JPH0278382A - Image pickup device - Google Patents
Image pickup deviceInfo
- Publication number
- JPH0278382A JPH0278382A JP63228672A JP22867288A JPH0278382A JP H0278382 A JPH0278382 A JP H0278382A JP 63228672 A JP63228672 A JP 63228672A JP 22867288 A JP22867288 A JP 22867288A JP H0278382 A JPH0278382 A JP H0278382A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- output
- circuit
- imaging device
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 claims description 37
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- 241000219781 Pueraria montana var. lobata Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、撮像管あるいは固体撮像素子などから成る撮
像素子を用いた撮像装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an imaging device using an imaging device such as an imaging tube or a solid-state imaging device.
固体撮像索子の1種であるインターライン転送CCD固
体撮像素子の平面図を第4図に模式的に示す(特開昭6
0−254892号)。この素子の駆動は次の様に行う
。まず水平方向と垂直方向に規則的に配列された画素1
で光電変換され?9積された全画面の映像信号電荷は、
垂直帰線期間の間に一旦垂直方向に転送する垂直CCD
レジスタ2に読み出し蓄積する。その垂直CCDレジス
タ2内に読み出した映像信号電荷を、水平方向に転送す
る水平CCDレジスタ3まで水平帰線期間毎に1ライン
分づつ転送し、それに続く水平映像期間に順次出力部4
から読み出して行く。図中の矢印は映像信号電荷の転送
方向を示している。A plan view of an interline transfer CCD solid-state imaging device, which is a type of solid-state imaging device, is schematically shown in FIG.
0-254892). This element is driven as follows. First, pixels 1 are arranged regularly in the horizontal and vertical directions.
Is it photoelectrically converted? The video signal charge of the entire screen multiplied by 9 is:
Vertical CCD that transfers data once in the vertical direction during the vertical retrace period
Read and store in register 2. The video signal charge read into the vertical CCD register 2 is transferred to the horizontal CCD register 3, which transfers it in the horizontal direction, one line at a time every horizontal retrace period, and sequentially output to the output section 4 during the subsequent horizontal video period.
I'm going to read it from there. Arrows in the figure indicate the transfer direction of video signal charges.
ところで近年高精細テレビ方式(HD方式)など亮解像
度化への要求が強く、それに伴う固体撮像素子の画素数
の増加の検討が進められている。Incidentally, in recent years, there has been a strong demand for higher resolution such as in high-definition television systems (HD systems), and accordingly, studies are underway to increase the number of pixels of solid-state image sensors.
しかし第4図に示す様な水平CCDレジスタ3を一列し
か持たない従来のCOD固体撮像素子では、画素数が増
えた分だけ水平CCDレジスタの駆動周波数したがって
転送速度が上がり、現状では駆動できない。However, in a conventional COD solid-state image pickup device having only one row of horizontal CCD registers 3 as shown in FIG. 4, the drive frequency of the horizontal CCD registers and the transfer speed increase as the number of pixels increases, and it cannot be driven at present.
そのため現在第5図の3,3′に示すように、水体CC
Dレジスタを二列設け、各列での転送速度を上げて読み
出す方法が取られている(信学技報ED87−174)
。Therefore, as shown at 3 and 3' in Figure 5, the water body CC
A method is used in which two rows of D registers are provided and the transfer speed in each row is increased for reading (IEICE Technical Report ED87-174).
.
第5図の固体撮像素子において2つの出力部4゜4′に
分けて出力した映像信号は、第6図に示すようにバッフ
ァアンプ7.7′を通し、合成回路10で1つにまとめ
直した後信号処理回路8でテレビ信号に変換して出力す
る。In the solid-state image pickup device shown in FIG. 5, the video signals output after being divided into two output sections 4 and 4' pass through buffer amplifiers 7 and 7' as shown in FIG. After that, the signal processing circuit 8 converts it into a television signal and outputs it.
ところで固体撮像索子出力部4,4′から合成回路10
までの2つの回路系のゲインに差があると、まとめ直し
た合成信号に含まれる各映像信号レベルにも差が生じる
。そして例えば−様な壁を写すと縦縞状の偽信号が現わ
れるなど、画質が著しく劣化する。By the way, from the solid-state imaging probe output parts 4, 4' to the synthesis circuit 10
If there is a difference in the gain of the two circuit systems up to this point, there will also be a difference in the level of each video signal included in the recombined composite signal. For example, when photographing a negative-looking wall, vertical striped false signals appear, resulting in a significant deterioration in image quality.
そのためこの方法では2つの回路系のゲインを微妙に調
整する必要があり、量産コストの上昇の原因になる。ま
たこの調整は現状では特殊な被写体を写しながら行う煩
雑な作業が必要である上、環境温度が変わると再調整が
必要になるなどの問題が生じる。Therefore, in this method, it is necessary to delicately adjust the gains of the two circuit systems, which causes an increase in mass production costs. In addition, this adjustment currently requires complicated work while photographing a special subject, and also poses problems such as readjustment being required when the environmental temperature changes.
本発明の目的は通常の撮映を行いながらしかも自動的に
ゲイン調整できる素子構造と駆動方法を提供することに
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide an element structure and a driving method that allow automatic gain adjustment while performing normal imaging.
上記目的を達成するため本発明では、映像(S号を出力
しない時間内の少なくとも一部の時間に。In order to achieve the above object, the present invention provides video (at least part of the time during which the S number is not output).
ゲインを比較するのに必要な基準(V’1号を各出力端
子から出力できる構造を持ち固体撮像索子を用いる。A solid-state imaging probe is used that has a structure that allows the standard (V'1) required for comparing gains to be output from each output terminal.
そして固体撮像素子の異なる端子に分けて出力した各信
号は、後段回路でまとめ直し、映像信号を合成する。こ
のまとめ直した合成イ=号に含まれる基準信号の部分を
取り出してレベルを比較し、これらの基準信号レベルが
ほぼ同一になるように合成前の各回路系のゲインを調節
する。The signals output separately to different terminals of the solid-state image sensor are then recombined in a subsequent circuit to synthesize a video signal. The reference signal portions included in this recombined composite I= signal are extracted and their levels are compared, and the gains of each circuit system before composition are adjusted so that these reference signal levels are approximately the same.
本発明による撮像素子と撮像装置では、各出力端子から
の映像信号が通る回路系のゲインを8(す定するのに必
要な基準信号が、特殊な被写体を写さなくでもいつでも
得られる。しかも自動的に各出力端子からの映像信号の
ゲインを調節し、映像信号レベルの差を低減できる。In the image pickup device and image pickup device according to the present invention, the reference signal necessary to set the gain of the circuit system through which the video signal from each output terminal passes to 8 (8) can be obtained at any time without photographing a special subject. It can automatically adjust the gain of the video signal from each output terminal to reduce differences in video signal levels.
そのため映像信号レベルに差が有ると生じる画質の劣化
を低く抑えることができる。また回路系のゲインの微調
整は特殊な被写体を用いずに自動的に行われるので、生
産時の微調整が不要になり敏産コストを低減できる。さ
らにゲイン調整は自動的に行われるので、環境温度が変
わる度に必要であった特殊な被写体を写しながら行う煩
雑な再調整作業が不要になる。Therefore, deterioration in image quality that occurs when there is a difference in video signal level can be suppressed. Furthermore, since fine adjustment of the gain of the circuit system is automatically performed without using a special subject, fine adjustment during production is not necessary, and early production costs can be reduced. Furthermore, since gain adjustment is performed automatically, there is no need for the complicated readjustment work that was required each time the environmental temperature changed while photographing a special subject.
本発明の第1の実施例を第1〜3図に示す。 A first embodiment of the invention is shown in FIGS. 1-3.
第1図は本発明による固体撮像素子構造の一例を示した
もので、ゲイン比較に必要な基準(3号を発生する基準
信号発生回路5と、発生した基準信号を各出力端子から
出力できるように振り分ける振り分は回路6〜6′を新
たに設けた点が第5図の従来の固体撮像素子の構造と異
なる。FIG. 1 shows an example of the structure of a solid-state image sensor according to the present invention, which includes a reference signal generation circuit 5 that generates a reference (No. The structure of the conventional solid-state image pickup device shown in FIG. 5 differs in that circuits 6 to 6' are newly provided for the allocation.
また第3図は本発明による撮像素子の出力信号をテレビ
信号に変換する信号処理回路例であるが、2つに分けて
出力した信号のレベルを比較する信号ゲイン比較回路1
1と、その出力信号の少なくとも一方の信号のゲインを
コントロールするためのゲイン調整量演算記憶回路12
とゲインコントローラ9を設けた点が従来の回路と異な
る。FIG. 3 is an example of a signal processing circuit according to the present invention that converts an output signal of an image sensor into a television signal. A signal gain comparison circuit 1 that compares the levels of two divided signals is shown in FIG.
1 and a gain adjustment amount calculation storage circuit 12 for controlling the gain of at least one of the output signals thereof.
This circuit differs from the conventional circuit in that a gain controller 9 and a gain controller 9 are provided.
第1図の素子で画素lに蓄積し垂直CCDレジスタ2に
読み出した映像信号電荷は、従来同様水平帰線期間毎に
順次水平CCDレジスタ3に転送する。一方これと同時
に通常のCCDtft荷注入回路(特開昭59−172
195号)等から成る基準信号発生回路5によって水平
期間毎に基準信号電荷を発生させ、振り分は回路用CC
D6’に基準信号電荷を転送しておく。そして垂直CO
Dレジスタ2を駆動して映像信号電荷を転送する際、振
り分は回路用CCD6’内に転送した基準信号電荷も、
映像信号電荷同様に振り分は回路用の垂直C0D6.6
′を通して順次水平CCDレジスタ3゜3′内に転送す
る。水平CODレジスタ3,3′内に転送した映像信号
と基準信号電荷は、それに続く水平映像期間に第2図(
b)、(Q)に模式的に示す様に順次出力部4,4′か
ら読み出す。In the device shown in FIG. 1, the video signal charges accumulated in the pixel 1 and read out to the vertical CCD register 2 are sequentially transferred to the horizontal CCD register 3 every horizontal retrace period, as in the conventional case. On the other hand, at the same time, a normal CCDtft charge injection circuit (Japanese Patent Laid-Open No. 59-172
195) etc., a reference signal charge is generated every horizontal period, and the distribution is distributed to the circuit CC.
The reference signal charge is transferred to D6'. and vertical CO
When the D register 2 is driven to transfer the video signal charge, the reference signal charge transferred to the circuit CCD 6' is also distributed.
Similar to the video signal charge, the distribution is vertical C0D6.6 for the circuit.
' and then sequentially transferred into the horizontal CCD register 3°3'. The video signal and reference signal charge transferred into the horizontal COD registers 3, 3' are transferred to the horizontal video period shown in FIG.
As schematically shown in b) and (Q), the data are sequentially read out from the output units 4 and 4'.
次に固体撮像素子の2つの出力部4,4′に分けて出力
した信号は、第3図に示すバッファアンプ7.7′を通
し1合成回路1oで1つにまとめ直す。まとめ直した合
成信号波形を第2図(d)に模式的に示す。ところで例
えばバッファアンプ7′を通る回路の方がバッファアン
プ7を通る回路よりゲインが高い(低い)とそれに比例
して合成信号に含まれる基準信号13のレベルに差が生
じる。そこで信号ゲイン比較回路11で、各々の基準信
号の長時間平均を取って雑音による影響を減らした後、
2つの回路系のゲイン差を検出する。Next, the signals outputted separately to the two output sections 4 and 4' of the solid-state image pickup device pass through buffer amplifiers 7 and 7' shown in FIG. 3, and are recombined into one by a synthesis circuit 1o. The recombined composite signal waveform is schematically shown in FIG. 2(d). For example, if the circuit passing through the buffer amplifier 7' has a higher (lower) gain than the circuit passing through the buffer amplifier 7, a difference will occur in the level of the reference signal 13 included in the composite signal in proportion to the gain. Therefore, in the signal gain comparison circuit 11, after taking a long-term average of each reference signal to reduce the influence of noise,
Detects the gain difference between two circuit systems.
そしてこの値とゲイン調整縁演算記憶回路12に既に記
憶しである値を比較し、その比較結果に合わせて十分小
さなゲイン値だけゲインコントローラ9のゲインを下げ
る(上げる)と共に、その時の状態をゲイン調整量演算
記憶回路12に記憶する。以下同様に水平期間毎にゲイ
ンの比較と調整を繰り返すと、2つの回路のゲインはほ
ぼ同一になリゲイン差の無い合成信号が得られる。その
後従来同様信号処理回路8でテレビ信号に変換し出力す
る。Then, this value is compared with a value already stored in the gain adjustment edge calculation storage circuit 12, and the gain of the gain controller 9 is lowered (increased) by a sufficiently small gain value according to the comparison result, and the state at that time is It is stored in the adjustment amount calculation storage circuit 12. By repeating the gain comparison and adjustment for each horizontal period, the gains of the two circuits become almost the same, and a composite signal with no difference in gain is obtained. Thereafter, as in the conventional case, the signal processing circuit 8 converts the signal into a television signal and outputs it.
この様に第3図の撮像装置f’tでは、2つに分けて読
み出した映像信号の合成後のレベル差は自動的に低減さ
れほとんど差が生じ無い。そのため映像信号レベルに差
が有ると生じる画質の劣化を低く抑えることができる。In this manner, in the imaging device f't shown in FIG. 3, the level difference after combining the video signals read out in two parts is automatically reduced, and almost no difference occurs. Therefore, deterioration in image quality that occurs when there is a difference in video signal level can be suppressed.
また回路系のゲインの微調整は特殊な被写体を用いなく
ても自動的に行われるので、生産時の微調整が不要にな
り破産コンスを低減できる。さらにゲイン調整は自動的
に行われるので、環境温度が変わる度に必要であった特
殊な被写体を写しながら行う煩雑な再調整作業が不要に
なる。Further, since fine adjustment of the gain of the circuit system is automatically performed without using a special subject, fine adjustment during production is unnecessary, reducing the number of bankruptcies. Furthermore, since gain adjustment is performed automatically, there is no need for the complicated readjustment work that was required each time the environmental temperature changed while photographing a special subject.
なお電源投入時のゲイン調整では雑音を低減するための
平均操作を省略する。あるいは調整のために加減するゲ
イン値を通常より大きくする等によって、装置立ち上げ
時間を速めることが望ましし)、l
またゲイン調整は信号ゲイン比較回路11で基準信号レ
ベル比を求め、2つの回路系の信号の一方に基準信号レ
ベル比の逆数を掛ける等の方法で調整しても良い事は明
かである。Note that the averaging operation for reducing noise is omitted when adjusting the gain when the power is turned on. Alternatively, it is desirable to speed up the device start-up time by making the gain value adjusted for adjustment larger than usual. It is obvious that the adjustment may be made by multiplying one of the circuit system signals by the reciprocal of the reference signal level ratio.
第7〜8図は本発明の第2の実施例である6第7図は本
発明による固体撮像素子構造の他の例であり、用いるテ
レビ方式の数本の走査線(第7図では3本の走査線)で
使う映像信号を数個(第7図では3個)の出力端子に分
けて同時に読み出すと共に、第1図の素子同様各出力端
子から基準信号を出力できるようにした点が従来の素子
構造と異なる。7 and 8 show a second embodiment of the present invention.6 FIG. 7 shows another example of the structure of a solid-state image sensor according to the present invention, in which several scanning lines (in FIG. 7, three The video signal used in the book's scanning line is divided into several output terminals (three in Figure 7) and read out simultaneously, and the reference signal can be output from each output terminal like the device in Figure 1. Different from conventional element structure.
第7図の素子で画素1に蓄積した映像信号電荷と基準信
号発生器5で発生した基準信号電荷は。The video signal charges accumulated in the pixel 1 and the reference signal charges generated by the reference signal generator 5 in the device shown in FIG.
第1図の素子と同様にして、例えば3水平期間分の信号
を一組にして順次水平CCDレジスタ3〜3′内に転送
する。水平CCDレジスタ3〜3′内に転送した映像信
号電荷と基準信号電荷は、それに続く期間(例えば3水
平期間でゆっくり)に順次出力部4〜4“から読み出す
、以下同様にして1画面分の信号を、用いるテレビ方式
の1フイ一ルド期間毎に読み出す(ただし信号の′#7
積時開時間くして感度を上げる際は、その周期に合わせ
る)。Similar to the device shown in FIG. 1, signals for three horizontal periods, for example, are combined into a set and sequentially transferred into the horizontal CCD registers 3 to 3'. The video signal charge and the reference signal charge transferred into the horizontal CCD registers 3 to 3' are sequentially read out from the output sections 4 to 4'' in the following period (for example, slowly over 3 horizontal periods). The signal is read out every 1 field period of the TV system used (however, the '#7' of the signal
When increasing the sensitivity by increasing the integration/opening time, adjust it to that cycle).
次に固体撮像索子の出力部4〜4″に分けて出力した信
号は、第8図に示すバッファアンプ7〜7′とAD変換
器21〜21′を通してディジタル信号に変換する。そ
して信号ゲイン比較回路11.11’において、ディジ
タル信号に変換した基準信号の長時間平均を取って雑音
による影響を減らした後、平均した3つの基準信号のレ
ベル比を求める。この値をゲインg4′l11m演算記
憶回路12.12’に記憶しである値と比較し記憶し直
す一方、ゲインコントローラ9.9’(かけ算器)でこ
の記憶したレベル比の逆数を変換信号に掛けてゲインを
調整し、ゲイン差の無い信号に直した後画像メモリ回路
22に記憶する。そして時間調整回路23で、用いるテ
レビ方式の順序に従って順次画像メモリ回路22から信
号を読み出し、信号処理回路8でテレビ信号に変換して
出力する。Next, the signals output separately to the output sections 4 to 4'' of the solid-state imaging probe are converted into digital signals through buffer amplifiers 7 to 7' and AD converters 21 to 21' shown in FIG. In the comparator circuit 11.11', after taking a long-term average of the reference signals converted into digital signals and reducing the influence of noise, the level ratio of the three averaged reference signals is determined.This value is calculated by gain g4'l11m. While the memory circuit 12.12' compares the stored value with a certain value and stores it again, the gain controller 9.9' (multiplier) multiplies the converted signal by the reciprocal of the stored level ratio to adjust the gain. After converting the signal into a signal with no difference, the signal is stored in the image memory circuit 22. Then, the time adjustment circuit 23 sequentially reads out the signal from the image memory circuit 22 in accordance with the order of the television system used, and the signal processing circuit 8 converts it into a television signal. Output.
この様に第8図の撮像装置においては回路系のゲイン差
を後段の回路で自動的嬬補正するので、レベル差の無い
テレビ信号が得られる。そのため本実施例においても第
1の実施例同様映像信号レベルに差が有ると生じる画質
の劣化を抑えることができる。また回路系ゲインの生産
時の微調整が不要になり量産コストを低減できる。さら
に環境温度が変わる度に必要であった煩雑な再調整作業
が不要になる。また本実施例ではさらに基準信号レベル
検出後直ちに正しいゲインN4整を行えるので、装置を
非常に高速で立ち上げることができる。In this manner, in the image pickup apparatus shown in FIG. 8, gain differences in the circuit system are automatically compensated for by the subsequent circuit, so that a television signal with no level difference can be obtained. Therefore, in this embodiment as well, as in the first embodiment, it is possible to suppress deterioration in image quality that occurs when there is a difference in video signal level. Further, fine adjustment of the circuit gain during production is not necessary, and mass production costs can be reduced. Furthermore, the complicated readjustment work required every time the environmental temperature changes becomes unnecessary. Further, in this embodiment, since the correct gain N4 adjustment can be performed immediately after the reference signal level is detected, the device can be started up very quickly.
なお水平CODレジスタ3〜3′からの信号の読み出し
速度は、用いるテレビ方式の1フイ一ルド期間に撮像素
子の1画面分の信号電荷を読み出せる範囲で任意に選ん
で良い。ただし読み出し速度が遅いほど出力される信号
の周波数は低くなり、読み出し時の信号帯域を狭くでき
る。そのため信号帯域を狭くする事によって出力アンプ
が発生するランダム雑音の影響を減らし、信号のSN比
を上げる事ができる。またAD変換器の価格は高速のも
のより低速のものの方が安価である等の点から信号の読
み出し速度は遅いことが望ましい。Note that the reading speed of the signals from the horizontal COD registers 3 to 3' may be arbitrarily selected within a range that allows signal charges for one screen of the image pickup device to be read out during one field period of the television system used. However, the slower the reading speed, the lower the frequency of the output signal, and the narrower the signal band during reading. Therefore, by narrowing the signal band, it is possible to reduce the influence of random noise generated by the output amplifier and increase the S/N ratio of the signal. Furthermore, since low-speed AD converters are cheaper than high-speed AD converters, it is desirable that the signal readout speed be slow.
またゲインコントローラ9,9′はAD変換器の前に入
れ、撮像索子の出力信号に検出したゲイン比の逆数を掛
けるか、あるいは第1の実施例と同様に十分小さな値だ
けゲイン値を上下する方法で調整しても良いことは自明
である。Also, the gain controllers 9 and 9' are installed before the AD converter, and either multiply the output signal of the imaging probe by the reciprocal of the detected gain ratio, or increase or decrease the gain value by a sufficiently small value as in the first embodiment. It is obvious that the adjustment may be made in the following manner.
なお以上の実施例では基準信号は1水平映像期間の信号
毎に出力する場合についてのみ述べたが、1フイ一ルド
期間毎、数分毎あるいはスイッチ操作など何らかの操作
を加えた時など任意の時間に注入してゲインを調整して
も良い、また各出力端子からの基準信号は常に同時に出
力する必要は無く、互いに異なる時間に順次出力するよ
うにしても良い。In the above embodiments, the reference signal is output only for each signal of one horizontal video period, but it can be output at any arbitrary time, such as every one field period, every few minutes, or when some operation such as a switch operation is performed. The reference signals from each output terminal do not always need to be output at the same time, and may be output sequentially at different times.
また信号ゲイン比較回路で基準信号のレベルを検出する
際の雑音の影響を低減するには、基準信号のレベルを大
きくするほど良い。しかし後段回路のダイナミックレン
ジの点から基準信号のレベルの大きさは、ほぼ映像信号
の白レベルから白レベルの3倍程度の範囲に設定するこ
とが望ましい。Furthermore, in order to reduce the influence of noise when detecting the level of the reference signal with the signal gain comparison circuit, it is better to increase the level of the reference signal. However, from the viewpoint of the dynamic range of the subsequent circuit, it is desirable to set the level of the reference signal within a range from approximately the white level of the video signal to approximately three times the white level.
また第1の実施例で、第2の実施例と同様のディジタル
回路を用いても良い。Further, in the first embodiment, a digital circuit similar to that in the second embodiment may be used.
また用いる撮像素子は第1図、第7図の素子の他、第9
図に例示するように、各出力端子から同一の基準信号を
出力できる構造を持てば、たとえ画面を左右に2分して
出力する構造であっても良いことは明かである。In addition to the image sensors shown in Figs. 1 and 7, the image sensors used are those shown in Figs.
It is clear that as long as the structure is such that the same reference signal can be output from each output terminal as illustrated in the figure, even a structure that divides the screen into left and right halves and outputs them is acceptable.
さらに撮像素子の構造としてインターライン転送CCD
固体撮像素子を使って説明したが、他の形のCOD固体
撮像素子やMO5固体撮像素子。Furthermore, the structure of the image sensor is an interline transfer CCD.
Although the explanation has been made using a solid-state image sensor, there are other types of COD solid-state image sensor and MO5 solid-state image sensor.
撮像管等を用いても良いことは明かである。It is obvious that an image pickup tube or the like may also be used.
以上固体撮像素子内に基準信号発生回路を有している場
合について述べたが、画面に−様な光を当てた時の映像
信号を基準信号とし、スイッチ等によって第3図、第8
図の回路を動作させてゲインを調整する。そしてその時
の状態を記憶することによって、従来の撮像素子を用い
たカメラにおいても、ゲイン調整の簡単化を図ることが
できる。The case where the solid-state image sensor has a reference signal generation circuit has been described above.
Operate the circuit shown in the figure to adjust the gain. By storing the state at that time, gain adjustment can be simplified even in a camera using a conventional image sensor.
以上述べた様に本発明による撮像素子と撮像装置を用い
ると、各出力端子からの映像信号が通る回路系のゲイン
を測定するのに必要な基準信号が、特殊な被写体を写さ
なくてもいつでも得られる。As described above, by using the image sensor and image pickup device according to the present invention, the reference signal necessary to measure the gain of the circuit system through which the video signal from each output terminal passes can be obtained without photographing a special subject. available at any time.
しかも自動的に各出力端子からの映像信号のゲインを調
節し、映像信号レベルの差を低減できる。Moreover, it is possible to automatically adjust the gain of the video signal from each output terminal to reduce differences in video signal levels.
そのため映像信号レベルに差が有ると生じる画質の劣化
を低く抑えることができる。また回路系のゲインの微調
整は特殊な被写体を用いなくても自動的に行われるので
、生産時の微調整が不要になり量産コストを低減できる
。さらにゲイン調整は自動的に行われるので、環境温度
が変わる度に必要であった特殊な被写体を写しながら行
う煩雑な再調整作業を行なう必要がなくなる。Therefore, deterioration in image quality that occurs when there is a difference in video signal level can be suppressed. Furthermore, since fine adjustment of the gain of the circuit system is automatically performed without using a special subject, fine adjustment during production is not necessary and mass production costs can be reduced. Furthermore, since gain adjustment is performed automatically, there is no need to perform complicated readjustment work while photographing a special subject every time the environmental temperature changes.
第1図は本発明による第1の実施例の固体撮像素子の模
式図、第2図は同実施例の撮像装置のブロック図、第3
図は同実施例の信号タイミング図、第4図、第5図は従
来のインターライン転送CCD固体撮像素子の模式図、
第6図は従来例の撮像装置の構造を示すブロック図、第
7図は本発明による第2の実施例の固体撮像索子の模式
図、第8図は同実施例の撮像装置の構造を示すブロック
図、第9図は本発明によるさらに他の実施例の固体撮像
素子の模式図である。
1・・・画素、2・・・垂直CCDレジスタ、3・・・
水平CCUレジスタ、4・・・出力部、5・・・撮像素
子、9・・・ゲインコントローラ、10・・・合成回路
、11・・・信号ゲイン比較回路、12・・・ゲイン調
!It演算記憶回路。
蔦1図
葛 2 図
ンに乎ソ弓しII!J7]J!]
第 3 図
第4図
¥ 5 図
第 6 図
第7図
第 8 図
第9図
(幻
(b)FIG. 1 is a schematic diagram of a solid-state imaging device according to a first embodiment of the present invention, FIG. 2 is a block diagram of an imaging device according to the same embodiment, and FIG.
The figure is a signal timing diagram of the same embodiment, and FIGS. 4 and 5 are schematic diagrams of a conventional interline transfer CCD solid-state image sensor.
FIG. 6 is a block diagram showing the structure of a conventional imaging device, FIG. 7 is a schematic diagram of a solid-state imaging device according to a second embodiment of the present invention, and FIG. 8 is a block diagram showing the structure of an imaging device of the same embodiment. The block diagram shown in FIG. 9 is a schematic diagram of a solid-state image sensor according to still another embodiment of the present invention. 1... Pixel, 2... Vertical CCD register, 3...
Horizontal CCU register, 4...Output section, 5...Image sensor, 9...Gain controller, 10...Composition circuit, 11...Signal gain comparison circuit, 12...Gain adjustment! It calculation memory circuit. Tsuta 1 zu kudzu 2 tsuta ni ni ni yowushi II! J7] J! ] Figure 3 Figure 4 ¥ 5 Figure 6 Figure 7 Figure 8 Figure 9 (phantom (b)
Claims (1)
体撮像素子などから成る撮像素子を用いた撮像装置にお
いて、映像信号を出力しない時間内の少なくとも一部の
時間に、信号ゲインを比較するのに必要な基準信号を出
力できる構造を有することを特徴とする撮像装置。 2、入射した光を電気信号に変換する撮像管あるいは固
体撮像素子などから成る撮像素子を用いた撮像装置にお
いて、該撮像装置で用いるテレビ方式の2本以上の走査
線で使用する映像信号を、2つ以上の出力端子に分けて
出力できる構造を有することを特徴とする撮像装置。 3、映像信号を該撮像素子から2つ以上の出力端子に分
けて出力する撮像素子と、映像信号を出力しない時間内
の少なくとも一部の時間に、該各出力端子から信号ゲイ
ンを比較するのに必要な基準信号を出力するように該撮
像素子を駆動する駆動回路と、該各出力端子から分けて
出力した信号をまとめて該出画に用いる映像信号を合成
する合成回路と、該各出力端子から出力した基準信号の
レベルを検出して比較する信号ゲイン比較回路と、該信
号ゲイン比較回路で得た情報を基に該各出力端子から出
力した映像信号レベルを調節するゲイン調整回路及びゲ
イン調整量演算記憶回路を有することを特徴とする請求
項第1項記載の撮像装置。 4、該信号ゲイン比較回路を、該合成回路の後に設け、
該ゲイン調整回路を該合成回路より前に設けることを特
徴とする請求項第3項記載の撮像装置。 5、該信号ゲイン比較回路は、該出力端子の内の1つか
ら出力した基準信号のレベルと、他の各出力端子から出
力した基準信号のレベルの間の大小関係を検出する回路
であり、該ゲイン調整回路及びゲイン調整量演算記憶回
路は、該他の各出力端子から出力した基準信号のレベル
の方が大きい(小さい)時、該大きな(小さな)基準に
なる信号を出力する該他の各出力端子につながる回路系
のゲインを、十分小さな一定量だけ小さく(大きく)設
定し直す回路であることを特徴とする請求項第4項記載
の撮像装置。 6、請求項第2項記載の撮像装置において、該撮像装置
で用いるテレビ方式の2本以上の走査線で使用する映像
信号を、2つ以上の出力端子に分けて同時に読み出すよ
うに撮像素子を駆動する駆動回路と、該読み出した信号
をディジタル信号に変換するAD変換器と、該ディジタ
ル信号に変換した信号を一旦記憶しておく画像メモリ回
路と、該画像メモリ回路から該テレビ方式に合わせて順
次映像信号を読み出す時間調整回路を有することを特徴
とする撮像装置。 7、上記請求項第6項記載の撮像装置において、該駆動
回路は映像信号を出力しない時間内の少なくとも一部の
時間に、該各出力端子から基準になる信号を出力するよ
うに該撮像素子を駆動する回路であること、該撮像素子
から読み出した信号に含まれる基準信号のレベルの比を
検出する信号ゲイン比較回路を該AD変換の後に設けた
こと、該ディジタル信号に変換した信号に、該検出した
基準信号のレベルの比の逆数を掛けて、該各出力端子か
ら出力された信号のレベル差を補正するゲイン調整回路
を設けたことを特徴とする撮像装置。 8、上記請求項第1乃至第5項ならびに第7項記載の撮
像装置において、 該基準信号のレベルの大きさを、ほぼ該映像信号の白レ
ベルから該白レベルの3倍程度の範囲に設定することを
特徴とする撮像装置。[Scope of Claims] 1. In an imaging device using an imaging device such as an imaging tube or a solid-state imaging device that converts incident light into an electrical signal, at least part of the time during which no video signal is output, An imaging device characterized by having a structure capable of outputting a reference signal necessary for comparing signal gains. 2. In an imaging device that uses an imaging device such as an image pickup tube or a solid-state imaging device that converts incident light into an electrical signal, the video signal used by two or more scanning lines of the television system used in the imaging device is An imaging device characterized by having a structure that allows output to be divided into two or more output terminals. 3. An image sensor that outputs a video signal from the image sensor by dividing it into two or more output terminals, and comparing the signal gain from each of the output terminals during at least part of the time during which no video signal is output. a drive circuit that drives the image sensor so as to output a reference signal necessary for the image pickup; a synthesis circuit that combines the signals separately output from each output terminal and synthesizes a video signal used for the image output; A signal gain comparison circuit that detects and compares the level of the reference signal output from the terminal, and a gain adjustment circuit and gain that adjusts the video signal level output from each output terminal based on the information obtained by the signal gain comparison circuit. 2. The imaging device according to claim 1, further comprising an adjustment amount calculation storage circuit. 4. The signal gain comparison circuit is provided after the synthesis circuit,
4. The imaging apparatus according to claim 3, wherein the gain adjustment circuit is provided before the synthesis circuit. 5. The signal gain comparison circuit is a circuit that detects the magnitude relationship between the level of the reference signal output from one of the output terminals and the level of the reference signal output from each of the other output terminals, The gain adjustment circuit and the gain adjustment amount calculation storage circuit output a signal serving as the large (small) reference when the level of the reference signal output from each of the other output terminals is larger (smaller). 5. The imaging apparatus according to claim 4, wherein the circuit resets the gain of the circuit system connected to each output terminal to be smaller (larger) by a sufficiently small fixed amount. 6. In the imaging device according to claim 2, the imaging device is arranged so that video signals used in two or more scanning lines of a television system used in the imaging device are divided into two or more output terminals and read out simultaneously. A drive circuit for driving, an AD converter for converting the read signal into a digital signal, an image memory circuit for temporarily storing the signal converted to the digital signal, and an image memory circuit for temporarily storing the signal converted to the digital signal, An imaging device characterized by having a time adjustment circuit that sequentially reads out video signals. 7. In the image pickup device according to claim 6, the drive circuit controls the image pickup device to output a reference signal from each output terminal during at least part of the time during which no video signal is output. A signal gain comparison circuit for detecting the level ratio of a reference signal included in the signal read from the image sensor is provided after the AD conversion, and the signal converted to the digital signal is An imaging device comprising: a gain adjustment circuit that corrects a level difference between signals output from each of the output terminals by multiplying by a reciprocal of a ratio of levels of the detected reference signals. 8. In the imaging device according to claims 1 to 5 and 7, the level of the reference signal is set in a range from approximately the white level of the video signal to about three times the white level. An imaging device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63228672A JP2702982B2 (en) | 1988-09-14 | 1988-09-14 | Imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63228672A JP2702982B2 (en) | 1988-09-14 | 1988-09-14 | Imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0278382A true JPH0278382A (en) | 1990-03-19 |
JP2702982B2 JP2702982B2 (en) | 1998-01-26 |
Family
ID=16880005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63228672A Expired - Lifetime JP2702982B2 (en) | 1988-09-14 | 1988-09-14 | Imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2702982B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03291074A (en) * | 1990-04-09 | 1991-12-20 | Nec Corp | Signal processing unit for charge coupled element |
EP0546749A2 (en) * | 1991-12-12 | 1993-06-16 | Sony Corporation | Automatic signal control for a solid-state image sensor having multiple output registers |
EP0593030A2 (en) * | 1992-10-13 | 1994-04-20 | Sony Corporation | Solid-state imaging device |
FR2713426A1 (en) * | 1993-12-03 | 1995-06-09 | Sony Corp | Load transfer device. |
JPH07184124A (en) * | 1993-12-24 | 1995-07-21 | Nec Corp | Solid-state image pickup device |
US5612739A (en) * | 1993-03-23 | 1997-03-18 | Sony Corporation | Charge transfer device |
EP1241872A2 (en) * | 2001-02-28 | 2002-09-18 | Matsushita Electric Industrial Co., Ltd. | Solid-state image pickup apparatus and method for driving the same |
US6791615B1 (en) | 1999-03-01 | 2004-09-14 | Canon Kabushiki Kaisha | Image pickup apparatus |
US7218351B2 (en) | 2002-04-05 | 2007-05-15 | Victor Company Of Japan, Limited | Image-sensing apparatus for compensating video signal of a plurality of channels |
EP1353383A3 (en) * | 2002-04-10 | 2007-06-20 | Victor Company Of Japan, Ltd. | Image-sensing device having a plurality of output channels |
JP2009182383A (en) * | 2008-01-29 | 2009-08-13 | Sony Corp | Solid state imaging element, signal reading method for solid state imaging element, and imaging apparatus |
-
1988
- 1988-09-14 JP JP63228672A patent/JP2702982B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03291074A (en) * | 1990-04-09 | 1991-12-20 | Nec Corp | Signal processing unit for charge coupled element |
EP0546749A2 (en) * | 1991-12-12 | 1993-06-16 | Sony Corporation | Automatic signal control for a solid-state image sensor having multiple output registers |
EP0546749A3 (en) * | 1991-12-12 | 1993-08-11 | Sony Corporation | Automatic signal control for a solid-state image sensor having multiple output registers |
US5671015A (en) * | 1991-12-12 | 1997-09-23 | Sony Corporation | Signal processing apparatus |
EP0593030A2 (en) * | 1992-10-13 | 1994-04-20 | Sony Corporation | Solid-state imaging device |
EP0593030A3 (en) * | 1992-10-13 | 1994-10-26 | Sony Corp | Solid-state imaging device. |
US5612739A (en) * | 1993-03-23 | 1997-03-18 | Sony Corporation | Charge transfer device |
US5642162A (en) * | 1993-12-03 | 1997-06-24 | Sony Corporation | Charge transfer device having a signal processing circuit for correcting output voltage |
FR2713426A1 (en) * | 1993-12-03 | 1995-06-09 | Sony Corp | Load transfer device. |
JPH07184124A (en) * | 1993-12-24 | 1995-07-21 | Nec Corp | Solid-state image pickup device |
US6791615B1 (en) | 1999-03-01 | 2004-09-14 | Canon Kabushiki Kaisha | Image pickup apparatus |
EP1241872A2 (en) * | 2001-02-28 | 2002-09-18 | Matsushita Electric Industrial Co., Ltd. | Solid-state image pickup apparatus and method for driving the same |
EP1241872A3 (en) * | 2001-02-28 | 2003-03-12 | Matsushita Electric Industrial Co., Ltd. | Solid-state image pickup apparatus and method for driving the same |
US7218351B2 (en) | 2002-04-05 | 2007-05-15 | Victor Company Of Japan, Limited | Image-sensing apparatus for compensating video signal of a plurality of channels |
EP1353383A3 (en) * | 2002-04-10 | 2007-06-20 | Victor Company Of Japan, Ltd. | Image-sensing device having a plurality of output channels |
US7277128B2 (en) | 2002-04-10 | 2007-10-02 | Victor Company Of Japan, Ltd. | Image-sensing device having a plurality of output channels |
JP2009182383A (en) * | 2008-01-29 | 2009-08-13 | Sony Corp | Solid state imaging element, signal reading method for solid state imaging element, and imaging apparatus |
US8462243B2 (en) | 2008-01-29 | 2013-06-11 | Sony Corporation | Solid-state image sensing device, method for reading signal of solid-state image sensing device, and image pickup apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2702982B2 (en) | 1998-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5497192A (en) | Video signal processing apparatus for correcting for camera vibrations using CCD imager with a number of lines greater than the NTSC standard | |
US8525901B2 (en) | Solid-state image sensing device | |
JP4948090B2 (en) | Imaging apparatus and drive control method | |
US6587149B1 (en) | Video camera with progressive scanning and dynamic range enlarging modes | |
JPH05308573A (en) | Image pickup device | |
JP2002084449A (en) | Image pickup device employing solid-state imaging device | |
JPH0278382A (en) | Image pickup device | |
US5576760A (en) | High resolution television camera using frame memory | |
US5978021A (en) | Apparatus producing a high definition picture and method thereof | |
JP2994158B2 (en) | Solid-state imaging device | |
US20060197856A1 (en) | Image pickup apparatus | |
US20070139543A1 (en) | Auto-adaptive frame rate for improved light sensitivity in a video system | |
JPH0119677B2 (en) | ||
JP2002290838A (en) | Video signal processing system and imaging apparatus | |
JPH09163210A (en) | Image pickup system | |
JP3212809B2 (en) | Driving method of solid-state imaging device | |
JP3755175B2 (en) | Solid-state imaging device | |
JPH0530424A (en) | Picture input device | |
EP0989746B1 (en) | Imaging apparatus having a high-speed imaging function with electronic zoom circuit | |
JP2574829B2 (en) | TV camera device | |
JPH05167932A (en) | Solid state image pickup device | |
JP3003760B2 (en) | Imaging device | |
JPH04172086A (en) | Image pickup device | |
JPH0522669A (en) | Video camera | |
JPH0787372A (en) | Image pickup device |