[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02220735A - Production of high tensile strength steel for welding and low temperature including titanium oxide - Google Patents

Production of high tensile strength steel for welding and low temperature including titanium oxide

Info

Publication number
JPH02220735A
JPH02220735A JP3950789A JP3950789A JPH02220735A JP H02220735 A JPH02220735 A JP H02220735A JP 3950789 A JP3950789 A JP 3950789A JP 3950789 A JP3950789 A JP 3950789A JP H02220735 A JPH02220735 A JP H02220735A
Authority
JP
Japan
Prior art keywords
oxide
low
steel
toughness
deoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3950789A
Other languages
Japanese (ja)
Other versions
JPH0642979B2 (en
Inventor
Koichi Yamamoto
広一 山本
Kentaro Okamoto
健太郎 岡本
Toshinaga Hasegawa
俊永 長谷川
Shuji Aihara
周二 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1039507A priority Critical patent/JPH0642979B2/en
Publication of JPH02220735A publication Critical patent/JPH02220735A/en
Publication of JPH0642979B2 publication Critical patent/JPH0642979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tension strength steel for low temp. having excellent low toughness at a welding part by adding low m.p. Ti-Cu granule into a continuous casting mold to finish deoxidized molten steel having the specific composition and rolling a cast steel slab containing Ti oxide and the combined precipitating granule at the specific condition in the center part of the cast steel slab. CONSTITUTION:The molten steel is pre-deoxidized to make 0.0030-0.0100wt.% oxygen content in this and alloys are added to produce the molten steel containing 0.02-0.18% C, 0.03-0.25% Si, 0.4-2.0% Mn, 0.0007-0.0060% S, 0.0010-0.0040% N, <=0.015% P, <=0.003% Al and the balance of Fe with inevitable impurities. Further, as the finish deoxidation, the alloy wire or granule of the low m.p. Ti-Cu, etc., is added into the continuous casting mold so as to contain 0.005-0.030wt.% Ti, and the cast steel slab containing Ti oxide having 0.1-0.3mu grain diameter and 40-170 pieces/cm<3> total combined precipitating granules of Ti oxide and TiN, MnS, is rolled.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、溶接性の優れた強靭性高張力鋼に係わり、特
に、溶接熱影響部(以下HAZと称する)の低温靭性の
優れた構造用鋼の製造法に関するものである。 (従来の技術) 低合金鋼の溶接部のHAZ靭性は、(1)有効結晶粒の
大きさ(オーステナイト粒径、ミクロ組織) 、(2)
硬化相の粒径及び体積分率(炭化物、高炭素マルテンサ
イト、介在物) 、(3)母相の硬さ及び靭性(フェラ
イト中の固溶C,N)等の冶金学要因によって支配され
ている。 これらの中でHAZ靭性の向上策として、HAZ組織を
微細化し、有効結晶粒を細粒化する方法が簡便であり、
高温で安定な種々の析出物を活用した各種の方法が提案
されている。 例えば、昭和54年6月発行の鉄と鋼、第65巻第8号
1232頁においては、TiNを微細分散させ、50k
g−f / @J高張力鋼の大入熱溶接時のHAZ靭性
を改善する手段がとられている。 しかし、これらの析出物は、大入熱溶接においては大部
分が溶解され、HAZ組織の粗粒化と固溶Nの増加を生
じ、HAZ靭性を劣化させるという欠点が存在する。 一方、本発明者の一部は、溶鉄のAfi脱酸に替わるT
i脱酸により、鋼中にTi酸化物を微細分散させ、溶接
時のHAZ部において、粒内フェライト変態組織(以下
IFPと称する)を発達させることにより、HAZ靭性
を著しく改善できることを、特開昭80−245768
号、特開昭[io −79745号、特開昭81−11
7245号、特開昭62−1842号において示した。 さらに本発明者らはTi酸化物含有鋼においては鋼中の
Ti酸化物個数の増加にともないHAZ靭性が向上する
ことを出願番号83−13813で明らかにした。しか
し、連続鋳造で溶製すると、スラブ中央部においてTi
酸化物個数が減少し、大入熱HAZ靭性を確保するため
に必要な個数を得られない場合が生じた。 (発明が解決しようとする課題) 連続鋳造における鋼塊中央部のTi酸化物個数の減少は
主にTi酸化物が凝固時に二次脱酸生成物として析出す
るため、徐冷されるスラブ中央部では凝集粗大化するこ
とに原因することが判明した。 スラブ中央部においても必要なTi酸化物個数を確保し
、HAZ靭性を改善するために、二次脱酸生成物に加え
、溶鋼段階で析出する一時脱酸Ti酸化物を活用する、
連続鋳造のモールドでのTi脱酸方法が有効であるとの
結論に達し、本発明を成したものである。 (課題を解決するための手段) 本発明は、以上の知見に基づいてなされたものであり、
その要旨は、溶鉄を予備脱酸により溶存酸素を重量%で
o、ooao〜0.0100%に溶製し、合金添加によ
る成分調整により、C: 0.02〜0.18%、S 
j:0.03〜0.25%、Mn:0.4〜2.0%、
S  :  0.0007〜0.0080%、 N  
:  0.0010−0.0040%を含有させ、P≦
0.015%、Al 50.003%に制限し、Cr≦
1.0%、Nl≦3.0%、Mo≦0.5%、■≦0.
1  %、 Nb 50.05%、 B≦0.002 
 %、 Cu  ≦1.5%の1種または2種以上を含
有し、残部はFe及び不可避不純物からなる溶鋼を溶製
、さらに、最終脱酸として連続鋳造のモールドで低融点
のTi−CuSTi−Nl 、Ti−Fe合金のワイヤ
ー、または粒体を添加し、重量%でTi:0.005〜
o、oao%を含有させ、スラブ中央部において、主に
粒子径が0.1〜3.0μsにあるTi酸化物及びTi
酸化物とTiN、MnSの複合析出物粒子の合計で40
−170個/lll1を含有する鋼塊を圧延して製造す
ることを特徴とする溶接部低温靭性の優れた低温用高張
力鋼の製造法である。 (作  用) 以下、本発明について詳細に説明する。 最初に本発明鋼の基本成分範囲の限定理由について述べ
る。 まず、Cは鋼の強度を向上させる有効な成分として添加
するもので、0.02%未満では構造用鋼として必要な
強度が得られず、また0、1896を超える過剰の添加
は、溶接割れ性、HAZ靭性などを著しく低下させるの
で、上限を口、18%とした。 次に、Slは母材の強度確保、溶鋼の予備脱酸などに必
要であるが、0.25%を超えると熱処理組織内に硬化
組織の高炭素マルテンサイト(以下M*と称す)を生成
し、靭性を著しく低下させる。 また、0.03%未満ではTi酸化物の分散に必要な溶
鋼の予備脱酸ができないため、S1含有量をこの範囲に
制限した。 Mnは母材の強度、靭性の確保には0.4%以上の添加
が必要であるが、溶接部の靭性、割れ性などの許容でき
る範囲で上限を2.0%とした。 Sについては、複合体のMnSを析出させるために0.
0007%以上必要であるが、0.0060%超の過剰
の添加は、粗大な硫化物系介在物を形成し、母材の延性
低下と異方性の増加を招くため、0.0007〜0.0
080%とした。 TiはTi酸化物とTi窒化物の形成に必須の元素であ
り、0.005%未満では必要とするTi酸化物とTi
窒化物量が得られず、IFP生成量が低減するため0.
005%以上の添加が必要であるが、0.03%超の添
加は、過剰なTi炭化物の析出をともない、析出硬化に
より硬さを上昇させ、靭性低下をもたらすため、0.0
3%以下とした。 Nは含有量が0.0040%を超えるとM*が存在しな
い条件でも母相を脆化させ、靭性を低下させる。 また、Nが0.0010%未満では鋼中にほとんど窒化
物を生成せず、IFP組織の生成量が減少し靭性が低下
する。 Pは、凝固偏析による溶接割れ性、靭性などの低下を防
止する上から、極力低減すべきであり、上限を0.旧5
%に制限した。 Apは強力な脱酸元素であり、0.003%以上の添加
はTi脱酸により形成されるTi酸化物が形成されなく
なり、IFPが形成されず、靭性の低下がもたらされる
ので、0.003%以下に制限した。 以上が本発明鋼の基本成分であるが、母材強度の上昇、
及び母材の靭性向上の目的で、Cr。 Ni 、Mo、V、Nb、B、Cuの1種または2種以
上を含有することができる。 まず、Niは、母材の強靭性を為める極めて有効な元素
であるが、3.0%を超す添加は、焼き入れ性の増加に
より、IFP組織の形成が抑制されること、M*が生成
されることにより靭性の低下をもたらすため、上限を3
.0%とした。 Cr、Moは焼き入れ性の向上と析出硬化により、母材
の強化に有効である。また、TMCPのような適切なプ
ロセスを付加することにより、母材の低温靭性の、向上
に有効である。しかし、各成分の上限を超える過剰の添
加は、靭性及び硬化性の観点から有害となるため、Cr
、Moの各々について、上限を1.0%、0.5%とし
た。 V、Nbは母材の強靭化、粒界フェライトの生成抑制な
どによる靭性の改善などに有効であるが、各成分の上限
を超える過剰の添加は、靭性及び硬化性の観点から有害
となるため、V、Nbのそれぞれについて、上限を0.
1%、 0.05%とした。 Bは焼き入れ性の向上による母材強度の上昇と粒界フェ
ライトの成長の抑制による高温熱処理鋼材の靭性向上が
期待されるが、0.002%を超える添加は、Fe  
(CB)eの析出による靭性低下と急冷処理での硬化を
招くため、上限を0.002%とした。 Cuは母材の強化のわりには、HAZの硬化が少なく、
有効な元素であるが、応力除去焼鈍による焼き戻し脆性
、溶接割れ性などを考慮して、上限を1.5%とした。 次に、HAZにIFPを生成し組織を微細化しHAZ靭
性を向上させる基となるIFP核析出物について以下に
説明する。 IFPは主に粒子径が0.1〜3.0μmにある数%の
Mnを固溶したTi2O3,Tia o5のチタン酸化
物及びこれらの酸化物とTtN、MnSの複合体、Ti
N+MnSの複合体から生成する。該粒子径が0.1−
未満ではIFP生成効果は極めて弱く、また、3.0a
m超になるとIFP生成能は有するものの、それ自身が
破壊の発生箇所となり易くなり、HAZ靭性の低下をも
たらす。 連続鋳造のスラブ中央部におけるその該粒子数について
は、Ti酸化物及びTi酸化物とTiN+MnSの複合
体の粒子数が少ないと、大入熱HAZ部において十分に
IFPを生成させることが出来ないので、それらの合計
で40個/−以上存在させることが必要である。 該粒子数の増加にともないIFPの個数も増加するが、
該粒子数の合計で1708/mm2を超える過剰な存在
は、母材及び溶接部の延性低下を招く傾向があるので、
該粒子数の上限は170個/lII!でなければならな
い。 上記における本発明の基本となるスラブ中央部でTi酸
化物数を増加させるためには、二次脱酸生成物に加え、
溶鋼段階で析出する一次脱酸Ti酸化物を活用しなけれ
ばならない。従って、最終脱酸としてのTi添加後、で
きる限り短時間に出鋼、凝固させる必要がある。それに
は連続鋳造においてTiをモールド添加する方法が最も
有効であり、その方法について説明する。 連続鋳造のモールドでTi脱酸するには、添加したTi
を溶鋼中に、できる限り短時間に均一拡散させる必要が
ある。それには融点の低いTi合金が有効であり、加工
性、経済性を加味し、選択した結果、Ti−Cu、Ti
  −Nl 、Ti  −Fe合金が優れていることが
判明した。 その合金の組成は[L%でTi:4Q〜60%、残部は
Cu 1Ti:60〜80%、残部はNi 、Ti:8
5〜75%、残部はFeからなるもので何れも純Tiに
比べ低融点の合金である。添加はこれらの合金をワイヤ
ー及び粒状に加工し、連続しモールド添加する方法であ
る。 またTi脱酸前の
(Industrial Application Field) The present invention relates to strong, high-strength steel with excellent weldability, and particularly to a method for manufacturing structural steel with excellent low-temperature toughness of the weld heat-affected zone (hereinafter referred to as HAZ). It is. (Prior art) The HAZ toughness of a welded joint of low alloy steel is determined by: (1) effective grain size (austenite grain size, microstructure); (2)
It is governed by metallurgical factors such as the grain size and volume fraction of the hardened phase (carbides, high carbon martensite, inclusions), (3) the hardness and toughness of the matrix (solid solution C, N in ferrite). There is. Among these methods, a simple method to improve HAZ toughness is to refine the HAZ structure and refine the effective crystal grains.
Various methods have been proposed that utilize various precipitates that are stable at high temperatures. For example, in Tetsu to Hagane, Vol. 65, No. 8, page 1232, published in June 1971, TiN was finely dispersed and 50k
Measures have been taken to improve the HAZ toughness of g-f/@J high-strength steel during high heat input welding. However, most of these precipitates are dissolved in high heat input welding, resulting in coarse graining of the HAZ structure and increase in solute N, which has the disadvantage of degrading the HAZ toughness. On the other hand, some of the inventors of the present invention have proposed that T
Unexamined Japanese Patent Application Publication No. 2003-110022 has shown that HAZ toughness can be significantly improved by finely dispersing Ti oxides in steel through deoxidation and developing an intragranular ferrite transformation structure (hereinafter referred to as IFP) in the HAZ during welding. Showa 80-245768
No., JP-A-Sho [io-79745, JP-A-81-11
No. 7245 and JP-A-62-1842. Furthermore, the present inventors revealed in Application No. 83-13813 that in Ti oxide-containing steel, HAZ toughness improves as the number of Ti oxides in the steel increases. However, when continuous casting is used, Ti is formed in the center of the slab.
There were cases where the number of oxides decreased and the number necessary to ensure high heat input HAZ toughness could not be obtained. (Problem to be solved by the invention) The decrease in the number of Ti oxides in the central part of the steel ingot during continuous casting is mainly due to the fact that Ti oxides precipitate as secondary deoxidation products during solidification. It was found that this was caused by coarsening of agglomerates. In order to secure the necessary number of Ti oxides even in the central part of the slab and improve HAZ toughness, in addition to secondary deoxidation products, temporary deoxidation Ti oxides precipitated during the molten steel stage are utilized.
It was concluded that a Ti deoxidizing method using a continuous casting mold is effective, and the present invention was completed. (Means for solving the problem) The present invention has been made based on the above findings,
The gist is that molten iron is pre-deoxidized to reduce dissolved oxygen to o, ooao to 0.0100% by weight, and by adjusting the components by adding alloys, C: 0.02 to 0.18%, S.
j: 0.03-0.25%, Mn: 0.4-2.0%,
S: 0.0007-0.0080%, N
: Contains 0.0010-0.0040%, P≦
0.015%, Al 50.003%, Cr≦
1.0%, Nl≦3.0%, Mo≦0.5%, ■≦0.
1%, Nb 50.05%, B≦0.002
%, Cu ≦1.5%, and the remainder is Fe and unavoidable impurities.Furthermore, as final deoxidation, low melting point Ti-CuSTi- is used in a continuous casting mold for final deoxidation. Add Nl, Ti-Fe alloy wire or particles, Ti: 0.005 to 0.005% by weight
Ti oxide and Ti with a particle size of 0.1 to 3.0 μs are mainly contained in the central part of the slab.
The total of composite precipitate particles of oxide, TiN, and MnS is 40
This is a method for producing high-strength steel for low temperature use with excellent low-temperature toughness of welds, which is characterized by producing by rolling a steel ingot containing -170 pieces/lll1. (Function) The present invention will be explained in detail below. First, the reason for limiting the basic component range of the steel of the present invention will be described. First, C is added as an effective component to improve the strength of steel. If it is less than 0.02%, the strength necessary for structural steel cannot be obtained, and if it is added in excess of 0.1896, it may cause weld cracks. The upper limit was set at 18% because it significantly lowers the hardness, HAZ toughness, etc. Next, Sl is necessary to ensure the strength of the base metal and to preliminarily deoxidize molten steel, but if it exceeds 0.25%, a hardened structure of high carbon martensite (hereinafter referred to as M*) will be formed in the heat-treated structure. and significantly reduce toughness. Further, if it is less than 0.03%, preliminary deoxidation of molten steel necessary for dispersing Ti oxide cannot be performed, so the S1 content was limited to this range. Although it is necessary to add Mn in an amount of 0.4% or more to ensure the strength and toughness of the base metal, the upper limit was set to 2.0% within an allowable range such as the toughness and crackability of the welded part. Regarding S, in order to precipitate MnS of the complex, 0.
0.0007% or more is necessary, but excessive addition of more than 0.0060% will form coarse sulfide inclusions, leading to a decrease in ductility and an increase in anisotropy of the base material, so 0.0007 to 0. .0
080%. Ti is an essential element for the formation of Ti oxide and Ti nitride, and if it is less than 0.005%, it will not be possible to form the necessary Ti oxide and Ti nitride.
0.0 because the amount of nitrides cannot be obtained and the amount of IFP generated is reduced.
It is necessary to add 0.05% or more, but addition of more than 0.03% causes precipitation of excessive Ti carbides, increases hardness due to precipitation hardening, and reduces toughness.
It was set to 3% or less. When the content of N exceeds 0.0040%, the matrix becomes brittle even in the absence of M*, reducing the toughness. Further, if N is less than 0.0010%, hardly any nitrides are generated in the steel, the amount of IFP structure generated is reduced, and the toughness is lowered. P should be reduced as much as possible to prevent deterioration of weld cracking properties, toughness, etc. due to solidification segregation, and the upper limit should be set at 0. Old 5
%. Ap is a strong deoxidizing element, and if it is added in an amount of 0.003% or more, Ti oxide formed by Ti deoxidation will not be formed, IFP will not be formed, and the toughness will decrease. % or less. The above are the basic components of the steel of the present invention.
and Cr for the purpose of improving the toughness of the base material. It can contain one or more of Ni, Mo, V, Nb, B, and Cu. First, Ni is an extremely effective element that improves the toughness of the base metal, but adding more than 3.0% increases hardenability and suppresses the formation of IFP structure. The upper limit was set to 3 to reduce toughness due to the formation of
.. It was set to 0%. Cr and Mo are effective in strengthening the base material by improving hardenability and precipitation hardening. Furthermore, adding an appropriate process such as TMCP is effective in improving the low-temperature toughness of the base material. However, excessive addition exceeding the upper limit of each component is harmful from the viewpoint of toughness and hardenability, so Cr
, Mo, the upper limits were set to 1.0% and 0.5%, respectively. V and Nb are effective in improving toughness by strengthening the base material and suppressing the formation of grain boundary ferrite, but excessive addition exceeding the upper limit of each component is harmful from the viewpoint of toughness and hardenability. , V, and Nb, the upper limit is set to 0.
1% and 0.05%. B is expected to improve the toughness of high-temperature heat-treated steel materials by increasing the strength of the base material by improving hardenability and suppressing the growth of grain boundary ferrite, but addition of more than 0.002%
The upper limit was set at 0.002% because the precipitation of (CB)e causes a decrease in toughness and hardening during rapid cooling treatment. Although Cu strengthens the base material, it hardens the HAZ less.
Although it is an effective element, the upper limit was set at 1.5% in consideration of temper embrittlement caused by stress relief annealing, weld cracking resistance, etc. Next, the IFP nuclear precipitates that form the basis of IFP generation in the HAZ, refinement of the structure, and improvement of HAZ toughness will be described below. IFP mainly consists of titanium oxides such as Ti2O3 and TiO5 with a particle size of 0.1 to 3.0 μm and a few percent of Mn as a solid solution, and composites of these oxides with TtN and MnS, and Ti.
It is produced from a complex of N+MnS. The particle size is 0.1-
Below 3.0a, the IFP generation effect is extremely weak.
If it exceeds m, although it has the ability to generate IFP, it itself tends to become a point where fracture occurs, resulting in a decrease in HAZ toughness. Regarding the number of particles in the central part of the continuous casting slab, if the number of particles of Ti oxide and the composite of Ti oxide and TiN + MnS is small, sufficient IFP cannot be generated in the high heat input HAZ part. , it is necessary that a total of 40/- or more of them be present. As the number of particles increases, the number of IFPs also increases,
The presence of an excessive number of particles exceeding 1708/mm2 in total tends to cause a decrease in the ductility of the base metal and welded part.
The upper limit of the number of particles is 170 pieces/lII! Must. In order to increase the number of Ti oxides in the central part of the slab, which is the basis of the present invention, in addition to the secondary deoxidation product,
The primary deoxidizing Ti oxide that precipitates during the molten steel stage must be utilized. Therefore, after the addition of Ti for final deoxidation, it is necessary to tap and solidify the steel as quickly as possible. The most effective method for this purpose is to add Ti to the mold during continuous casting, and this method will be explained below. To deoxidize Ti in a continuous casting mold, the added Ti
must be uniformly diffused into molten steel in the shortest possible time. Ti alloys with low melting points are effective for this purpose, and as a result of considering processability and economic efficiency, Ti-Cu, Ti
-Nl, Ti-Fe alloys were found to be superior. The composition of the alloy is [L% Ti: 4Q to 60%, the balance is Cu 1Ti: 60 to 80%, the balance is Ni, Ti: 8
5 to 75%, and the remainder is Fe, which is an alloy with a lower melting point than pure Ti. Addition is a method of processing these alloys into wires and granules and continuously adding them in a mold. Also, before Ti deoxidation

〔0〕濃度が0.0100%を超える
場合は、他の条件を満たしていても、Ti酸化物が粗粒
化し脆性破壊の起点となり、靭性は向上しない。 以下に実施例によりさらに本発明の効果を示す。 (実 施 例) 第1表は、試作鋼の化学成分を示し、鋼1〜6まではT
i合金によるモールド添加した本発明法によるもので、
fR7,8は製鋼の真空脱ガス装置内でスポンジTiに
より脱酸する従来法で溶製した比較鋼である。 第2表は添加Ti・合金の組成、添加形状、鋳片厚、ス
ラブ中央部のTi酸化物個数、溶接再現HAZ靭性を表
した。なお、Ti酸化物数はTi。 O元素の特性X線をコンピューターにより画像解析処理
(CMA装置)し求めた。 これらの試作鋼は300■厚スラブを圧延により50u
mm鋼板とし、板厚1/2 tから12 X 12 X
 60um+mの試験片を採取し、溶接再現熱サイクル
試験によりHAZ靭性を評価した。 溶接再現熱サイクル試験は試験片の中央部を高周波誘導
加熱により1400℃に急速加熱し、81]0℃から5
00℃の冷却時間101秒の条件で冷却した。 この条件は溶接入熱量130kJ/cmに相当し、加熱
温度1400℃は実際のHAZの溶融線近傍の加熱領域
に相当する。さらに靭性はこの試験片から211mVノ
ツチ・シャルピーに加工し、衝撃破面遷移温度(以下v
Trsと称す)を求め評価した。 第2表に示すように、本発明による鋼は鋳片の厚さ中央
部でTi酸化物を40個/−以上含み、比較法による鋼
は士数個/III!に低減し、目的とする40個/ff
ll1以上の粒子を分散させられない。 従って、本発明法による鋼の溶接再現HAZ靭性(vT
rs)は比較法による屑に比べ、向上L、vTrsで2
0〜40℃低温側にシフトする。このように低融点Ti
合金をモールド添加する方法により、300關厚の厚鋳
片の中央部においてもその該粒子数が40個/−以上に
なり、優れた大人熱HAZ靭性を示す。 即ち、本発明の製造法の要件が総て満たされた時に、第
1表に示される鋼6に示すような連続鋳造による鋼板の
1/2部においてもvTrs −−70℃もの優れた大
入熱HAZ靭性を持つ低温用鋼材の製造が可能になる。 (発明の効果) 本発明により連続鋳造による厚鋼板の板厚1/2部にお
いても優れた大入熱HAZ靭性を持つ低温用鋼材の製造
が可能になり、北海のような極低温環境で使用される、
海洋構造物、ラインパイプ、低温容器、等の鋼材に適用
ができる。 その結果、構造物の安全性の確保、溶接性能の向上によ
る経済効果等の産業上の効果は極めて顕著なものがある
。 代 理 人  弁理士  茶野木 立 失笑1頁の続き [株]Int、 C1,’ 識別記号 庁内整理番号
[0] When the concentration exceeds 0.0100%, even if other conditions are met, the Ti oxide becomes coarse grained and becomes the starting point of brittle fracture, and the toughness is not improved. The effects of the present invention will be further illustrated by Examples below. (Example) Table 1 shows the chemical composition of trial steel, and steels 1 to 6 are T
It is based on the method of the present invention in which mold addition is made of i-alloy.
fR7 and fR8 are comparative steels made by the conventional method of deoxidizing with sponge Ti in a vacuum degassing device for steelmaking. Table 2 shows the composition of the added Ti/alloy, the added shape, the slab thickness, the number of Ti oxides in the center of the slab, and the welding reproduction HAZ toughness. Note that the number of Ti oxides is Ti. Characteristic X-rays of the O element were determined by image analysis processing (CMA device) using a computer. These prototype steels were made by rolling 300mm thick slabs to 50u.
mm steel plate, plate thickness 1/2t to 12 x 12 x
A test piece of 60 um+m was taken, and the HAZ toughness was evaluated by a welding reproduction thermal cycle test. In the welding reproduction thermal cycle test, the central part of the specimen was rapidly heated to 1400°C by high-frequency induction heating, and
Cooling was performed at 00° C. for a cooling time of 101 seconds. This condition corresponds to a welding heat input of 130 kJ/cm, and a heating temperature of 1400° C. corresponds to a heating region near the fusion line of the actual HAZ. Furthermore, the toughness was determined by processing this test piece to a 211 mV Notch Charpy and impact fracture transition temperature (hereinafter referred to as v).
Trs) was determined and evaluated. As shown in Table 2, the steel according to the present invention contains 40 Ti oxides/- or more at the center of the thickness of the slab, and the steel according to the comparative method contains Ti oxides at least 40 Ti oxides/III! to the target of 40 pieces/ff.
Particles larger than ll1 cannot be dispersed. Therefore, the welding reproduction HAZ toughness (vT
rs) is improved by L and vTrs by 2 compared to the waste obtained by the comparative method.
Shift to the lower temperature side by 0 to 40°C. In this way, low melting point Ti
By adding the alloy in a mold, the number of particles becomes 40/- or more even in the center of a 300 mm thick slab, showing excellent adult thermal HAZ toughness. That is, when all the requirements of the manufacturing method of the present invention are satisfied, even a half part of a steel plate made by continuous casting as shown in Steel 6 shown in Table 1 can have an excellent large input of vTrs of -70°C. It becomes possible to manufacture low-temperature steel materials with thermal HAZ toughness. (Effects of the invention) The present invention makes it possible to manufacture low-temperature steel materials with excellent high heat input HAZ toughness even at 1/2 part thickness of thick steel plates by continuous casting, and can be used in cryogenic environments such as the North Sea. be done,
It can be applied to steel materials such as marine structures, line pipes, and low-temperature containers. As a result, industrial effects such as ensuring the safety of structures and economic effects due to improved welding performance are extremely significant. Agent Patent Attorney Tate Chanoki Continuing from page 1 [Shares] Int, C1,' Identification code Office reference number

Claims (1)

【特許請求の範囲】 1、溶鉄を予備脱酸により溶存酸素を重量%で0.00
30〜0.0100%に溶製し、合金添加による成分調
整により、C:0.02〜0.18%、Si:0.03
〜0.25%、Mn:0.4〜2.0%、S:0.00
07〜0.0060%、N:0.0010〜0.004
0%を含有させ、P≦0.015%、Al≦0.003
%に制限し、残部はFe及び不可避不純物からなる溶鋼
を溶製、さらに、最終脱酸として連続鋳造のモールドで
低融点のTi−Cu、Ti−Ni、Ti−Fe合金のワ
イヤー、または粒体を添加し、重量%でTi:0.00
5〜0.030%を含有させ、スラブ中央部において、
主に粒子径が0.1〜3.0umにあるTi酸化物及び
Ti酸化物とTiN、MnSの複合析出物粒子の合計で
40〜170個/mm^2を含有する鋼塊を圧延するこ
とを特徴とする溶接部低温靭性の優れた低温用高張力鋼
の製造法。 2、溶鉄を予備脱酸により溶存酸素を重量%で0.00
30〜0.0100%に溶製し、合金添加による成分調
整により、C:0.02〜0.18%、Si:0.03
〜0.25%、Mn:0.4〜2.0%、S:0.00
07〜0.0060%、N:0.0010〜0.004
0%を含有させ、P≦0.015%、Al≦0.003
%に制限し、Cr<1.0%、Ni≦3.0%、Mo≦
0.5%、V≦0.1%、Nb≦0.05%、B≦0.
002%、Cu≦1.5%の1種または2種以上を含有
し、残部はFe及び不可避不純物からなる溶鋼を溶製、
さらに、最終脱酸として連続鋳造のモールドで低融点の
Ti−Cu、Ti−Ni、Ti−Fe合金のワイヤー、
または粒体を添加し、重量%でTi:0.005〜0.
030%を含有させ、スラブ中央部において、主に粒子
径が0.1〜3.0μmにあるTi酸化物及びTi酸化
物とTiN、MnSの複合析出物粒子の合計で40〜1
70個/mm^2を含有する鋼塊を圧延することを特徴
とする溶接部低温靭性の優れた低温用高張力鋼の製造法
[Claims] 1. Preliminary deoxidation of molten iron to reduce dissolved oxygen to 0.00% by weight
C: 0.02-0.18%, Si: 0.03
~0.25%, Mn: 0.4-2.0%, S: 0.00
07-0.0060%, N: 0.0010-0.004
0%, P≦0.015%, Al≦0.003
%, with the remainder consisting of Fe and unavoidable impurities.Furthermore, as final deoxidation, low melting point Ti-Cu, Ti-Ni, Ti-Fe alloy wire or granules are cast in a continuous casting mold. Ti: 0.00 by weight%
Containing 5 to 0.030%, in the central part of the slab,
Rolling a steel ingot containing a total of 40 to 170 particles/mm^2 of Ti oxide and composite precipitate particles of Ti oxide, TiN, and MnS whose particle diameter is mainly 0.1 to 3.0 um. A manufacturing method for low-temperature high-strength steel with excellent low-temperature toughness in welded parts. 2. Preliminary deoxidation of molten iron reduces dissolved oxygen to 0.00% by weight
C: 0.02-0.18%, Si: 0.03
~0.25%, Mn: 0.4-2.0%, S: 0.00
07-0.0060%, N: 0.0010-0.004
0%, P≦0.015%, Al≦0.003
%, Cr<1.0%, Ni≦3.0%, Mo≦
0.5%, V≦0.1%, Nb≦0.05%, B≦0.
002%, Cu≦1.5%, one or more of them, and the remainder consists of Fe and inevitable impurities.
Furthermore, as final deoxidation, low melting point Ti-Cu, Ti-Ni, Ti-Fe alloy wire,
Or add granules and Ti: 0.005 to 0.00% by weight.
In the central part of the slab, a total of Ti oxide and composite precipitate particles of Ti oxide, TiN, and MnS with a particle size of 0.1 to 3.0 μm are contained in the central part of the slab.
A method for producing high-strength steel for low temperature use with excellent low-temperature toughness at welds, the method comprising rolling a steel ingot containing 70 pieces/mm^2.
JP1039507A 1989-02-20 1989-02-20 Manufacturing method of high strength steel for welding and low temperature containing titanium oxide Expired - Lifetime JPH0642979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039507A JPH0642979B2 (en) 1989-02-20 1989-02-20 Manufacturing method of high strength steel for welding and low temperature containing titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039507A JPH0642979B2 (en) 1989-02-20 1989-02-20 Manufacturing method of high strength steel for welding and low temperature containing titanium oxide

Publications (2)

Publication Number Publication Date
JPH02220735A true JPH02220735A (en) 1990-09-03
JPH0642979B2 JPH0642979B2 (en) 1994-06-08

Family

ID=12554958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039507A Expired - Lifetime JPH0642979B2 (en) 1989-02-20 1989-02-20 Manufacturing method of high strength steel for welding and low temperature containing titanium oxide

Country Status (1)

Country Link
JP (1) JPH0642979B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279247A (en) * 1991-03-08 1992-10-05 Nippon Steel Corp Manufacture of transgranular ferrite system rolled shapes with excellent fire resistance and toughness
JPH04279248A (en) * 1991-03-08 1992-10-05 Nippon Steel Corp Manufacture of rolled shapes piersed fine oxide with excellent toughness
US5236521A (en) * 1990-06-06 1993-08-17 Nkk Corporation Abrasion resistant steel
US5292384A (en) * 1992-07-17 1994-03-08 Martin Marietta Energy Systems, Inc. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
EP0589435A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
EP0589424A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
US5403410A (en) * 1990-06-06 1995-04-04 Nkk Corporation Abrasion-resistant steel
EP0849372A1 (en) * 1996-12-19 1998-06-24 A.G. der Dillinger Hüttenwerke Low alloy construction steel having active particles
JP2003119513A (en) * 2001-08-07 2003-04-23 Nippon Steel Corp Extra-low carbon steel sheet, extra-low carbon steel slab and manufacturing method therefor
WO2003068996A1 (en) * 2002-02-15 2003-08-21 Nucor Corporation Model-based system for determining process parameters for the ladle refinement of steel
JP2008308737A (en) * 2007-06-15 2008-12-25 Sumitomo Metal Ind Ltd Steel, and method for producing the same
JP2018012853A (en) * 2016-07-19 2018-01-25 新日鐵住金株式会社 Thick steel plate and manufacturing method therefor
JP2018066042A (en) * 2016-10-19 2018-04-26 新日鐵住金株式会社 THERMO-MECHANICAL CONTROL PROCESS TYPE 590 MPa CLASS H-SHAPED STEEL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941494B (en) * 2018-09-25 2020-07-07 湖南华菱湘潭钢铁有限公司 Hot-feeding and hot-charging process for medium-thickness plate continuous casting billet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364621A (en) * 1976-11-22 1978-06-09 Kawasaki Steel Co Preventing of center segregation in continuous casting
JPS58204117A (en) * 1982-05-22 1983-11-28 Kawasaki Steel Corp Production of steel material containing uniformly dispersed fine inclusion
JPS59190313A (en) * 1983-04-09 1984-10-29 Nippon Steel Corp Manufacture of steel material having superior weldability
JPS60245768A (en) * 1984-05-22 1985-12-05 Nippon Steel Corp High toughness steel for welding
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPS621842A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Tough, high tension steel having superior toughness in weld zone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364621A (en) * 1976-11-22 1978-06-09 Kawasaki Steel Co Preventing of center segregation in continuous casting
JPS58204117A (en) * 1982-05-22 1983-11-28 Kawasaki Steel Corp Production of steel material containing uniformly dispersed fine inclusion
JPS59190313A (en) * 1983-04-09 1984-10-29 Nippon Steel Corp Manufacture of steel material having superior weldability
JPS60245768A (en) * 1984-05-22 1985-12-05 Nippon Steel Corp High toughness steel for welding
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPS621842A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Tough, high tension steel having superior toughness in weld zone

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403410A (en) * 1990-06-06 1995-04-04 Nkk Corporation Abrasion-resistant steel
US5236521A (en) * 1990-06-06 1993-08-17 Nkk Corporation Abrasion resistant steel
JPH04279248A (en) * 1991-03-08 1992-10-05 Nippon Steel Corp Manufacture of rolled shapes piersed fine oxide with excellent toughness
JPH04279247A (en) * 1991-03-08 1992-10-05 Nippon Steel Corp Manufacture of transgranular ferrite system rolled shapes with excellent fire resistance and toughness
US5292384A (en) * 1992-07-17 1994-03-08 Martin Marietta Energy Systems, Inc. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
EP0589435A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
EP0589424A3 (en) * 1992-09-24 1994-09-14 Nippon Steel Corp Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0589435A3 (en) * 1992-09-24 1994-09-14 Nippon Steel Corp Refractory shape steel material containing oxide and process for producing rolled shape steel of said material
EP0589424A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0849372A1 (en) * 1996-12-19 1998-06-24 A.G. der Dillinger Hüttenwerke Low alloy construction steel having active particles
FR2757542A1 (en) * 1996-12-19 1998-06-26 Der Dillinger Huttenwerke Ag CONSTRUCTION STEEL LOW ALLY ACTIVE PARTICLES
JP2003119513A (en) * 2001-08-07 2003-04-23 Nippon Steel Corp Extra-low carbon steel sheet, extra-low carbon steel slab and manufacturing method therefor
WO2003068996A1 (en) * 2002-02-15 2003-08-21 Nucor Corporation Model-based system for determining process parameters for the ladle refinement of steel
US6808550B2 (en) 2002-02-15 2004-10-26 Nucor Corporation Model-based system for determining process parameters for the ladle refinement of steel
US6921425B2 (en) 2002-02-15 2005-07-26 Nucor Corporation Model-based system for determining process parameters for the ladle refinement of steel
US7211127B2 (en) 2002-02-15 2007-05-01 Nucor Corporation Model-based system for determining process parameters for the ladle refinement of steel
JP2008308737A (en) * 2007-06-15 2008-12-25 Sumitomo Metal Ind Ltd Steel, and method for producing the same
JP2018012853A (en) * 2016-07-19 2018-01-25 新日鐵住金株式会社 Thick steel plate and manufacturing method therefor
JP2018066042A (en) * 2016-10-19 2018-04-26 新日鐵住金株式会社 THERMO-MECHANICAL CONTROL PROCESS TYPE 590 MPa CLASS H-SHAPED STEEL

Also Published As

Publication number Publication date
JPH0642979B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
JPS629646B2 (en)
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH05186848A (en) Steel for large heat input welding excellent in toughness in weld heat-affected zone
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPS593537B2 (en) welded structural steel
JP2004218081A (en) Method for producing high-tension steel plate
JPH0360888B2 (en)
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH01191765A (en) High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 15