。第12
図fは2つの出力信号VL* Viの比Vr,7’hr
の信号を示し、第12図gはその2値化信号Sdを示す
。これにより徴小異物13 aの検出を可能としている
。FIG. 12 is an explanatory diagram of the principle of foreign object detection in FIG.
The valorization method is shown. FIG. 12a shows a foreign object 13a. 13b is present, for example, a Si wafer is irradiated with oblique S-polarized light 8A15C, and FIG. 12b shows the output signal V in that case.
12C shows its binary signal Sd. In this case, the scattered light 1 is the same as the pattern scattered light 12 p.
The minute foreign matter 13 that causes 2 is undetectable. Figure 12d
12 shows the case where the same place is irradiated with the epi-projection S-polarized illumination 11, and FIG. 12e shows the output signal v1 in that case. 12th
Figure f shows the ratio Vr,7'hr of the two output signals VL*Vi.
FIG. 12g shows its binary signal Sd. This makes it possible to detect small foreign objects 13a.
第13図は第11図の信号処理回路のブロック図である
。1813図において、検出器20L,20Hの出力信
号Vr− + Vitは対応する画素毎にアナログ比較
演算回路100で信号比Vc/Vxを演算し、2値化回
路101で2値化する。2値化回路101の出力はOR
回路102で論理和をとり、′1″があった場合には異
物メモリ詔に記憶する。上記のように2つの検出器20
L.20Hは正確に試料上同一点を検出する必要がある
。FIG. 13 is a block diagram of the signal processing circuit of FIG. 11. In FIG. 1813, the output signals Vr-+Vit of the detectors 20L and 20H are used to calculate a signal ratio Vc/Vx in an analog comparison calculation circuit 100 for each corresponding pixel, and are binarized in a binarization circuit 101. The output of the binarization circuit 101 is OR
The circuit 102 calculates the logical sum, and if there is a value of '1', it is stored in the foreign object memory.As described above, the two detectors 20
L. 20H needs to accurately detect the same point on the sample.
第14図は第11図の問題点の説明図である。第14図
において、2つの検出器20L . 20Hの試料上の
検出点がずれている場合には、パターン2や異物13a
.13bを検出する画素が違ったり、時間的にずれを生
じて、正確な比較演算ができず、異物検出感度が劣化す
る。しかし2つの検出器20L.20Hの正確な位置合
せが極めて困難なため、異物検出感度の劣化が避け難い
。また一度位置合せを行っても、検出器20L,20H
の僅かな位置ずれ(ドリフト)の発生は避けることがで
きない。また2個の検出器20L.20Hの感度合せを
必要とする。FIG. 14 is an explanatory diagram of the problem in FIG. 11. In FIG. 14, two detectors 20L. If the detection point on the sample of 20H is shifted, pattern 2 or foreign matter 13a
.. 13b may be different or a time lag may occur, making it impossible to perform accurate comparison calculations and deteriorating foreign object detection sensitivity. However, two detectors 20L. Since it is extremely difficult to accurately align the 20H, it is difficult to avoid deterioration in foreign object detection sensitivity. Moreover, even if alignment is performed once, the detectors 20L and 20H
Occurrence of slight positional deviation (drift) cannot be avoided. There are also two detectors 20L. 20H sensitivity adjustment is required.
さらに検出器20L,20Hは並列出力であり、かつ2
つの検出器20L.20Hを用いるため、各々の画素に
必要な信号増幅回路の規模が大きくなる。Furthermore, the detectors 20L and 20H have parallel outputs, and 2
one detector 20L. Since 20H is used, the scale of the signal amplification circuit required for each pixel becomes large.
上記従来技術は2つの検出器の位置ずれに対して配慮が
されておらず、異物検出感度が劣化するなどの問題があ
った。The above-mentioned conventional technology does not take into account the positional deviation of the two detectors, and has problems such as deterioration of foreign object detection sensitivity.
本発明の目的は検出器の位置ずれ誤差や感度合せ誤差に
起因する異物検出感度劣化を除去して、パターン付き試
料上の0.5μ溝程度の微細な異物を簡素な回路構成で
パターンと弁別して高速に検査する異物検査方法および
その装置を提供することにある。The purpose of the present invention is to eliminate deterioration in foreign object detection sensitivity caused by detector positional deviation errors and sensitivity adjustment errors, and to detect minute foreign objects in the size of a 0.5μ groove on a patterned sample using a simple circuit configuration. It is an object of the present invention to provide a method and apparatus for inspecting foreign substances that can be separately inspected at high speed.
上記目的を達成するために、本発明による異物検出方法
およびその装置は、第1の照明と第2の照明を時分割で
交互に行い、1つの光電変換素子で第1と第2の照明に
同期して対象物体からの散乱光を時分割で検出すること
により、対象物体上の異物を検出するようにしたもので
ある。In order to achieve the above object, the foreign object detection method and apparatus according to the present invention alternately perform the first illumination and the second illumination in a time-sharing manner, and use one photoelectric conversion element to perform the first and second illumination. Foreign matter on the target object is detected by synchronously detecting scattered light from the target object in a time-division manner.
上記の異物検出方法およびその装置は、第1の照明(斜
方照明)と第2の焦明(落射照明)を時分割でパルス的
に行い、第1と第2の照明に同期して第1の照F!A(
斜方照明)による散乱光検出と第2の照明(落射照明)
による散乱光検出とを同一の光電変換素子(検出器)で
行うことができるので、異物検出感度の劣化を除去でき
る。The foreign object detection method and device described above perform the first illumination (oblique illumination) and the second focusing illumination (epi-illumination) in a time-sharing manner in a pulsed manner, and perform the second illumination in synchronization with the first and second illumination. 1 TeruF! A(
Scattered light detection using oblique illumination and second illumination (epi-illumination)
Since the detection of scattered light and the detection of scattered light can be performed using the same photoelectric conversion element (detector), deterioration in foreign object detection sensitivity can be eliminated.
以下に本発明の実施例を第1図ないし第1O図により説
明する。Embodiments of the present invention will be described below with reference to FIGS. 1 to 1O.
第1図は本発明による異物検出方法およびその装置の一
実施例を示す照明・検出系の斜視図である。第1図にお
いて、試料7に対して斜方照明(第1の照F!A)を行
う斜方照明系Lはレーザ光源15と、集光レンズl5b
とから構成される。試料7に対して線状落射照明(第2
の照明)を行う洛射照明系Hはレーザ光源lと、集光レ
ンズ21と、シリンドリカルレンズ14と、半透過プリ
ズム3と、フィールドレンズ4と、対物レンズ6とから
構成される。検出系L.Hは0次回折光を遮光する遮光
部18 aを有する遮光板18と、結像レンズ16と、
1次元固体撮像素子(検出器)20と、信号処理回路3
00とから構成される。FIG. 1 is a perspective view of an illumination/detection system showing an embodiment of the foreign object detection method and apparatus according to the present invention. In FIG. 1, the oblique illumination system L that performs oblique illumination (first illumination F!A) on the sample 7 includes a laser light source 15 and a condenser lens l5b.
It consists of Linear epi-illumination (second
The aerial illumination system H that performs the illumination) is composed of a laser light source 1, a condenser lens 21, a cylindrical lens 14, a semi-transparent prism 3, a field lens 4, and an objective lens 6. Detection system L. H is a light-shielding plate 18 having a light-shielding portion 18a that shields zero-order diffracted light, an imaging lens 16,
One-dimensional solid-state image sensor (detector) 20 and signal processing circuit 3
00.
上記構成で、落射照明系Hには線状に集光させる光学素
子のシリンドリ力ルレンズ14を用いて、レーザ照明光
l1を試料7上で線状スポッt− 11 fに集光する
ので、Y方向の走査が不要となる。レーザ光源lから集
光レンズ21j}経たレーザ光l1はシリンドリカルレ
ンズ14を通過すると線状レーザスポット11 oを形
成する。さらに半透過プリズム3により反射したレーザ
光l1はフィールドレンズ4の絞り4a内に線状スポッ
} 11 dを形成し、対物レンズ6の絞り6a内に線
状スポットを形成する。In the above configuration, the epi-illumination system H uses the cylindrical lens 14, which is an optical element that focuses light into a linear shape, to focus the laser illumination light l1 on the linear spot t-11f on the sample 7, so that Y Directional scanning becomes unnecessary. When the laser light l1 from the laser light source l passes through the condensing lens 21j} and passes through the cylindrical lens 14, it forms a linear laser spot 11o. Further, the laser beam l1 reflected by the semi-transparent prism 3 forms a linear spot 11d within the aperture 4a of the field lens 4, and a linear spot within the aperture 6a of the objective lens 6.
対物レンズ6を通過後に、試料7上に線状スポットl1
fが集光される。照明系L.Hによって生じた散乱光は
対物レンズ6と半透過プリズム3と遮光板18を通過後
に、結像レンズ16により検出器2o上に結像される。After passing through the objective lens 6, a linear spot l1 appears on the sample 7.
f is focused. Lighting system L. The scattered light generated by H passes through the objective lens 6, the semi-transparent prism 3, and the light shielding plate 18, and then is focused on the detector 2o by the imaging lens 16.
この斜方照uA(第1の照明)と落射照明(第2の照明
)を時分割でパルスに発光させ、検出器加の出カVt
* Vxを同期検出することにより、2種の照明光によ
る散乱光を分離検出することができる。This oblique illumination uA (first illumination) and epi-illumination illumination (second illumination) are emitted in pulses in a time-division manner, and the output Vt of the detector is
*By synchronously detecting Vx, it is possible to separately detect scattered light caused by two types of illumination light.
第2図〜第5図は本発明による異物検出方法およびその
装置の実施例を示す照明・検出系の偏光状態の光略図で
ある。第2図の実施例で第1図の照明光l1と散乱光l
2の偏光状態を説明する。斜方照明系Lと落射照明系H
はS偏光(X万向に振動或分を有する直線偏光)であり
、試料7の表面上のJ!物とパターンからの散乱光12
はP偏光(Y方向に振動成分を有する直線偏光)とS@
i光の混合となる。本実施例では検出器加は全散乱光(
S偏光十P偏光)を検出するため、散乱光検出光量が多
くて高S/N検出ができるので、高速検査が可能となる
。2 to 5 are optical schematic diagrams of the polarization state of the illumination/detection system showing an embodiment of the foreign object detection method and apparatus according to the present invention. In the embodiment of FIG. 2, the illumination light l1 and the scattered light l of FIG.
The second polarization state will be explained. Oblique illumination system L and epi-illumination system H
is S-polarized light (linearly polarized light with some vibration in all X directions), and J! Scattered light from objects and patterns 12
is P polarized light (linear polarized light with a vibrational component in the Y direction) and S@
It becomes a mixture of i light. In this example, the detector addition is the total scattered light (
In order to detect S-polarized light (10P-polarized light), the amount of scattered light detected is large and high S/N detection is possible, making high-speed inspection possible.
第3図〜第5図の実施例は第1図(第2図)に比べて1
4物とパターンの弁別比向上を図った例である。第3図
の実施例では検出系Hに検光子等の偏光索子151を設
置して散乱光l1のうちP偏光成分のみを検出しており
、異物とパターンの弁別比の向上が可能となる。第4図
の*m例では第3図の偏光素子151の代りに偏光ビー
ムスプリッタ150 mを用いており、偏光ビームスプ
リッタ150aのP偏光透過特性が検光子よりも高いた
め、第3図よりも検出光量を増大できて高S/N検出が
可能となる。The embodiments shown in FIGS. 3 to 5 are 1
This is an example of improving the discrimination ratio between four objects and patterns. In the embodiment shown in FIG. 3, a polarization probe 151 such as an analyzer is installed in the detection system H to detect only the P-polarized component of the scattered light l1, making it possible to improve the discrimination ratio between foreign objects and patterns. . In the *m example in FIG. 4, a polarizing beam splitter 150 m is used instead of the polarizing element 151 in FIG. The amount of detected light can be increased and high S/N detection becomes possible.
第5図の実施例では斜方照明系Lと落射照明系Hとで異
なる波長λ1,λ!を使用して、さらに色分離および偏
光特性を有するダイクロイックミラ−150 mを用い
た例であり、色フィルタ152と組み合せることにより
、照明系L#H(7J散乱光を分離することができる。In the embodiment shown in FIG. 5, the oblique illumination system L and epi-illumination system H have different wavelengths λ1, λ! This is an example in which a dichroic mirror 150 m having color separation and polarization characteristics is used, and by combining it with a color filter 152, the illumination system L#H (7J) scattered light can be separated.
本実施例では落射照明系Hによる散乱光(λ,)検出側
にのみ遮光板18を設置するので、斜方照明系Lによる
散乱光(λ,)検出の散乱光光量が得られる。ダイクロ
イックミラ−150aによって分岐された散乱光はミラ
ー154 , 155および半透過プリズム153を経
て検出器2oに入る。In this embodiment, since the light shielding plate 18 is installed only on the side where the scattered light (λ,) detected by the epi-illumination system H is detected, the amount of scattered light detected by the oblique illumination system L can be obtained. The scattered light branched by the dichroic mirror 150a passes through mirrors 154, 155 and a semi-transparent prism 153 and enters the detector 2o.
本実施例でも異物とパターンの弁別比の向上が図れる。In this embodiment as well, the discrimination ratio between foreign matter and patterns can be improved.
第6図(a)〜(C)は第1図〜第5図のレーザ光源の
発光タイミングの説明図である。第6図(a)〜(d)
において、第1図〜第5図の実施例では斜方照明と落射
照明を時分割でパルス状に発光させて、検出器加の出力
Vz . Vxを同期検出することにより両方の散乱光
を分離検出しており、第6図(&)は画素の大きさ2.
5μmo(試料面上に換算)の検出器四の中を0.5μ
gm程度の微細異物l3が通過した場合を示し、第6図
(b)はその時の散乱光信号Vz * Vzの光量変化
を示し、i@6図(e)はそれぞれ斜方照明Lと落射照
明Hを時分割で発光させるタイミングを示し、2種の照
明L.Hは重複しないようにずらして交互に発光させる
。この間隔Δtは短かいため、レーザ光源15.1は高
速駆動が可能な半導体レーザが適している。FIGS. 6(a) to 6(C) are explanatory views of the emission timing of the laser light sources shown in FIGS. 1 to 5. FIGS. Figure 6(a)-(d)
In the embodiments shown in FIGS. 1 to 5, oblique illumination and epi-illumination are emitted in a pulsed manner in a time-division manner, and the output Vz . By synchronously detecting Vx, both scattered lights are detected separately, and FIG. 6 (&) shows the pixel size 2.
0.5μ inside the detector 4 of 5μmo (converted to the sample surface)
Fig. 6(b) shows the change in the light intensity of the scattered light signal Vz * Vz at that time, and i@6(e) shows the oblique illumination L and epi-illumination, respectively. It shows the timing for time-divisionally illuminating the L. The H lights are shifted and emitted alternately so as not to overlap. Since this interval Δt is short, a semiconductor laser that can be driven at high speed is suitable for the laser light source 15.1.
第7図は第1図〜第5図の発光と検出のタイミングの説
明図である。第7図において、第7図a〜eは2つの照
明を連続して行った場合を示し、第7図aはパターン2
および異物13a.13bが存在する例えばStウエハ
上に斜方照明レーザ光15 aを照射した場合を示し、
第7図bはその時の出力信号VLを示す。第7図Cは同
一箇所に落射照明レーザ光11を照射した場合を示し、
第7図dはその時の出力信号v1を示す。第7図●は2
つの出力信号の比vL/vHを示す。FIG. 7 is an explanatory diagram of the timing of light emission and detection in FIGS. 1 to 5. In Fig. 7, Fig. 7 a to e show cases where two illuminations are performed consecutively, and Fig. 7 a shows pattern 2.
and foreign matter 13a. For example, the case where the oblique illumination laser beam 15a is irradiated onto the St wafer where the wafer 13b is present is shown.
FIG. 7b shows the output signal VL at that time. FIG. 7C shows the case where epi-illumination laser light 11 is irradiated to the same location,
FIG. 7d shows the output signal v1 at that time. Figure 7 ● is 2
The ratio vL/vH of two output signals is shown.
第7図f〜0は本発明の2つの照明を時分割でパルス状
に行った場合を示し、第7図fは斜方照明l5Cの発光
タイミングを示し、第7図gはその連続照明した場合の
出力信号VLを示し、第7図hはその発光タイミングで
照明した場合の出力信号vL′を示す。第7図iは落射
照明11の発光タイミングを示し、第7図jはその遵続
照明した場合の出力信号Vlを示し、第7図kはその発
光タイミングで照明した場合の出力信号vl′を示す。Figures 7f to 0 show the case where the two illuminations of the present invention are performed in a time-sharing manner in a pulsed manner, Figure 7f shows the light emission timing of the oblique illumination 15C, and Figure 7g shows the continuous illumination. FIG. 7h shows the output signal VL' when illumination is performed at the light emission timing. Figure 7i shows the light emission timing of the epi-illumination 11, Figure 7j shows the output signal Vl when continuous illumination is performed, and Figure 7k shows the output signal Vl' when illumination is performed at the same light emission timing. show.
第7図tは照明L.Hをその発光タイミングで照明した
場合の検出器四の出力信号VL’ + VH’を示し、
@7図mはその出力信号VL/ + V,/をサンプル
・ホールドした信号を示す。第7図nはそのサンプル・
ホールド信号を用いて求めた信号比vL′/vH′を示
し、第7図0はこの信号比Vz’/VH’を2値化して
得られる異物信号Sdを示す。Figure 7 t shows the illumination L. Indicates the output signal VL' + VH' of detector 4 when H is illuminated at that emission timing,
@7 Figure m shows a signal obtained by sampling and holding the output signal VL/+V,/. Figure 7n shows the sample.
The signal ratio vL'/vH' obtained using the hold signal is shown, and FIG. 70 shows the foreign object signal Sd obtained by binarizing this signal ratio Vz'/VH'.
第8図は第1図〜第5図の発光と検出のタイミングのデ
ューテイの説明図である。第8図において、一般に検出
器20や信号処理回路300には電気的な遅延が生じる
ので、2つの照明L.Hによる散乱光を正確に検出して
出力信号VL* Vxを得るためには、その発光タイミ
ングTz * Tzのデューティを50嘩以下にする必
要がある。この発光タイミングTLm Tyと同期した
サンプルパルスSL,SIを用いて出力信号Vz +
Vgをサンプル・ホールドすることにより、出力信号V
L’ s Vx’を求めることができる。FIG. 8 is an explanatory diagram of the duty of the timing of light emission and detection in FIGS. 1 to 5. In FIG. 8, since electrical delays generally occur in the detector 20 and the signal processing circuit 300, two lights L. In order to accurately detect the light scattered by H and obtain the output signal VL*Vx, the duty of the light emission timing Tz*Tz must be set to 50 degrees or less. Using the sample pulses SL and SI synchronized with this light emission timing TLmTy, the output signal Vz +
By sampling and holding Vg, the output signal V
L' s Vx' can be obtained.
第9図は本発明による異物検出方法およびその装置の一
実施例を示す駆動回路および信号処理回路30のブロッ
ク図である。第9図において、タイミング発生回路20
0はレーザ発先のタイミングパルスTL* Txをレー
ザ駆動回路15a,lmに与えて、レーザ光源15,1
を時分割で発光させる。タイミングパルスTg # T
xは同時に信号分離回路201に与えて、検出器加の出
力信号Vz * Vzに分離し、ホールド回路202L
に斜方照明タイミングTLの散乱光信号vL′をホール
ドして、ホールド回路202Hに落射照明タイミングT
zの散乱光信号VI’をホールドする。散乱光信号vz
’ + Vx’よりアナログ比較演算回路100で信
号比vL′/vI′を演算し、2値化回路101でしき
い値mにより2 {It化すると異物l3を検出した信
号が得られる。この場合に検出器20の画gL−Hに対
して、アナログ比較演算回路100と2値化回路101
を複数個もちいて、同時に並列処理することにより高速
・高感度の異物検出ができる。OR回路22は検出器2
0の画素i〜nのいずれかで検出した異物信号を出力し
て異物メモリおに記憶する。FIG. 9 is a block diagram of a drive circuit and a signal processing circuit 30 showing an embodiment of the foreign object detection method and apparatus according to the present invention. In FIG. 9, the timing generation circuit 20
0 is a laser starting timing pulse TL*Tx given to the laser drive circuits 15a, lm, and the laser light sources 15,1
emit light in a time-divided manner. Timing pulse Tg #T
x is simultaneously given to the signal separation circuit 201, separated into the output signal Vz * Vz of the detector, and sent to the hold circuit 202L.
The scattered light signal vL' at the oblique illumination timing TL is held, and the hold circuit 202H outputs the epi-illumination timing T.
The scattered light signal VI' of z is held. Scattered light signal vz
The signal ratio vL'/vI' is calculated from '+Vx' by the analog comparison calculation circuit 100, and the signal ratio vL'/vI' is converted to 2{It by the threshold value m by the binarization circuit 101, whereby a signal indicating the detection of the foreign object 13 is obtained. In this case, for the image gL-H of the detector 20, the analog comparison calculation circuit 100 and the binarization circuit 101
By using multiple units and processing them simultaneously in parallel, high-speed and highly sensitive foreign object detection is possible. The OR circuit 22 is the detector 2
A foreign object signal detected by any of pixels i to n of 0 is output and stored in a foreign object memory.
第10図は本発明による異物検出方法およびその装置の
一実施例を示す装置構成のブロック図である。第10図
において、試料7は送りステージ220に固定し、モー
タ47とモータ50によりXY方向に移動できる。また
送りステージ220は板はね49を介して保持されてお
り、モータ6によって上下方向(Δ2)に移動可能であ
る。かつ自動焦点センサ加により試料表面の高さを測定
し、モータ駆動回路31によりモータ槌を駆動して試料
表面が対物レンズ6の焦点位置にくるようにΔ2を制御
している。マイコン32はモータ47 . 50を制御
して試料全面を検査すべく、送りステージ220を駆動
する。FIG. 10 is a block diagram of an apparatus configuration showing an embodiment of the foreign object detection method and apparatus according to the present invention. In FIG. 10, the sample 7 is fixed to a feed stage 220 and can be moved in the X and Y directions by motors 47 and 50. Further, the feed stage 220 is held via a plate spring 49, and is movable in the vertical direction (Δ2) by the motor 6. The height of the sample surface is measured using an automatic focus sensor, and a motor drive circuit 31 drives a motor mallet to control Δ2 so that the sample surface comes to the focal position of the objective lens 6. The microcomputer 32 controls the motor 47. 50 to drive the feed stage 220 in order to inspect the entire surface of the sample.
さらにマイコン32は信号処理回路刃のOR回路nの出
力信号を異物表示回路おへ出力する。Further, the microcomputer 32 outputs the output signal of the OR circuit n of the signal processing circuit blade to the foreign object display circuit O.
上記実施例ではアナログ比較演算回路202を用いてい
るが、検出器加の画2t〜nの出力をA/D変換して、
ディジタルでホールドと比較と2値化を行うこともでき
る。In the above embodiment, the analog comparison calculation circuit 202 is used, but the outputs of the detector circuits 2t to n are A/D converted,
Holding, comparison, and binarization can also be performed digitally.
上記実施例によれば、検出回路を1つにすることができ
るので、位置決め誤差lと起因する異物検出感度の劣化
を除去できる。また検出回路を1つにしたことにより、
アナログ増幅器等の回路規模の縮小が可能となる。According to the above embodiment, since the number of detection circuits can be reduced to one, it is possible to eliminate the deterioration in the foreign object detection sensitivity caused by the positioning error l. Also, by integrating the detection circuit into one,
It becomes possible to reduce the scale of circuits such as analog amplifiers.
本発明によれば、パターン付きウエハ等の異物検出の高
速性を維持しつつ、対象物上に存在する微細異物の検出
を安定かつ高感度に行うことができる効果がある。According to the present invention, it is possible to stably and highly sensitively detect minute foreign objects present on a target object while maintaining the high speed of detecting foreign objects such as patterned wafers.
第1図は本発明の一実施例を示す照明・検出系の斜視図
、第2図〜第5図は本発明の実施例の照明・検出系の偏
光状態の光M図、第6図は第6図(&)〜(c)は第1
図〜,11!5図のレーザ光源の発光タイミングの説明
図、第7図.第8図は第1図〜第5図の発光と検出のタ
イミングの説明図、第9図は本発明の一実施例を示す回
路のブロック図、第10図は本発明の一実施例を示す装
置構成のブロック図、第11図は従来の発展例を示す照
明・検出系の斜視図、第12図は第1l図の検出原理の
説明図、第13図は第11図の回路のブロック図、第1
4図は第11図の問題点の説明図である。
l・・・レーザ光源 2・・・パターン3・・・
半透過プリズム 4・・・フィールドレンズ6・・・
対物レンズ 7・・・試料l1・・・照明光
12・・・散乱光13 . 13 a . 1
3 b −・・異物 15−・・レーザ光源15 b・
・・集光レンズ 15 C・・・照男光l6・・・
結像レンズ 18・・・遮光板加・・・検出器
21・・・集光レンズ22・・・OR回路
力・・・信号処理回路100・・・アナログ比
較演算回路
101・・・2値化回路
i50a・・・ダイクロイツクミラー
151・・・偏光素子(検光子)
152・・・色フィルタ 153・・・半透過プリ
ズム154 , 155・・・ミラー
200・・・タイミング発生回路
202・・・ホールド回路 300・・・信号処理回
路a1図
葡2図
匍4図
珊5図
男6閃
2n
−.II−4t
カ10図
尤6図
入1
凭3図
30
第11図
藷12図
L
目
一図
走食方q(X)
男1j図
mFIG. 1 is a perspective view of an illumination/detection system showing an embodiment of the present invention, FIGS. 2 to 5 are light M diagrams of polarization states of the illumination/detection system of an embodiment of the present invention, and FIG. Figure 6 (&) to (c) are the first
Figures ~, 11! Explanatory diagram of the emission timing of the laser light source in Figure 5, Figure 7. FIG. 8 is an explanatory diagram of the timing of light emission and detection in FIGS. 1 to 5, FIG. 9 is a block diagram of a circuit showing an embodiment of the present invention, and FIG. 10 is a diagram showing an embodiment of the present invention. A block diagram of the device configuration, FIG. 11 is a perspective view of the illumination/detection system showing a conventional development example, FIG. 12 is an explanatory diagram of the detection principle of FIG. 1l, and FIG. 13 is a block diagram of the circuit of FIG. 11. , 1st
FIG. 4 is an explanatory diagram of the problem in FIG. 11. l...Laser light source 2...Pattern 3...
Semi-transparent prism 4...Field lens 6...
Objective lens 7...Sample l1...Illumination light
12...Scattered light 13. 13 a. 1
3 b - Foreign matter 15 - Laser light source 15 b.
...Condensing lens 15 C... Teruo Hikari l6...
Imaging lens 18... Light shielding plate processing... Detector
21... Condensing lens 22... OR circuit
Power...Signal processing circuit 100...Analog comparison calculation circuit 101...Binarization circuit i50a...Dichroic mirror 151...Polarizing element (analyzer) 152...Color filter 153... Semi-transparent prisms 154, 155...Mirror 200...Timing generation circuit 202...Hold circuit 300...Signal processing circuit II-4t Ka 10 figure Y 6 figure 1 Box 3 figure 30 Figure 11 Clan 12 figure L Eye 1 figure running eating method q (X) Male 1 j figure m
Claims (1)
電変換素子で検出し、第2の照明により対象物体上の背
景を強調させて光電変換素子で検出し、第1の照明で得
られる検出信号と第2の照明で得られる検出信号により
対象物体上の異物を顕在化して検出する異物検出方法に
おいて、第1の照明と第2の照明を時分割で交互に行い
、1つの光電変換素子で第1の照明と第2の照明に同期
して第1の照明と第2の照明による検出を時分割で行う
ことを特徴とする異物検出方法。 2、第1の照明手段により対象物体上の異物を強調させ
て光電変換素子で検出し、第2の照明手段により対象物
体上の背景を強調させて光電変換素子で検出し、第1の
照明手段で得られる検出信号と第2の照明手段で得られ
る検出信号により対象物体上の異物を顕在化して検出す
る手段を有する異物検出装置において、第1の照明手段
と第2の照明手段を時分割で交互に駆動する手段と、1
つの光電変換素子で第1の照明手段と第2の照明手段の
駆動と同期して第1の照明手段と第2の照明手段による
検出を時分割で行う手段とを有することを特徴とする異
物検査装置。[Claims] 1. A foreign substance on the target object is emphasized by the first illumination and detected by the photoelectric conversion element, a background on the target object is emphasized by the second illumination and detected by the photoelectric conversion element, In a foreign object detection method in which a foreign object on a target object is revealed and detected using a detection signal obtained by a first illumination and a detection signal obtained by a second illumination, the first illumination and the second illumination are alternated in a time-sharing manner. A method for detecting a foreign object, characterized in that detection using the first illumination and the second illumination is performed in a time-sharing manner using one photoelectric conversion element in synchronization with the first illumination and the second illumination. 2. The foreign matter on the target object is emphasized by the first illumination means and detected by the photoelectric conversion element, the background on the target object is emphasized by the second illumination means and detected by the photoelectric conversion element, and the first illumination In a foreign object detection device, the foreign object detection device has a means for detecting a foreign object on a target object by making it visible based on a detection signal obtained by the first illumination means and a detection signal obtained by the second illumination means. means for driving alternately in divisions;
Foreign matter characterized by having means for time-sharing detection by the first illumination means and the second illumination means in synchronization with the driving of the first illumination means and the second illumination means using two photoelectric conversion elements. Inspection equipment.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1239928A JPH03102249A (en) | 1989-09-18 | 1989-09-18 | Method and apparatus for detecting foreign matter |
KR1019900014697A KR920007196B1 (en) | 1989-09-18 | 1990-09-18 | Method and apparatus for detecting foreign matter |
US07/584,120 US5225886A (en) | 1989-09-18 | 1990-09-18 | Method of and apparatus for detecting foreign substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1239928A JPH03102249A (en) | 1989-09-18 | 1989-09-18 | Method and apparatus for detecting foreign matter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03102249A true JPH03102249A (en) | 1991-04-26 |
Family
ID=17051922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1239928A Pending JPH03102249A (en) | 1989-09-18 | 1989-09-18 | Method and apparatus for detecting foreign matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03102249A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07209205A (en) * | 1994-01-14 | 1995-08-11 | Shimu:Kk | Method and apparatus for inspecting soldered state |
US7187438B2 (en) * | 2001-03-01 | 2007-03-06 | Hitachi, Ltd. | Apparatus and method for inspecting defects |
US7242016B2 (en) | 2000-03-08 | 2007-07-10 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
JP2007212479A (en) * | 2007-05-07 | 2007-08-23 | Hitachi Ltd | System and method for defect inspection |
JP2007524832A (en) * | 2003-06-24 | 2007-08-30 | ケーエルエー−テンカー テクノロジィース コーポレイション | Optical system for detecting surface anomalies and / or features |
JP2008058331A (en) * | 2000-06-14 | 2008-03-13 | Qc Optics Inc | Highly sensitive optical inspection system and method for detecting defect on diffraction surface |
-
1989
- 1989-09-18 JP JP1239928A patent/JPH03102249A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07209205A (en) * | 1994-01-14 | 1995-08-11 | Shimu:Kk | Method and apparatus for inspecting soldered state |
US9551670B2 (en) | 2000-03-08 | 2017-01-24 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
US7242016B2 (en) | 2000-03-08 | 2007-07-10 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
US8729514B2 (en) | 2000-03-08 | 2014-05-20 | Hitachi High-Technologies Corporaation | Surface inspection apparatus and method thereof |
US7952085B2 (en) | 2000-03-08 | 2011-05-31 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
US7417244B2 (en) | 2000-03-08 | 2008-08-26 | Hitachi, Ltd. | Surface inspection apparatus and method thereof |
JP2008058331A (en) * | 2000-06-14 | 2008-03-13 | Qc Optics Inc | Highly sensitive optical inspection system and method for detecting defect on diffraction surface |
US7315366B2 (en) | 2001-03-01 | 2008-01-01 | Hitachi High-Technologies Corporation | Apparatus and method for inspecting defects |
US7511806B2 (en) | 2001-03-01 | 2009-03-31 | Hitachi High-Tech Electronics Engineering Co., Ltd. | Apparatus and method for inspecting defects |
US7187438B2 (en) * | 2001-03-01 | 2007-03-06 | Hitachi, Ltd. | Apparatus and method for inspecting defects |
JP2007524832A (en) * | 2003-06-24 | 2007-08-30 | ケーエルエー−テンカー テクノロジィース コーポレイション | Optical system for detecting surface anomalies and / or features |
JP4838122B2 (en) * | 2003-06-24 | 2011-12-14 | ケーエルエー−テンカー コーポレイション | Optical system for detecting surface anomalies and / or features |
JP2012021994A (en) * | 2003-06-24 | 2012-02-02 | Kla-Encor Corp | Optical system for detecting abnormality and/or feature of surface |
JP2007212479A (en) * | 2007-05-07 | 2007-08-23 | Hitachi Ltd | System and method for defect inspection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7719669B2 (en) | Surface inspection method and surface inspection apparatus | |
KR100571439B1 (en) | Optical inspection method and apparatus | |
KR102516040B1 (en) | Detection device and detection method | |
JP3190913B1 (en) | Imaging device and photomask defect inspection device | |
KR920007196B1 (en) | Method and apparatus for detecting foreign matter | |
US20060221331A1 (en) | High Throughput Inspection System and a Method for Generating Transmitted and/or Reflected Images | |
JPH10326587A (en) | Confocal microscope with electric scanning table | |
JPH1090192A (en) | Optical inspection of specimen using multi-channel response from the specimen | |
JPH03102249A (en) | Method and apparatus for detecting foreign matter | |
KR20080098811A (en) | Surface measurement apparatus | |
EP1439385B1 (en) | Method and system for fast on-line electro-optical detection of wafer defects | |
JPH01217243A (en) | Method and apparatus for detecting foreign matter | |
KR100971173B1 (en) | Method and system for fast on-line electro-optical detection of wafer defects | |
JPH01145504A (en) | Optically measuring apparatus | |
JPH10288508A (en) | External appearance inspection device | |
JP2016102776A (en) | Inspection device and method for inspection | |
JP3099451B2 (en) | Foreign matter inspection device | |
JPH10132704A (en) | Optical inspection device | |
JPH0795040B2 (en) | Micro foreign matter inspection device | |
JPS62299706A (en) | Pattern inspecting instrument | |
JPH03111707A (en) | Detecting method of shape of object | |
JPH0310144A (en) | Corpuscle measuring apparatus | |
JPH1026515A (en) | Step-measuring apparatus | |
KR20240161192A (en) | Inspection device | |
JPH04318447A (en) | Foreign matter detecting method |