[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0277561A - Nuclear reactor steel plate excellent in electron beam welding characteristic - Google Patents

Nuclear reactor steel plate excellent in electron beam welding characteristic

Info

Publication number
JPH0277561A
JPH0277561A JP22748288A JP22748288A JPH0277561A JP H0277561 A JPH0277561 A JP H0277561A JP 22748288 A JP22748288 A JP 22748288A JP 22748288 A JP22748288 A JP 22748288A JP H0277561 A JPH0277561 A JP H0277561A
Authority
JP
Japan
Prior art keywords
electron beam
toughness
steel plate
steel
beam welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22748288A
Other languages
Japanese (ja)
Other versions
JPH0534415B2 (en
Inventor
Yukio Tomita
冨田 幸男
Takeshi Tsuzuki
岳史 都築
Ryota Yamaba
山場 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22748288A priority Critical patent/JPH0277561A/en
Publication of JPH0277561A publication Critical patent/JPH0277561A/en
Publication of JPH0534415B2 publication Critical patent/JPH0534415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To prevent the precipitation of coarse carbide and nitride, to form the structure of the title steel plate into a structure composed principally of lower bainite, and to improve toughness in an electron beam weld zone by specifying respective contents of C, Si, Mn, P, S, Cu, Ni, Cr, etc. CONSTITUTION:The title nuclear reactor steel plate has a composition consisting of, by weight, 0.13-0.16% C, 0.05-0.03% Si, 1.3-1.5% Mn, <=0.005% P, <=0.01% S, <=0.1% Cu, 0.7-1% Ni, 0.1-0.6% Cr, 0.5-0.6% Mo, 0.005-0.04% Al, 0.003-0.006% N, and the balance Fe. By using the above steel plate, the precipitates of coarse carbide and nitride can be reduced, and further, the base structure can be changed from upper bainite practically to lower bainite and toughness in an electron beam weld zone can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子ビーム溶接特性の優れた原子炉用鋼板に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nuclear reactor steel plate with excellent electron beam welding properties.

[従来の技術] 原子力発電設備の安全性に関する関心は近年ますます高
くなっており、原子炉用鋼板に対する靭性値の要求は非
常に厳しいものとなっている。その要求は当然構造物の
一部を構成する溶接部に対してもなされている。
[Prior Art] Interest in the safety of nuclear power generation equipment has been increasing in recent years, and requirements for toughness values for steel plates for nuclear reactors have become extremely strict. Naturally, this requirement is also made for welded parts that constitute part of the structure.

従来の原子炉用鋼板の溶接は潜弧溶接(SAW)または
、MIG溶接が主体である。これらの溶接では板厚が厚
くなるに従って加速度的に積層数が増加していく。たと
えば、板厚100關の材料では狭開先の施工をしてもS
AW、MIGとも20バス以上の積層が必要となってく
る。それに伴う施工時間が膨大なものとなる。これらの
溶接施工効率向上と厳しい靭性要求に応えるために、電
子ビーム溶接の適用が考えられるようになってきた。
Conventional welding of steel plates for nuclear reactors is mainly performed by submerged arc welding (SAW) or MIG welding. In these welding processes, the number of laminated layers increases at an accelerating rate as the plate thickness increases. For example, with a material with a thickness of about 100 mm, it is difficult to perform construction with a narrow gap.
Both AW and MIG require a stack of 20 or more buses. The construction time associated with this will be enormous. In order to improve welding efficiency and meet strict toughness requirements, the application of electron beam welding has begun to be considered.

電子ビーム溶接は従来のアーク溶接(SAW。Electron beam welding is conventional arc welding (SAW).

MIC溶接)と比べて、板厚50mmを超える範囲では
コスト的に有利な領域となり、板厚が厚くなるほどその
効果は大きくなる。
Compared to MIC welding), it is advantageous in terms of cost in a range of plate thicknesses exceeding 50 mm, and the thicker the plate thickness, the greater the effect.

ただ、電子ビーム溶接は従来の溶接法と異なって、鋼板
そのものを溶融させ接合するものであるため、鋼板の製
造にあたってはこの溶接部、特に靭性を考慮した成分設
計を行う必要がある。従来の原子炉用鋼板ではこの点の
考慮は全くなされていなかったといっても過言でない。
However, unlike conventional welding methods, electron beam welding involves melting and joining the steel plates themselves, so when manufacturing steel plates, it is necessary to design the components of the welded part, especially considering the toughness. It is no exaggeration to say that this point has not been considered at all in conventional steel plates for nuclear reactors.

これまでの原子炉用鋼板の靭性向上に関する公知文献と
しては、特公昭5B −33449号、特公昭59−9
619号公報があるが、従来の溶接法で溶接することを
前提としているため、電子ビーム溶接による溶接部に関
する考慮は全くなされていない。
Publicly known documents related to improving the toughness of steel sheets for nuclear reactors include Japanese Patent Publication No. 5B-33449, Japanese Patent Publication No. 59-9
No. 619 is available, but since it is based on the assumption that welding will be performed using a conventional welding method, there is no consideration given to the welded portion by electron beam welding.

[発明が解決しようとする課題〕 本発明の目的は以上の点を鑑みなされたもので、電子ビ
ーム溶接による溶接を行っても溶接部の低温靭性の良好
な電子ビーム溶接特性の優れた原子炉用鋼板を提供する
ことにある。
[Problems to be Solved by the Invention] The object of the present invention was to provide a nuclear reactor with excellent electron beam welding characteristics, which provides good low-temperature toughness of the welded part even when welding is performed by electron beam welding. Our objective is to provide steel plates for industrial use.

[課題を解決するための手段] 本発明はmm%で、C: 0.13%以上0.16%未
満、S L:0.05〜0.03%、Mn:1.30〜
1.50%、P≦0.005%、S≦0.010%、C
u≦0,10%、Ni≦0.70%を超えl、00%以
下、Cr:0.lO〜0.(i0%、Mo:0.50〜
0.60%、Aρ:0.005〜0.040%、N。
[Means for Solving the Problems] The present invention is based on mm%, C: 0.13% or more and less than 0.16%, S L: 0.05-0.03%, Mn: 1.30-
1.50%, P≦0.005%, S≦0.010%, C
u≦0.10%, Ni≦more than 0.70%, 00% or less, Cr:0. lO~0. (i0%, Mo: 0.50~
0.60%, Aρ: 0.005-0.040%, N.

0.003〜0.00[i%、を基本成分とし、残部F
c及び不可避的不純物からなることを特徴とする電子ビ
ーム溶接特性の優れた原子炉用鋼板である。
0.003 to 0.00 [i%, the basic component, the remainder F
This is a nuclear reactor steel sheet with excellent electron beam welding characteristics, characterized by comprising c and unavoidable impurities.

[作  用コ 電子ビーム溶接は従来の溶接法のように溶接部の別の材
料を供給し、溶接部の特性向」−を図るのではなく、鋼
板そのものを溶融させ溶接するものである。そのため、
鋼板製造にあたって細粒化などの方法により高靭性を有
する鋼板に調整されるが、これが高温で溶融されるため
靭性の低いものとなってしまう。
[Operations] Electron beam welding does not supply another material for the weld zone to improve the properties of the weld zone, as in conventional welding methods, but instead melts and welds the steel plates themselves. Therefore,
When manufacturing steel plates, steel plates with high toughness are prepared by methods such as grain refinement, but because they are melted at high temperatures, they end up with low toughness.

発明者らはここにおいて電子ビーム溶接部で良好な靭性
を有する鋼材を種々検討した結果、粒内、粒界に析出す
る粗大な炭化物、窒化物が著しく電子ビーム溶接部の靭
性を低下させることを見出したものである。その粗大な
炭化物、窒化物はC量、N量が高いとその絶対量が増加
り1、粒内、粒界を脆化させる。また、PはこれらC,
Hの作用を促進することを発見した。
As a result of examining various steel materials that have good toughness for electron beam welding, the inventors found that coarse carbides and nitrides precipitated within grains and at grain boundaries significantly reduce the toughness of electron beam welding. This is what I found. The absolute amount of these coarse carbides and nitrides increases when the C content and N content are high1, causing embrittlement of grain interiors and grain boundaries. Also, P is these C,
It was discovered that the effect of H.

これを防止するためには、C,P、Nの含有量をある範
囲に収めること、つまり、これらの効果の重畳作用によ
り著しく電子ビーム溶接部の靭性が向上することを知見
したものである。
It has been found that in order to prevent this, the contents of C, P, and N should be kept within a certain range; in other words, the toughness of the electron beam welded part is significantly improved by the superposition of these effects.

さらに、電子ビーム溶接部の靭性を向上させるためには
、これらの有害な析出物を低減すると同時に、ベースの
組織を上部ベイナイトからほぼ下部ベイナイトにするこ
とが重要であることも知見した。
Furthermore, in order to improve the toughness of electron beam welds, we found that it is important to reduce these harmful precipitates and at the same time change the base structure from upper bainite to almost lower bainite.

第1図はCパラメーターとした電子ビーム溶接部のシャ
ルピー衝撃試験値に及ぼすPiとNmの影響を示す図で
ある。
FIG. 1 is a diagram showing the influence of Pi and Nm on the Charpy impact test value of an electron beam welded part using the C parameter.

Cff1を0.13%以上0.16%未満、pmを0.
005%以下、N量を30〜130ppmの範囲に入れ
ることによりV E ao≧lOkgf−mの良靭性が
得られる。しかも個々の成分の影響も直線的でない。
Cff1 is 0.13% or more and less than 0.16%, pm is 0.
0.005% or less, and by setting the N amount in the range of 30 to 130 ppm, good toughness of V E ao≧lOkgf-m can be obtained. Furthermore, the influence of individual components is not linear.

たとえば、C: 0.15%、N :90p1)III
でPが0.010から0.005%に低下した場合は、
vE−30が2.5から3.Okg f−mにしかなら
ないのに、N :60p1)InでPが0.010から
0.005%に低下した場合は、V E−3oが35か
ら12.3kg f −mと大幅に向上し、PとNの重
畳効果が明らかである。そのほか、CとN、CとPの重
畳効果もこの図より明らかである。
For example, C: 0.15%, N: 90p1) III
If P decreases from 0.010 to 0.005%,
vE-30 is 2.5 to 3. When P decreases from 0.010 to 0.005% with N: 60 p1) In, V E-3o significantly improves from 35 to 12.3 kg f-m. , the superposition effect of P and N is obvious. In addition, the superposition effects of C and N, and C and P are also clear from this figure.

原子炉用鋼板には規格で狭い成分範囲が規定されている
。そのため、焼入性を上昇させるMn。
Standards specify a narrow range of components for steel sheets for nuclear reactors. Therefore, Mn increases hardenability.

Ni 、Cr 、Moを成分規格(JIS 5QV3A
、 5QV3B)の上限まで高めることで、ベース組織
を上部ベイナイトからほぼ下部ベイナイトにすることが
必要である。
Ni, Cr, Mo based on component standards (JIS 5QV3A
, 5QV3B), it is necessary to change the base structure from upper bainite to almost lower bainite.

以下に成分の限定理由を述べる。The reasons for limiting the ingredients are described below.

Cは靭性に対して有害な元素であり、先に述べたように
0.16%以上になるとP、Nとの重畳作用により粗大
な炭化物が析出し、電子ビーム溶接部の靭性を著しく低
下させ、原子炉用鋼板の仕様を満足することが困難とな
るため0.1896未満を上限とする。しかし、0,1
3%未満では強度を確保することが困難となる。
C is an element harmful to toughness, and as mentioned earlier, if it exceeds 0.16%, coarse carbides will precipitate due to the superimposed action with P and N, significantly reducing the toughness of electron beam welded parts. Since it becomes difficult to satisfy the specifications of steel plates for nuclear reactors, the upper limit is set at less than 0.1896. However, 0,1
If it is less than 3%, it will be difficult to ensure strength.

Siは低温靭性、溶接性を低下させる元素なので、極力
低減させ0.30%を上限とする。しかし、製鋼上0.
05%は必要である。
Since Si is an element that deteriorates low-temperature toughness and weldability, it should be reduced as much as possible and the upper limit should be 0.30%. However, due to steel manufacturing, 0.
05% is necessary.

Mnは焼入性を上昇させる元素で、組織をほぼ下部ベイ
ナイトにするため1,30%以上添加する必要があるが
、規格の成分範囲より上限を1.50%とする。
Mn is an element that increases hardenability, and must be added in an amount of 1.30% or more to make the structure almost lower bainite, but the upper limit is set to 1.50% based on the standard component range.

Pは先に述べたように、C,Nとの重畳作用により粒内
、粒界を脆化させるため、0.005%以下に低減する
ことが必要である。
As mentioned above, P embrittles the grain interior and grain boundaries due to the superimposed action with C and N, so it is necessary to reduce it to 0.005% or less.

Sは靭性に有害な元素であり、0.01%以下に低減す
ることが必要である。
S is an element harmful to toughness and needs to be reduced to 0.01% or less.

Cuは中性子照射脆化を促進する元素であるため、上限
を0.1096とする。
Since Cu is an element that promotes neutron irradiation embrittlement, the upper limit is set to 0.1096.

N1は焼入性を上昇させる元素で、組織をほぼ下部ベイ
ナイトにするためには0.70%を超えて添加する必要
があるが、規格の成分範囲より上限を1.00%とした
N1 is an element that increases hardenability, and needs to be added in an amount exceeding 0.70% in order to make the structure almost lower bainite, but the upper limit was set at 1.00% based on the standard component range.

Crは焼入性を上昇させる元素で、組織をほぼ下部ベイ
ナイトにするためには0,10%以上添加する必要があ
るか、過剰な添加は溶接性を損ねる原因となるため、0
.60%を上限とした。
Cr is an element that increases hardenability, and it is necessary to add 0.10% or more to make the structure almost lower bainite, or 0.
.. The upper limit was set at 60%.

MOは焼入性を上昇させる元素で、組織をほぼ下部ベイ
ナイトにするためには0.50%以上添加する必要があ
るが、規格の成分範囲より上限を0.60%とする。
MO is an element that increases hardenability, and it is necessary to add 0.50% or more to make the structure almost lower bainite, but the upper limit is set to 0.60% from the standard component range.

Alは組織を微細化して靭性を向上させる元素であり、
0.005%以上で効果がある。しかし0.040%を
超えるとNとの比が小さくなりすぎAgN析出物が粗大
化し靭性がかえって低下するため、上限を0.0209
6とする。
Al is an element that refines the structure and improves toughness.
It is effective at 0.005% or more. However, if it exceeds 0.040%, the ratio with N becomes too small and the AgN precipitates become coarser, reducing the toughness, so the upper limit is set to 0.0209%.
Set it to 6.

Nは先に述べたように、C1Pとの重畳作用により粒内
、粒界を脆化させるため、o、ooe%以下とする。し
かし、低すぎるとAgNによる細粒化ができなくなるた
め、下限を0.003%とする。
As mentioned above, N embrittles the grain interior and grain boundaries due to its superimposed action with C1P, so it is set to less than 0.00%. However, if it is too low, grain refinement by AgN will not be possible, so the lower limit is set to 0.003%.

この鋼を溶製するにあたっては電気炉、転炉のいづれを
用いてもよい。鋼板とするにあたっては、鍛造、圧延の
いづれを用いてもよい。また鋼板の熱処理は焼入れ、焼
戻しを行う。
In melting this steel, either an electric furnace or a converter may be used. In making a steel plate, either forging or rolling may be used. In addition, the heat treatment of the steel plate includes quenching and tempering.

[実 施 例] 第1表に示す化学成分のうち1〜5は本発明鋼で、6〜
17は比較鋼である。
[Example] Among the chemical components shown in Table 1, 1 to 5 are the steels of the present invention, and 6 to 5 are the inventive steels.
No. 17 is comparative steel.

鋼の溶製は転炉により行い、常法によりスラブとしたの
ち第1表に示す板厚に厚板圧延した。
The steel was melted in a converter, made into slabs by a conventional method, and then rolled into slabs to the thickness shown in Table 1.

鋼板の熱処理条件は、規準;800℃空冷、焼入二88
0℃水冷、焼戻;670℃空冷、応力除去焼鈍:825
℃空冷である。
The heat treatment conditions for the steel plate are standard: 800℃ air cooling, quenching 288℃
0℃ water cooling, tempering; 670℃ air cooling, stress relief annealing: 825
℃ air cooling.

第2表にこれらの鋼板の母材の引張試験、シャルピー衝
撃試験及び電子ビーム溶接部のシャルピー衝撃試験結果
を示す。
Table 2 shows the results of the tensile test, Charpy impact test of the base material of these steel plates, and the Charpy impact test of the electron beam welded parts.

但し、電子ビーム溶接条件は電圧150kV 、電流1
80mA 、速度20cm/win、である。
However, the electron beam welding conditions are voltage 150kV, current 1
80mA, speed 20cm/win.

電子ビーム溶接部のシャルピー試験のノツチ位置は溶着
金属中央に入れた。
The notch position for the Charpy test of the electron beam weld was placed at the center of the weld metal.

本発明の鋼1〜5はC1PとNff1を適切な範囲に入
れることにより、それらの重畳効果により良好な電子ビ
ーム溶接部の低温靭性を有している。
Steels 1 to 5 of the present invention have good low-temperature toughness of electron beam welded parts due to the superimposed effect of C1P and Nff1 within appropriate ranges.

母材特性も良好である。つぎに、m6はCが低く母材強
度が低い。
The base material properties are also good. Next, m6 has low C and low base material strength.

m7はCが高く、母材そして、特に電子ビーム溶接部の
靭性が低い。鋼8はPか高く、電子ビーム溶接部の靭性
が低い。鋼9はNが高く、電子ビーム溶接部の靭性が低
い。
m7 has a high C content, and the toughness of the base metal and especially the electron beam welded part is low. Steel 8 has a high P content, and the toughness of the electron beam welded part is low. Steel 9 has a high N content and has low toughness in the electron beam welded part.

n410はS+が高く、母材、電子ビーム溶接部とも靭
性が低い。鋼11はMnが低く、鋼I2はSか高<、n
413はN1が低く、鋼14はcrが低く、鋼15はM
oが低く、それぞれ電子ビーム溶接部の靭性が低い。m
lBはAJが低く、鋼17はAj)が高く、それぞれ母
材及び電子ビーム溶接部の靭性が低い。
n410 has a high S+ and low toughness in both the base metal and the electron beam welded part. Steel 11 has low Mn, and steel I2 has S or high <,n
413 has low N1, steel 14 has low cr, steel 15 has M
o is low, and the toughness of the electron beam welded part is low. m
1B has a low AJ, and Steel 17 has a high AJ), and the toughness of the base metal and the electron beam weld are low, respectively.

[発明の効果] 以上述べたように、本発明によればC1PとNの適切な
範囲への成分限定とMn、Cr、Ni 。
[Effects of the Invention] As described above, according to the present invention, the components of C1P and N can be limited to appropriate ranges, and Mn, Cr, and Ni.

Moの規格上限近くへの成分限定により、粗大な炭化物
、窒化物が析出せず、かつ、組織もほぼ下部ベイナイト
となり、著しく電子ビーム溶接部の靭性を向上させるこ
とが可能となり、産業上多大な効果を奏するものである
By limiting the content of Mo to near the upper limit of the specification, coarse carbides and nitrides do not precipitate, and the structure becomes almost lower bainite, making it possible to significantly improve the toughness of electron beam welds, which is a great tool in industry. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、、b、cはCをパラメーターとした電子ビー
ム溶接部のシャルピー衝撃試験値に及ぼすP量とN量の
影響を示す図表である。 代 理 人  弁理士  茶野木 立 夫(幻 第1図 C;θ)3名 2     5      ノO P量(X)θ−3力 (b) C=0゜ノj、Z βt(xtoづ2) (V) C=0./9X 2    5    ノ0 Pi(x/□−哉)
Figures 1a, 1b, and 1c are charts showing the influence of the amount of P and the amount of N on the Charpy impact test value of an electron beam welded part, with C as a parameter. Agent Patent attorney Tatsuo Chanoki (phantom Figure 1 C; θ) 3 people 2 5 no OP amount (X) θ-3 force (b) C=0゜noj, Z βt (xtozu2) (V) C=0. /9X 2 5 no 0 Pi (x/□-ya)

Claims (1)

【特許請求の範囲】 重量%で、 C:0.13%以上0.16%未満 Si:0.05〜0.03% Mn:1.30〜1.50% P≦0.005% S≦0.010% Cu≦0.10% Ni≦0.70%を越え1.00%以下 Cr:0.10〜0.60% Mo:0.50〜0.60% Al:0.005〜0.040% N:0.003〜0.006% 残部Fe及び不可避的不純物からなることを特徴とする
電子ビーム溶接特性の優れた原子炉用鋼板。
[Claims] In weight%, C: 0.13% or more and less than 0.16% Si: 0.05-0.03% Mn: 1.30-1.50% P≦0.005% S≦ 0.010% Cu≦0.10% Ni≦more than 0.70% and less than 1.00% Cr: 0.10 to 0.60% Mo: 0.50 to 0.60% Al: 0.005 to 0 .040% N: 0.003 to 0.006% A steel plate for nuclear reactors with excellent electron beam welding characteristics, characterized by comprising the remainder Fe and unavoidable impurities.
JP22748288A 1988-09-13 1988-09-13 Nuclear reactor steel plate excellent in electron beam welding characteristic Granted JPH0277561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22748288A JPH0277561A (en) 1988-09-13 1988-09-13 Nuclear reactor steel plate excellent in electron beam welding characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22748288A JPH0277561A (en) 1988-09-13 1988-09-13 Nuclear reactor steel plate excellent in electron beam welding characteristic

Publications (2)

Publication Number Publication Date
JPH0277561A true JPH0277561A (en) 1990-03-16
JPH0534415B2 JPH0534415B2 (en) 1993-05-24

Family

ID=16861574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22748288A Granted JPH0277561A (en) 1988-09-13 1988-09-13 Nuclear reactor steel plate excellent in electron beam welding characteristic

Country Status (1)

Country Link
JP (1) JPH0277561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295480A (en) * 1991-12-13 1993-11-09 Kawasaki Steel Corp Thick steel plate for welded structure excellent in toughness of electron beam weld zone
JP2013249497A (en) * 2012-05-30 2013-12-12 Kobe Steel Ltd Steel for forgings excellent in hydrogen-crack resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210817A (en) * 1975-07-10 1977-01-27 Nippon Steel Corp Steel sheet having excellent toughness for pressure vessel of atomic f urnace
JPS5254611A (en) * 1975-10-31 1977-05-04 Nippon Kokan Kk <Nkk> Steel for lrge heat input welding
JPS57116755A (en) * 1981-01-08 1982-07-20 Sumitomo Metal Ind Ltd High tensile structural steel for pressure vessel
JPS5896854A (en) * 1981-12-07 1983-06-09 Kawasaki Steel Corp High toughness steel for pressure vessel
JPS61250145A (en) * 1985-04-25 1986-11-07 Mitsubishi Heavy Ind Ltd Carbon steel suitable for electron beam welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210817A (en) * 1975-07-10 1977-01-27 Nippon Steel Corp Steel sheet having excellent toughness for pressure vessel of atomic f urnace
JPS5254611A (en) * 1975-10-31 1977-05-04 Nippon Kokan Kk <Nkk> Steel for lrge heat input welding
JPS57116755A (en) * 1981-01-08 1982-07-20 Sumitomo Metal Ind Ltd High tensile structural steel for pressure vessel
JPS5896854A (en) * 1981-12-07 1983-06-09 Kawasaki Steel Corp High toughness steel for pressure vessel
JPS61250145A (en) * 1985-04-25 1986-11-07 Mitsubishi Heavy Ind Ltd Carbon steel suitable for electron beam welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295480A (en) * 1991-12-13 1993-11-09 Kawasaki Steel Corp Thick steel plate for welded structure excellent in toughness of electron beam weld zone
JP2013249497A (en) * 2012-05-30 2013-12-12 Kobe Steel Ltd Steel for forgings excellent in hydrogen-crack resistance

Also Published As

Publication number Publication date
JPH0534415B2 (en) 1993-05-24

Similar Documents

Publication Publication Date Title
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
US7806993B2 (en) Heat-resistant ferritic stainless steel and method for production thereof
TWI460292B (en) Ferritic stainless steel
US6007644A (en) Heavy-wall H-shaped steel having high toughness and yield strength and process for making steel
WO2014050016A1 (en) Ferritic stainless steel
US4076525A (en) High strength fracture resistant weldable steels
JPH09157787A (en) High tensile strength steel for welding excellent in toughness in very large heat input welded heat affected zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
EP0699773A1 (en) Method for manufacturing electric-resistance-welded steel pipe
JPH0277561A (en) Nuclear reactor steel plate excellent in electron beam welding characteristic
KR20240144320A (en) Method for manufacturing parts having welded joints made of nickel-chromium-aluminum alloy
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
JP2898447B2 (en) Steel plates for pressure vessels with excellent electron beam welding characteristics
JP2023005308A (en) Ferritic stainless steel sheet and method for producing the same
JP4192576B2 (en) Martensitic stainless steel sheet
JP4054139B2 (en) Steel material excellent in fire resistance and weld heat-affected zone toughness and its manufacturing method
CN116171335B (en) Steel Plate
JP2891805B2 (en) Structural steel with excellent electron beam welding properties
JPH0277562A (en) Nuclear reactor steel excellent in electron beam welding characteristic
JP2889022B2 (en) Steel for pressure vessels with excellent electron beam welding properties
WO2023243133A1 (en) Ferritic stainless steel and production method therefor
WO2022168686A1 (en) Steel material and method for producing same, and tank and method for producing same
JP2803839B2 (en) Pressure vessel steel plate with excellent electron beam welding characteristics
JPH08277440A (en) Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof