JP2702982B2 - Imaging device - Google Patents
Imaging deviceInfo
- Publication number
- JP2702982B2 JP2702982B2 JP63228672A JP22867288A JP2702982B2 JP 2702982 B2 JP2702982 B2 JP 2702982B2 JP 63228672 A JP63228672 A JP 63228672A JP 22867288 A JP22867288 A JP 22867288A JP 2702982 B2 JP2702982 B2 JP 2702982B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- reference signal
- output
- gain
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003384 imaging method Methods 0.000 title claims description 27
- 238000012546 transfer Methods 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 5
- 238000001444 catalytic combustion detection Methods 0.000 description 25
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、撮像管あるいは固体撮像素子などから成る
撮像素子を用いた撮像装置に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup apparatus using an image pickup device such as an image pickup tube or a solid-state image pickup device.
固体撮像素子の1種であるインターライン転送CCD固
体撮像素子の平面図を第4図に模式的に示す(特開昭60
−254892号)。この素子の駆動は次の様に行う。まず水
平方向と垂直方向に規則的に配列された画素1で光電変
換され蓄積された全画面の映像信号電荷は、垂直帰線期
間の間に一旦垂直方向に転送する垂直CCDレジスタ2に
読み出し蓄積する。その垂直CCDレジスタ2内に読み出
した映像信号電荷を、水平方向に転送する水平CCDレジ
スタ3まで水平帰線期間毎に1ライン分づつ転送し、そ
れに続く水平映像期間に順次出力部4から読み出して行
く。図中の矢印は映像信号電荷の転送方向を示してい
る。FIG. 4 schematically shows a plan view of an interline transfer CCD solid-state imaging device, which is one type of solid-state imaging device.
No. 254892). Driving of this element is performed as follows. First, the video signal charges of the entire screen photoelectrically converted and stored in the pixels 1 arranged regularly in the horizontal and vertical directions are read out and stored in a vertical CCD register 2 which is temporarily transferred in a vertical direction during a vertical blanking period. I do. The video signal charges read into the vertical CCD register 2 are transferred by one line every horizontal retrace period to the horizontal CCD register 3 for transferring in the horizontal direction, and are sequentially read from the output unit 4 during the subsequent horizontal video period. go. The arrow in the figure indicates the transfer direction of the video signal charge.
ところで近年高精細テレビ方式(HD方式)など高解像
度化への要求が強く、それに伴う固体撮像素子の画素数
の増加の検討が進められている。しかし第4図に示す様
な水平CCDレジスタ3を一列しか持たない従来のCCD固体
撮像素子では、画素数が増えた分だけ水平CCDレジスタ
の駆動周波数したがつて転送速度が上がり、現状では駆
動できない。In recent years, there has been a strong demand for higher resolution such as a high-definition television system (HD system), and an increase in the number of pixels of a solid-state imaging device has been studied accordingly. However, in the conventional CCD solid-state image pickup device having only one row of the horizontal CCD registers 3 as shown in FIG. 4, the transfer speed is increased according to the driving frequency of the horizontal CCD registers by the increase in the number of pixels, and cannot be driven at present. .
そのため現在第5図の3,3′に示すように、水体CCDレ
ジスタを二列設け、各列での転送速度を上げて読み出す
方法が取られている(信学技報ED87−174)。For this reason, as shown at 3, 3 'in FIG. 5, a method has been adopted in which two rows of water body CCD registers are provided, and reading is performed at an increased transfer rate in each row (IEICE Technical Report ED87-174).
第5図の固体撮像素子において2つの出力部4,4′に
分けて出力した映像信号は、第6図に示すようにバツフ
アアンプ7,7′を通し、合成回路10で1つにまとめ直し
た後信号処理回路8でテレビ信号に変換して出力する。In the solid-state image pickup device shown in FIG. 5, the video signals output separately from the two output sections 4, 4 'are passed through buffer amplifiers 7, 7' as shown in FIG. The signal is converted into a television signal by the post-signal processing circuit 8 and output.
ところで固体撮像素子出力部4,4′から合成回路10ま
での2つの回路系のゲインに差があると、まとめ直した
合成信号に含まれる各映像信号レベルにも差が生じる。
そして例えば一様な壁を写すと縦縞状の偽信号が現われ
るなど、画質が著しく劣化する。If there is a difference between the gains of the two circuit systems from the solid-state imaging device output units 4 and 4 'to the synthesizing circuit 10, a difference also occurs in each video signal level included in the synthesized signal.
For example, when a uniform wall is photographed, a vertical striped false signal appears, and the image quality is significantly degraded.
そのためこの方法では2つの回路系のゲインを微妙に
調整する必要があり、量産コストの上昇の原因になる。
またこの調整は現状では特殊な被写体を写しながら行う
煩雑な作業が必要である上、環境温度が変わると再調整
が必要になるなどの問題が生じる。Therefore, in this method, it is necessary to finely adjust the gain of the two circuit systems, which causes an increase in mass production cost.
In addition, this adjustment currently requires a complicated operation while photographing a special subject, and also causes a problem such as a need to readjust when the environmental temperature changes.
本発明の目的は通常の撮映を行いながらしかも自動的
にゲイン調整できる素子構造と駆動方法を提供すること
にある。SUMMARY OF THE INVENTION It is an object of the present invention to provide an element structure and a driving method capable of automatically adjusting a gain while performing normal shooting.
上記目的を達成するため本発明では、映像信号を出力
しない時間内の少なくとも一部の時間に、ゲインを比較
するのに必要な基準信号を各出力端子から出力できる構
造を持ち固体撮像素子を用いる。In order to achieve the above object, the present invention uses a solid-state imaging device having a structure capable of outputting a reference signal necessary for comparing gains from each output terminal at least during a time when a video signal is not output. .
そして固体撮像素子の異なる端子に分けて出力した各
信号は、後段回路でまとめ直し、映像信号を合成する。
このまとめ直した合成信号に含まれる基準信号の部分を
取り出してレベルを比較し、これらの基準信号レベルが
ほぼ同一になるように合成前の各回路系のゲインを調節
する。Each signal output separately to different terminals of the solid-state imaging device is regrouped by a subsequent circuit to synthesize a video signal.
The reference signal portion included in the recombined synthesized signal is taken out, the levels are compared, and the gain of each circuit system before the synthesis is adjusted so that these reference signal levels become substantially the same.
本発明による撮像素子と撮像装置では、各出力端子か
らの映像信号が通る回路系のゲインを測定するのに必要
な基準信号が、特殊な被写体を写さなくてもいつでも得
られる。しかも自動的に各出力端子からの映像信号のゲ
インを調節し、映像信号レベルの差を低減できる。In the image pickup device and the image pickup apparatus according to the present invention, a reference signal necessary for measuring the gain of a circuit system through which a video signal from each output terminal passes can be obtained at any time without photographing a special subject. In addition, the gain of the video signal from each output terminal is automatically adjusted, and the difference in video signal level can be reduced.
そのため映像信号レベルに差が有ると生じる画質の劣
化を低く抑えることができる。また回路系のゲインの微
調整は特殊な被写体を用いずに自動的に行われるので、
生産時の微調整が不要になり量産コストを低減できる。
さらにゲイン調整は自動的に行われるので、環境温度が
変わる度に必要であつた特殊な被写体を写しながら行う
煩雑な再調整作業が不要になる。Therefore, it is possible to suppress deterioration in image quality caused by a difference in video signal level. Also, fine adjustment of the gain of the circuit system is automatically performed without using a special subject,
Fine adjustment at the time of production becomes unnecessary, and mass production cost can be reduced.
Further, since the gain adjustment is automatically performed, a complicated readjustment operation performed while photographing a special subject, which is necessary each time the environmental temperature changes, becomes unnecessary.
本発明の第1の実施例を第1〜3図に示す。 A first embodiment of the present invention is shown in FIGS.
第1図は本発明による固体撮像素子構造の一例を示し
たもので、ゲイン比較に必要な基準信号を発生する基準
信号発生回路5と、発生した基準信号を各出力端子から
出力できるように振り分ける振り分け回路6〜6″を新
たに設けた点が第5図の従来の固体撮像素子の構造と異
なる。FIG. 1 shows an example of a solid-state imaging device structure according to the present invention. The reference signal generating circuit 5 generates a reference signal required for gain comparison, and the generated reference signal is distributed so that it can be output from each output terminal. It differs from the structure of the conventional solid-state imaging device in FIG. 5 in that the sorting circuits 6 to 6 ″ are newly provided.
また第3図は本発明による撮像素子の出力信号をテレ
ビ信号に変換する信号処理回路例であるが、2つに分け
て出力した信号のレベルを比較する信号ゲイン比較回路
11と、その出力信号の少なくとも一方の信号のゲインを
コントロールするためのゲイン調整量演算記憶回路12と
ゲインコントローラ9を設けた点が従来の回路と異な
る。FIG. 3 shows an example of a signal processing circuit for converting the output signal of the image pickup device into a television signal according to the present invention. The signal gain comparison circuit compares the levels of the two divided output signals.
11 in that a gain adjustment amount operation storage circuit 12 for controlling the gain of at least one of the output signals and a gain controller 9 are provided.
第1図の素子で画素1に蓄積し垂直CCDレジスタ2に
読み出した映像信号電荷は、従来同様水平帰線期間毎に
順次水平CCDレジスタ3に転送する。一方これと同時に
通常のCCD電荷注入回路(特開昭59−172195号)等から
成る基準信号発生回路5によつて水平期間毎に基準信号
電荷を発生させ、振り分け回路用CCD6″に基準信号電荷
を転送しておく。そして垂直CCDレジスタ2を駆動して
映像信号電荷を転送する際、振り分け回路用CCD6″内に
転送した基準信号電荷も、映像信号電荷同様に振り分け
回路用の垂直CCD6,6′を通して順次水平CCDレジスタ3,
3′内に転送する。水平CCDレジスタ3,3′内に転送した
映像信号と基準信号電荷は、それに続く水平映像期間に
第2図(b),(c)に模式的に示す様に順次出力部4,
4′から読み出す。The video signal charges stored in the pixel 1 and read out to the vertical CCD register 2 by the element shown in FIG. 1 are sequentially transferred to the horizontal CCD register 3 every horizontal blanking period as in the conventional case. On the other hand, at the same time, a reference signal charge is generated every horizontal period by a reference signal generation circuit 5 comprising a normal CCD charge injection circuit (Japanese Patent Laid-Open No. 59-172195) and the like, and the reference signal charge is supplied to the distribution circuit CCD 6 ″. When the vertical CCD register 2 is driven to transfer the video signal charges, the reference signal charges transferred into the distribution circuit CCD 6 ″ are also transferred to the vertical CCDs 6 and 6 for the distribution circuit similarly to the video signal charges. ′ Through the horizontal CCD register 3,
Transfer to 3 '. The video signal and the reference signal charge transferred into the horizontal CCD registers 3, 3 'are sequentially output to the output units 4, 3, as schematically shown in FIGS. 2 (b) and 2 (c) during the subsequent horizontal video period.
Read from 4 '.
次に固体撮像素子の2つの出力部4,4′に分けて出力
した信号は、第3図に示すバツフアアンプ7,7′を通
し、合成回路10で1つにまとめ直す。まとめ直した合成
信号波形を第2図(d)に模式的に示す。ところで例え
ばバツフアアンプ7′を通る回路の方がバツフアアンプ
7を通る回路よりゲインが高い(低い)とそれに比例し
て合成信号に含まれる基準信号13のレベルに差が生じ
る。そこで信号ゲイン比較回路11で、各々の基準信号の
長時間平均を取つて雑音による影響を減らした後、2つ
の回路系のゲイン差を検出する。そしてこの値とゲイン
調整量演算記憶回路12に既に記憶してある値を比較し、
その比較結果に合わせて十分小さなゲイン値だけゲイン
コントローラ9のゲインを下げる(上げる)と共に、そ
の時の状態をゲイン調整量演算記憶回路12に記憶する。
以下同様に水平期間毎にゲインの比較と調整を繰り返す
と、2つの回路のゲインはほぼ同一になりゲイン差の無
い合成信号が得られる。その後従来同様信号処理回路8
でテレビ信号に変換し出力する。Next, the signals output to the two output sections 4 and 4 'of the solid-state imaging device are passed through buffer amplifiers 7 and 7' shown in FIG. FIG. 2 (d) schematically shows the recombined composite signal waveform. By the way, for example, when the gain of the circuit passing through the buffer amplifier 7 'is higher (lower) than that of the circuit passing through the buffer amplifier 7, a difference occurs in the level of the reference signal 13 included in the composite signal in proportion thereto. Therefore, the signal gain comparison circuit 11 takes the long-term average of each reference signal to reduce the influence of noise, and then detects the gain difference between the two circuit systems. Then, this value is compared with the value already stored in the gain adjustment amount calculation storage circuit 12,
The gain of the gain controller 9 is reduced (increased) by a sufficiently small gain value in accordance with the comparison result, and the state at that time is stored in the gain adjustment amount calculation storage circuit 12.
Similarly, when the comparison and adjustment of the gain are repeated in each horizontal period, the gains of the two circuits are substantially the same, and a composite signal having no gain difference is obtained. After that, the signal processing circuit 8 as in the prior art
To convert to TV signal and output.
この様に第3図の撮像装置では、2つに分けて読み出
した映像信号の合成後のレベル差は自動的に低減されほ
とんど差が生じ無い。そのため映像信号レベルに差が有
ると生じる画質の劣化を低く抑えることができる。また
回路系のゲインの微調整は特殊な被写体を用いなくても
自動的に行われるので、生産時の微調整が不要になり量
産コンスを低減できる。さらにゲイン調整は自動的に行
われるので、環境温度が変わる度に必要であつた特殊な
被写体を写しながら行う煩雑な再調整作業が不要にな
る。As described above, in the image pickup apparatus shown in FIG. 3, the level difference after synthesizing the video signals read out in two parts is automatically reduced, and almost no difference occurs. Therefore, it is possible to suppress deterioration in image quality caused by a difference in video signal level. Further, since the fine adjustment of the gain of the circuit system is automatically performed without using a special subject, the fine adjustment at the time of production becomes unnecessary and the mass production cost can be reduced. Further, since the gain adjustment is automatically performed, a complicated readjustment operation performed while photographing a special subject, which is necessary each time the environmental temperature changes, becomes unnecessary.
なお電源投入時のゲイン調整では雑音を低減するため
の平均操作を省略する、あるいは調整のために加減する
ゲイン値を通常より大きくする等によつて、装置立ち上
げ時間を速めることが望ましい。In the gain adjustment at the time of turning on the power, it is desirable to shorten the apparatus start-up time by omitting the averaging operation for reducing noise, or increasing the gain value to be adjusted for adjustment to be larger than usual.
またゲイン調整は信号ゲイン比較回路11で基準信号レ
ベル比を求め、2つの回路系の信号の一方に基準信号レ
ベル比の逆数を掛ける等の方法で調整しても良い事は明
かである。It is apparent that the gain may be adjusted by a method such as obtaining the reference signal level ratio by the signal gain comparison circuit 11 and multiplying one of the signals of the two circuit systems by the reciprocal of the reference signal level ratio.
第7〜8図は本発明の第2の実施例である。 7 and 8 show a second embodiment of the present invention.
第7図は本発明による固体撮像素子構造の他の例であ
り、用いるテレビ方式の数本の走査線(第7図では3本
の走査線)で使う映像信号を数個(第7図では3個)の
出力端子に分けて同時に読み出すと共に、第1図の素子
同様各出力端子から基準信号を出力できるようにした点
が従来の素子構造と異なる。FIG. 7 shows another example of the solid-state image pickup device structure according to the present invention, in which several video signals used in several scanning lines (three scanning lines in FIG. 7) of a television system to be used (three in FIG. 7). (3) output terminals and read out simultaneously, and a reference signal can be output from each output terminal similarly to the element of FIG.
第7図の素子で画素1に蓄積した映像信号電荷と基準
信号発生器5で発生した基準信号電荷は、第1図の素子
と同様にして、例えば3水平期間分の信号を一組にして
順次水平CCDレジスタ3〜3″内に転送する。水平CCDレ
ジスタ3〜3″内に転送した映像信号電荷と基準信号電
荷は、それに続く期間(例えば3水平期間でゆつくり)
に順次出力部4〜4″から読み出す。以下同様にして1
画面分の信号を、用いるテレビ方式の1フイールド期間
毎に読み出す(ただし信号の蓄積時間を長くして感度を
上げる際は、その周期に合わせる)。The video signal charge accumulated in the pixel 1 by the element of FIG. 7 and the reference signal charge generated by the reference signal generator 5 are, for example, a set of signals for three horizontal periods as in the element of FIG. The video signal charges and the reference signal charges transferred into the horizontal CCD registers 3 to 3 "are sequentially transferred into the horizontal CCD registers 3 to 3".
Are sequentially read from the output units 4 to 4 ″.
The signal for the screen is read out every one field period of the television system to be used (however, when increasing the signal accumulation time to increase the sensitivity, the signal is adjusted to the cycle).
次に固体撮像素子の出力部4〜4″に分けて出力した
信号は、第8図に示すバツフアアンプ7〜7″とAD変換
器21〜21″を通してデイジタル信号に変換する。そして
信号ゲイン比較回路11,11″において、デイジタル信号
に変換した基準信号の長時間平均を取つて雑音による影
響を減らした後、平均した3つの基準信号のレベル比を
求める。この値をゲイン調整量演算記憶回路12,12″に
記憶してある値と比較し記憶し直す一方、ゲインコント
ローラ9,9″(かけ算器)でこの記憶したレベル比の逆
数を変換信号に掛けてゲインを調整し、ゲイン差の無い
信号に直した後画像メモリ回路22に記憶する。そして時
間調整回路23で、用いるテレビ方式の順序に従つて順次
画像メモリ回路22から信号を読み出し、信号処理回路8
でテレビ信号に変換して出力する。Next, the signals output to the output sections 4 to 4 "of the solid-state imaging device are converted into digital signals through buffer amplifiers 7 to 7" and AD converters 21 to 21 "shown in FIG. In 11,11 ", after the long term average of the reference signal converted into the digital signal is reduced to reduce the influence of noise, the level ratio of the averaged three reference signals is obtained. This value is compared with the value stored in the gain adjustment amount operation storage circuits 12, 12 "and stored again, while the gain controller 9, 9" (multiplier) multiplies the conversion signal by the reciprocal of the stored level ratio. After adjusting the gain to convert the signal into a signal having no gain difference, the signal is stored in the image memory circuit 22. Then, the time adjustment circuit 23 sequentially reads out the signals from the image memory circuit 22 in accordance with the order of the television system to be used, and outputs the signals to the signal processing circuit 8.
To convert to TV signal and output.
この様に第8図の撮像装置においては回路系のゲイン
差を後段の回路で自動的に補正するので、レベル差の無
いテレビ信号が得られる。そのため本実施例においても
第1の実施例同様映像信号レベルに差が有ると生じる画
質の劣化を抑えることができる。また回路系ゲインの生
産時の微調整が不要になり量産コストを低減できる。さ
らに環境温度が変わる度に必要であつた煩雑な再調整作
業が不要になる。また本実施例ではさらに基準信号レベ
ル検出後直ちに正しいゲイン調整を行えるので、装置を
非常に高速で立ち上げることができる。As described above, in the image pickup apparatus shown in FIG. 8, since the gain difference of the circuit system is automatically corrected by the subsequent circuit, a television signal having no level difference can be obtained. Therefore, in the present embodiment, similarly to the first embodiment, it is possible to suppress the deterioration of the image quality caused by the difference in the video signal level. Also, fine adjustment of the circuit system gain at the time of production becomes unnecessary, and mass production cost can be reduced. Furthermore, the complicated readjustment work required every time the environmental temperature changes is not required. Further, in this embodiment, since the correct gain adjustment can be performed immediately after the detection of the reference signal level, the apparatus can be started up at a very high speed.
なお水平CCDレジスタ3〜3″からの信号の読み出し
速度は、用いるテレビ方式の1フイールド期間に撮像素
子の1画面分の信号電荷を読み出せる範囲で任意に選ん
で良い。ただし読み出し速度が遅いほど出力される信号
の周波数は低くなり、読み出し時の信号帯域を狭くでき
る。そのため信号帯域を狭くする事によつて出力アンプ
が発生するランダム雑音の影響を減らし、信号のSN比を
上げる事ができる。またAD変換部の価格は高速のものよ
り低速のものの方が安価である等の点から信号の読み出
し速度は遅いことが望ましい。The reading speed of the signals from the horizontal CCD registers 3 to 3 "may be arbitrarily selected within a range in which the signal charges for one screen of the image sensor can be read in one field period of the television system to be used. The frequency of the output signal is reduced, and the signal band at the time of reading can be narrowed, so that the effect of random noise generated by the output amplifier can be reduced by narrowing the signal band, and the signal-to-noise ratio of the signal can be increased. In addition, it is desirable that the signal reading speed be low in terms of the fact that the AD converter is inexpensive at a lower speed than at a higher speed.
またゲインコントローラ9,9″はAD変換器の前に入
れ、撮像素子の出力信号に検出したゲイン比の逆数を掛
けるか、あるいは第1の実施例と同様に十分小さな値だ
けゲイン値を上下する方法で調整しても良いことは自明
である。The gain controllers 9, 9 ″ are provided before the AD converter, and multiply the output signal of the image sensor by the reciprocal of the detected gain ratio, or increase or decrease the gain value by a sufficiently small value as in the first embodiment. It is obvious that the adjustment may be made by the method.
なお以上の実施例では基準信号は1水平映像期間の信
号毎に出力する場合についてのみ述べたが、1フイール
ド期間毎。数分毎あるいはスイツチ操作など何らかの操
作を加えた時など任意の時間に注入してゲインを調整し
ても良い。また各出力端子からの基準信号は常に同時に
出力する必要は無く、互いに異なる時間に順次出力する
ようにしても良い。In the above embodiment, only the case where the reference signal is output for each signal of one horizontal video period has been described, but for each field period. The injection may be performed at an arbitrary time, such as every few minutes or when a certain operation such as a switch operation is performed, to adjust the gain. Further, the reference signals from each output terminal need not always be output simultaneously, and may be output sequentially at different times.
また信号ゲイン比較回路で基準信号のレベルを検出す
る際の雑音の影響を低減するには、基準信号のレベルを
大きくするほど良い。しかし後段回路のダイナミツクレ
ンジの点から基準信号のレベルの大きさは、ほぼ映像信
号の白レベルから白レベルの3倍程度の範囲に設定する
ことが望ましい。In order to reduce the influence of noise when the signal gain comparison circuit detects the level of the reference signal, it is better to increase the level of the reference signal. However, from the point of view of the dynamic range of the subsequent circuit, it is desirable that the level of the reference signal be set in a range from the white level of the video signal to about three times the white level.
また第1の実施例で、第2の実施例と同様のデイジタ
ル回路を用いても良い。In the first embodiment, a digital circuit similar to that of the second embodiment may be used.
また用いる撮像素子は第1図,第7図の素子の他、第
9図に例示するように、各出力端子から同一の基準信号
を出力できる構造を持てば、たとえ画面を左右に2分し
て出力する構造であつても良いことは明かである。If the image pickup device used has a structure capable of outputting the same reference signal from each output terminal as shown in FIG. 9 in addition to the devices shown in FIGS. It is clear that a structure for outputting the data may be used.
さらに撮像素子の構造としてインターライン転送CCD
固体撮像素子を使つて説明したが、他の形のCCD固体撮
像素子やMOS固体撮像素子,撮像管等を用いても良いこ
とは明かである。Furthermore, an interline transfer CCD is used as the structure of the image sensor.
Although the description has been made using the solid-state imaging device, it is apparent that other types of CCD solid-state imaging device, MOS solid-state imaging device, imaging tube, and the like may be used.
以上固体撮像素子内に基準信号発生回路を有している
場合について述べたが、画面に一様な光を当てた時の映
像信号を基準信号とし、スイツチ等によつて第3図,第
8図の回路を動作させてゲインを調整する。そしてその
時の状態を記憶することによつて、従来の撮像素子を用
いたカメラにおいても、ゲイン調整の簡単化を図ること
ができる。The case where the solid-state imaging device has the reference signal generating circuit has been described above. The video signal when uniform light is applied to the screen is used as the reference signal, and FIGS. Operate the circuit shown to adjust the gain. By storing the state at that time, the gain adjustment can be simplified even in a camera using a conventional image sensor.
以上述べた様に本発明による撮像素子と撮像装置を用
いると、各出力端子からの映像信号が通る回路系のゲイ
ンを測定するのに必要な基準信号が、特殊な被写体を写
さなくてもいつでも得られる。しかも自動的に各出力端
子からの映像信号のゲインを調節し、映像信号レベルの
差を低減できる。As described above, when the imaging device and the imaging device according to the present invention are used, a reference signal necessary for measuring a gain of a circuit system through which a video signal from each output terminal passes can be used even if a special subject is not captured. You can always get it. In addition, the gain of the video signal from each output terminal is automatically adjusted, and the difference in video signal level can be reduced.
そのため映像信号レベルに差が有ると生じる画質の劣
化を低く抑えることができる。また回路系のゲインの微
調整は特殊な被写体を用いなくても自動的に行われるの
で、生産時の微調整が不要になり量産コストを低減でき
る。さらにゲイン調整は自動的に行われるので、環境温
度が変わる度に必要であつた特殊な被写体を写しながら
行う煩雑な再調整作業を行なう必要がなくなる。Therefore, it is possible to suppress deterioration in image quality caused by a difference in video signal level. Further, since the fine adjustment of the gain of the circuit system is automatically performed without using a special subject, the fine adjustment at the time of production becomes unnecessary and the mass production cost can be reduced. Further, since the gain adjustment is automatically performed, it is not necessary to perform a complicated readjustment operation while photographing a special subject which is required every time the environmental temperature changes.
第1図は本発明による第1の実施例の固体撮像素子の模
式図、第2図は同実施例の撮像装置のブロツク図、第3
図は同実施例の信号タイミング図、第4図,第5図は従
来のインターライン転送CCD固体撮像素子の模式図、第
6図は従来例の撮像装置の構造を示すブロツク図、第7
図は本発明による第2の実施例の固体撮像素子の模式
図、第8図は同実施例の撮像装置の構造を示すブロツク
図、第9図は本発明によるさらに他の実施例の固体撮像
素子の模式図である。 1……画素、2……垂直CCDレジスタ、3……水平CCDレ
ジスタ、4……出力部、5……撮像素子、9……ゲイン
コントローラ、10……合成回路、11……信号ゲイン比較
回路、12……ゲイン調整量演算記憶回路。FIG. 1 is a schematic diagram of a solid-state imaging device according to a first embodiment of the present invention, FIG. 2 is a block diagram of the imaging device of the embodiment, and FIG.
4 and 5 are schematic diagrams of a conventional interline transfer CCD solid-state imaging device, FIG. 6 is a block diagram showing the structure of a conventional imaging device, and FIG.
FIG. 9 is a schematic view of a solid-state imaging device according to a second embodiment of the present invention, FIG. 8 is a block diagram showing the structure of an imaging device of the embodiment, and FIG. 9 is a solid-state imaging device of still another embodiment according to the present invention. It is a schematic diagram of an element. Reference Signs List 1 ... pixel, 2 ... vertical CCD register, 3 ... horizontal CCD register, 4 ... output unit, 5 ... image sensor, 9 ... gain controller, 10 ... combining circuit, 11 ... signal gain comparison circuit , 12 ... Gain adjustment amount calculation storage circuit.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平1−114174(JP,A) 特開 昭62−57374(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kenji Takahashi 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-1-114174 (JP, A) JP-A-62 −57374 (JP, A)
Claims (3)
信号を2列以上の水平方向電荷転送素子列に分けて出力
する固体撮像素子を用いた撮像装置において、基準信号
電荷を発生する基準信号発生回路と、該基準信号発生回
路で発生した基準信号電荷を上記2列以上の水平方向電
荷転送素子列の各々に振り分ける振り分け回路と、上記
映像信号を出力しない時間内の少なくとも一部の時間
に、上記2列以上の水平方向電荷転送素子列の各々の出
力端子から上記2つ以上の基準信号を出力する構造を有
することを特徴とする撮像装置。1. An image pickup apparatus using a solid-state image pickup device that converts incident light into an electric signal and divides a video signal into two or more rows of horizontal charge transfer elements and outputs the signal. A reference signal generation circuit, a distribution circuit that distributes the reference signal charge generated by the reference signal generation circuit to each of the two or more horizontal charge transfer element columns, and at least a part of the time during which the video signal is not output. An imaging apparatus having a structure in which the two or more reference signals are output from output terminals of the two or more horizontal charge transfer element columns at a time.
ビ方式の2本以上の走査線の映像信号を2列以上の水平
方向電荷転送素子列に分けて出力する固体撮像素子を用
いた撮像装置において、基準信号電荷を発生する基準信
号発生回路と、該基準信号発生回路で発生した基準信号
電荷を上記2列以上の水平方向電荷転送素子列の各々に
振り分ける振り分け回路と、上記映像信号を出力しない
時間内の少なくとも一部の時間に、上記2列以上の水平
方向電荷転送素子列の各々の出力端子から上記2つ以上
の基準信号を出力する構造を有することを特徴とする撮
像装置。2. A solid-state image pickup device for converting incident light into an electric signal and outputting video signals of two or more scanning lines of a television system in two or more rows of horizontal charge transfer element rows. A reference signal generation circuit for generating a reference signal charge in the imaging device; a distribution circuit for distributing the reference signal charge generated by the reference signal generation circuit to each of the two or more rows of the horizontal charge transfer element rows; Wherein at least a part of the time during which no is output, the two or more reference signals are output from the output terminals of the two or more horizontal charge transfer element columns. .
像信号の白レベルの大きさの1倍以上3倍以下の範囲に
あることを特徴とする請求項1又は2に記載の撮像装
置。3. The image pickup apparatus according to claim 1, wherein the magnitude of the level of the reference signal is in the range of 1 to 3 times the magnitude of the white level of the video signal. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63228672A JP2702982B2 (en) | 1988-09-14 | 1988-09-14 | Imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63228672A JP2702982B2 (en) | 1988-09-14 | 1988-09-14 | Imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0278382A JPH0278382A (en) | 1990-03-19 |
JP2702982B2 true JP2702982B2 (en) | 1998-01-26 |
Family
ID=16880005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63228672A Expired - Lifetime JP2702982B2 (en) | 1988-09-14 | 1988-09-14 | Imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2702982B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2968553B2 (en) * | 1990-04-09 | 1999-10-25 | 日本電気株式会社 | Charge coupled device signal processing device |
JPH05167911A (en) * | 1991-12-12 | 1993-07-02 | Sony Corp | Signal processor |
JP3221103B2 (en) * | 1992-10-13 | 2001-10-22 | ソニー株式会社 | Solid-state imaging device |
JP3297946B2 (en) * | 1993-03-23 | 2002-07-02 | ソニー株式会社 | Charge transfer device |
JP3318905B2 (en) * | 1993-12-03 | 2002-08-26 | ソニー株式会社 | Charge transfer device |
JPH07184124A (en) * | 1993-12-24 | 1995-07-21 | Nec Corp | Solid-state image pickup device |
US6791615B1 (en) | 1999-03-01 | 2004-09-14 | Canon Kabushiki Kaisha | Image pickup apparatus |
CN1209908C (en) * | 2001-02-28 | 2005-07-06 | 松下电器产业株式会社 | Solid camera device and driving method thereof |
US7218351B2 (en) | 2002-04-05 | 2007-05-15 | Victor Company Of Japan, Limited | Image-sensing apparatus for compensating video signal of a plurality of channels |
JP3879987B2 (en) | 2002-04-10 | 2007-02-14 | 日本ビクター株式会社 | Imaging device |
JP5151507B2 (en) * | 2008-01-29 | 2013-02-27 | ソニー株式会社 | Solid-state imaging device, signal readout method of solid-state imaging device, and imaging apparatus |
-
1988
- 1988-09-14 JP JP63228672A patent/JP2702982B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0278382A (en) | 1990-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0660616B1 (en) | Color sequential electronic camera | |
US5990952A (en) | Driving method of solid-state image pickup device | |
US8525901B2 (en) | Solid-state image sensing device | |
US8502895B2 (en) | Variable exposure for color image sensor | |
US7554588B2 (en) | Dual exposure for image sensor | |
US8436926B2 (en) | Physical quantity detecting device, solid-state imaging device, and imaging apparatus | |
JP3492029B2 (en) | Imaging device | |
US5572256A (en) | Solid-state imaging apparatus | |
US20100321532A1 (en) | Solid-state imaging device, imaging system, and method of driving solid-state imaging device | |
US20080049132A1 (en) | Image sensing apparatus and driving control method | |
JP2702982B2 (en) | Imaging device | |
US20030193591A1 (en) | Image-sensing device having a plurality of output channels | |
JPS61177074A (en) | Tv camera | |
US5576760A (en) | High resolution television camera using frame memory | |
CN108432238A (en) | The driving method and electronic equipment of solid-state imaging apparatus, solid-state imaging apparatus | |
US5978021A (en) | Apparatus producing a high definition picture and method thereof | |
US6657177B2 (en) | Solid-state imaging system | |
JP2994158B2 (en) | Solid-state imaging device | |
US20070139543A1 (en) | Auto-adaptive frame rate for improved light sensitivity in a video system | |
JP3212809B2 (en) | Driving method of solid-state imaging device | |
JPH09163210A (en) | Image pickup system | |
JP2574829B2 (en) | TV camera device | |
JP3755175B2 (en) | Solid-state imaging device | |
JP2889103B2 (en) | Driving method of solid-state imaging device | |
JPH04172086A (en) | Image pickup device |