JPH0259424A - Production of anhydrous neodymium fluoride - Google Patents
Production of anhydrous neodymium fluorideInfo
- Publication number
- JPH0259424A JPH0259424A JP63210103A JP21010388A JPH0259424A JP H0259424 A JPH0259424 A JP H0259424A JP 63210103 A JP63210103 A JP 63210103A JP 21010388 A JP21010388 A JP 21010388A JP H0259424 A JPH0259424 A JP H0259424A
- Authority
- JP
- Japan
- Prior art keywords
- ndof
- ndf
- heating
- ndf3
- calcining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 title claims abstract 6
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 238000001354 calcination Methods 0.000 claims abstract 6
- 238000010304 firing Methods 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims 2
- 229910017557 NdF3 Inorganic materials 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 229910019788 NbF3 Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000006722 reduction reaction Methods 0.000 description 7
- 229910000583 Nd alloy Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102100034480 Ceroid-lipofuscinosis neuronal protein 6 Human genes 0.000 description 1
- 101000710215 Homo sapiens Ceroid-lipofuscinosis neuronal protein 6 Proteins 0.000 description 1
- 229910017495 Nd—F Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 101150004354 npp-22 gene Proteins 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は最近高性能磁石として注目されているNd−F
e−B系磁石用の原料となるNdおよびNd合金の製造
に好適な無水Nd F、の製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to Nd-F, which has recently attracted attention as a high-performance magnet.
The present invention relates to a method for producing anhydrous NdF suitable for producing Nd and Nd alloys that are raw materials for e-B magnets.
一般にNdまたはNd合金は無水Nd F、(以下Nd
F、という)を原料としてCa還元法、或いは溶融塩
電解法によって製造されており、NdF、は通常NdC
l3等のNd化合物にフッ酸を反応させてN d F
、−n Htoとし、これを加熱してつくられているが
、詳細については記載された文献がない。Generally, Nd or Nd alloy is anhydrous NdF, (hereinafter Nd
It is produced by Ca reduction method or molten salt electrolysis method using NdF as raw material, and NdF is usually NdC.
By reacting hydrofluoric acid with Nd compounds such as 13, N d F
, -n Hto, and is produced by heating it, but there is no literature describing the details.
しかし、本発明者等は先に上記いずれの方法においても
、市販の無水Nd F、を原料として使用すると、Nd
の収率が理論値をはるかに下まわるばかりでなく、さら
に製造過程で種々なトラブルが発生することを知見し発
表した。(Ca還元法については特開昭60−7794
3号公報、溶融塩電解については、特願昭63−173
487)。However, in both of the above methods, the present inventors found that when commercially available anhydrous NdF is used as a raw material, Nd
They discovered that not only was the yield far lower than the theoretical value, but also that various troubles occurred during the manufacturing process. (For the Ca reduction method, see Japanese Patent Application Laid-Open No. 60-7794.
No. 3, regarding molten salt electrolysis, patent application No. 63-173.
487).
本発明者らは、その原因を究明すべく鋭意研究を行った
結果、市販の無水NdF、には3〜10豐t%のNdO
Fが含有されており、これが収率の低下、或いはトラブ
ルの原因となっていることを発見した。すなわち、
(a)Ca等の金属還元法でNdまたはNd合金を製造
する工程における反応は、下記(1)式によって行われ
る。The present inventors conducted intensive research to find out the cause, and found that commercially available anhydrous NdF contains 3 to 10 t% of NdO.
It was discovered that F was contained, which caused a decrease in yield or trouble. That is, (a) The reaction in the process of producing Nd or Nd alloy by a metal reduction method such as Ca is performed according to the following formula (1).
2NdFs+3Ca+Fe ”’ Nd−Fe+3Ca
Ft 1.−(t)(1)式の反応においてCa C
L *は生成したCaF、を溶解し、Nd化合物をCa
C!、−CaF。2NdFs+3Ca+Fe ”' Nd-Fe+3Ca
Ft1. -(t) In the reaction of formula (1), Ca C
L* dissolves the generated CaF, and converts the Nd compound into Ca
C! , -CaF.
との分離をよくするために添加されるものである。It is added to improve the separation between
しかし、NdOFが存在すると、(1)の還元反応がN
dOFの量だけ進行しないばかりでなく、NdOFはC
a、CI、との溶解がスムースに行われず、生成した合
金の中に残留するため、生成合金の品位を低下させる。However, in the presence of NdOF, the reduction reaction in (1)
Not only does it not progress by the amount of dOF, but NdOF
Since dissolution with a and CI does not occur smoothly and remains in the produced alloy, the quality of the produced alloy is reduced.
(b)N d F 、を用いる溶融塩電解法としては、
LiF−NdF、系でNdF、を電解する方法とLiF
−NdF、−Nd、O,系でN d to sを電解す
る方法とがある。(b) As a molten salt electrolysis method using N d F,
LiF-NdF, a method of electrolyzing NdF in a system, and LiF
There is a method of electrolyzing N d to s in a -NdF, -Nd, O, system.
上記電解法において、NdOFが存在するとNdOFは
電気分解されないのでNd F3中のNciOF相当分
だけコストアップする。In the above electrolytic method, if NdOF is present, the NdOF is not electrolyzed, so the cost increases by the amount equivalent to NciOF in NdF3.
また、NdOFが存在する浴は比重が太き(粘性が大で
、溶解度が小さいため、正常な電解浴の下部に析出する
。したがって生成した溶融Nd合金に懸濁し易く、C’
a還元還元量様に合金の品位を低下させることになる。In addition, the bath in which NdOF exists has a large specific gravity (high viscosity and low solubility, so it precipitates at the bottom of a normal electrolytic bath. Therefore, it is easily suspended in the molten Nd alloy formed, and C'
aReduction The quality of the alloy will be reduced in the same way as the amount of reduction.
さらに溶融塩電解法は、その特性上連続運転が行われる
ものであるため、Nd F、が電解されてNdOFが電
解されないと電解浴中のN d OF a度は次第に高
くなる。したがって、長時間運転を行うと、N d O
F蓄積により正常な運転が維持出来なくなり、中断せざ
るを得ない。Further, since the molten salt electrolysis method is operated continuously due to its characteristics, if NdF is electrolyzed but NdOF is not electrolyzed, the NdOF concentration in the electrolytic bath gradually increases. Therefore, when operating for a long time, N d O
Due to F accumulation, normal operation cannot be maintained and must be interrupted.
したがってNt−1またはNd合金を効率よくつくるに
は、NdOF含有量の少ない無水Nd F、を使用する
ことが必要で、NdF3中にNdOFが混入する原因に
ついて研究を行った結果法のことが判明した。Therefore, in order to efficiently produce Nt-1 or Nd alloy, it is necessary to use anhydrous NdF, which has a low NdOF content, and as a result of research into the cause of NdOF being mixed into NdF3, a method was discovered. did.
無水Nd F3の製造は、前記のようにNd化合物にフ
ッ酸CHF ’)を反応させ、NdF、・nH。Anhydrous NdF3 is produced by reacting a Nd compound with hydrofluoric acid (CHF') as described above to produce NdF, .nH.
0をつくりこれを加熱して得られる。It can be obtained by making 0 and heating it.
Nd化合物としてN d CI 2を例として化学反応
式を示すと
NdC15+3HF+n1ltONdFs’n1ltO
+311CI・・・(2)
1a4L
NdFs・n1ltO*dFz + nHtO+++
(a)N3112. 、If、O”−’= NdOF
+ 21!F −(4)NdF3 + l/2
0! ’乙−−メL Ndop + F!
・・・ (5)上記の反応で(2)式で得られた
水を含んだNdF、・nH,oを加熱して(3)式の反
応によって無水NdF、をつくれれば問題はない。The chemical reaction formula using N d CI 2 as an example of the Nd compound is NdC15+3HF+n1ltONdFs'n1ltO
+311CI...(2) 1a4L NdFs・n1ltO*dFz + nHtO+++
(a) N3112. , If, O"-'= NdOF
+21! F − (4) NdF3 + l/2
0! 'Otsu--me L Ndop + F!
(5) There is no problem if anhydrous NdF can be produced by heating the water-containing NdF, .nH,o obtained by the formula (2) in the above reaction and by the reaction of the formula (3).
しかし加熱条件が適切でないと、空気中の水分や酸素と
(4)(5)式によって反応し、NdOFが生成し、こ
れが混入されたNdF、となる。すなわち、(3)の3
反応で加熱温度が低過ぎると水分が残留し、高すぎると
(4)(5)の反応によってNdOFを含んだNd F
、となり、さらに加熱温度が高いと全てがNdOFとな
る。However, if the heating conditions are not appropriate, it reacts with moisture and oxygen in the air according to equations (4) and (5), producing NdOF, which becomes mixed NdF. In other words, (3)-3
If the heating temperature is too low during the reaction, water will remain, and if it is too high, NdF containing NdOF will be formed by the reactions (4) and (5).
, and if the heating temperature is higher, all of the material becomes NdOF.
このことは、市販のNdF、中のl’1−dOFの量が
各ロットによって、大きく変化していることとも一致す
る。This is consistent with the fact that the amount of l'1-dOF in commercially available NdF varies greatly from lot to lot.
本発明は」1記の事情に鑑み、Nd F3・nH,○を
加熱して、NdOFの含有量の少ないNd F。In view of the circumstances described in item 1, the present invention heats NdF3.nH, ○ to produce NdF with a low content of NdOF.
が得られる製造方法を提供することを目的とする。The purpose of this invention is to provide a manufacturing method that can obtain the following.
上記の目的を達成するため、加熱条件を種々検討した結
果、本発明の方法においては、大気中で加熱する場合に
は、加熱温度を100〜s o o ’cとし、l O
−’mmHg以下の減圧下で加熱する場合には、加熱温
度を50〜1100°Cとする条件が適することを見出
した。In order to achieve the above object, various heating conditions were investigated. In the method of the present invention, when heating in the atmosphere, the heating temperature is set to 100 - s o 'c, and l O
It has been found that when heating under reduced pressure of -'mmHg or less, a heating temperature of 50 to 1100°C is suitable.
本発明の方法は上記の構成となっているので、(4)(
5)式で示した反応がいずれも抑制される。Since the method of the present invention has the above configuration, (4) (
5) All reactions shown in the formula are suppressed.
NdF、’nH,Oを加熱してNdF、を得る方法とし
ては、
i)大気中で加熱する方法
ii) 減圧下で加熱する方法
目i)不活性ガス雰囲気で加熱する方法iV) i)
〜1ii)を組を組合わせる方法が考えられるが、iV
)の方法は、+)〜1ii)の条件が決まれば選択でき
るので、i)〜1ii)の条件について説明する。Methods of heating NdF, 'nH, O to obtain NdF include: i) Heating in the atmosphere ii) Heating under reduced pressure i) Heating in an inert gas atmosphere iv) i)
~1ii) can be considered, but iV
The method of ) can be selected once the conditions of +) to 1ii) are determined, so the conditions of i) to 1ii) will be explained.
i)大気中において加熱する方法
上記(3)式の反応が進行して(4)(5)式の反応が
起こらない温度選定すると、(3)式の反応は、NdF
3・nH,Oを100°Cに保持することによって完了
する。(4)(5)の反応は大気中の水分、0.の影響
を受けるので、同じ条件で加熱しても容器に入れた試料
の大気に接触している上部と、接触していない下部とで
は異なり、上部が650℃程度から除々にNdOFの生
成が認められるのに対し、下部では、800℃程度にな
ってはじめてNdOFの生成が認められる。i) Heating method in the atmosphere If the temperature is selected so that the reaction of formula (3) above proceeds and the reactions of formulas (4) and (5) do not occur, the reaction of formula (3) will be NdF
Complete by holding 3.nH,O at 100°C. (4) The reactions in (5) are based on moisture in the atmosphere, 0. Therefore, even if heated under the same conditions, the upper part of the sample in the container that is in contact with the atmosphere is different from the lower part that is not in contact with the atmosphere, and NdOF is gradually formed in the upper part from about 650°C. On the other hand, in the lower part, the formation of NdOF is observed only at about 800°C.
したがって大気中における加熱温度範囲は100〜80
0°C1特に100〜650℃が好ましい。Therefore, the heating temperature range in the atmosphere is 100 to 80
0°C1, especially 100 to 650°C is preferred.
ii)減圧下における加熱方法 減圧下においては、加熱されるNd F、・nH。ii) Heating method under reduced pressure Under reduced pressure, NdF, .nH is heated.
Oと接する雰囲気中の水分、○、が少なく、さらに発生
するH、Oは、真空ポンプ等の減圧手段によって逐次除
去されるので、さらに可酷な加熱条件下でもNdOFの
生成が抑制されるが、その加熱条件は、減圧度とのかね
合いによって決まる。There is little moisture in the atmosphere in contact with O, and the generated H and O are successively removed by pressure reducing means such as a vacuum pump, so the generation of NdOF is suppressed even under harsher heating conditions. The heating conditions are determined by the degree of pressure reduction.
例えば容易に到達できるI O−’mn+Hg程度の真
空度における加熱温度は、50〜1100°C,特に1
00〜800°Cが好ましい。For example, the heating temperature at a vacuum degree of about IO-'mn+Hg, which can be easily reached, is 50 to 1100°C, especially 1
00-800°C is preferred.
一般に、大気中で焼成した方が経済的であるが減下で焼
成すると適正温度範囲が広(なり短時間で焼成できる。Generally, firing in the atmosphere is more economical, but firing under reduced pressure allows for a wider range of appropriate temperatures (and can be fired in a shorter time).
また、加熱中にNclF、・nHtoが撹拌される例え
ばロータリーキルン等わ用いれば均一でバラつきの少な
いNdF3得られ、特に大気中の焼成に有効である。Further, if a rotary kiln or the like in which NclF, .nHto is stirred during heating is used, uniform NdF3 with less variation can be obtained, which is particularly effective for firing in the atmosphere.
1ii) 不活性ガス雰囲気で加熱する方法この方法
は、(3)の反応が進行するとH,Oが発生し、これが
Nd F3と反応してNdOFが生成する(4)の反応
が起こるので、本発明の方法としては不適当である。1ii) Method of heating in an inert gas atmosphere In this method, as the reaction (3) progresses, H and O are generated, which react with NdF3 to produce NdOF (reaction (4)). This is inappropriate as an invention method.
実施例1
NdC1,と)(Fとを反応させて得たNdF、・nH
,Oを容器に入れ、大気中で1時間、種々な温度で加熱
焼成した。各温度で加熱したNd F。Example 1 NdF obtained by reacting NdC1, with) (F, .nH
, O were placed in a container and fired at various temperatures for 1 hour in the air. NdF heated at each temperature.
について、気発損失量を測定して残存水分を求め、また
NdF、N中のNdOFmを容器中の上部および下部の
試料について測定し、NdOF/NdF3の重量比を求
めた。The amount of vaporized loss was measured to determine the residual moisture, and the NdOFm in NdF and N was measured for the upper and lower samples in the container to determine the weight ratio of NdOF/NdF3.
気発損失量 サンプルを大気中で200 ’Cで1時間乾燥した。Air loss amount The samples were dried in air at 200'C for 1 hour.
N d F 、中のNdOF量の測定
Cuのにα線を用いて回折X線のN d F sピーク
とNdOFピークを求めた。定量に使用したピークは、
Nd F、は2θ=28.3°、NdOFは2θ=27
.2°である。Measurement of the amount of NdOF in N d F The N d F s peak and the NdOF peak of diffraction X-rays were determined using α rays for Cu. The peak used for quantification is
NdF, 2θ=28.3°, NdOF, 2θ=27
.. It is 2°.
結果を第1図に示す。図より100〜800℃特に10
0〜650°Cの温度で焼成すると、NdOFが殆どな
く、また水分を含有しないNd F。The results are shown in Figure 1. From the figure, 100 to 800℃, especially 10
When fired at a temperature of 0 to 650°C, NdF contains almost no NdOF and does not contain any water.
が得られることがわかる。It can be seen that the following can be obtained.
また、400℃で焼成したNd F、の回折X線のパタ
ーンを第2図に示し、対象として市販のNdF、の回折
X線のパターンを第3図に示した。Moreover, the diffraction X-ray pattern of NdF fired at 400° C. is shown in FIG. 2, and the diffraction X-ray pattern of commercially available NdF as a target is shown in FIG.
図中Aは、Nd F、のピーク、BはNdOFのピーク
を示すもので、本発明の方法によってつくられたNd
F、にはNdOFのピークが現れていない。In the figure, A shows the peak of NdF, and B shows the peak of NdOF.
No NdOF peak appears in F.
実施例2
10 ”mm11gで焼成した他は実施例1と同じにし
た。結果を第4図に示す。図より明らかなように、大気
中の焼成に比して広い範囲の温度域でNdOFを含有量
の殆どないNdF、が得られ、かつ短時間で製品が得ら
れることがわかる。また600°Cで焼成して得たNd
F、の回折X線は第2図と同様のパターンを示した。Example 2 The procedure was the same as in Example 1 except that firing was performed at 10 mm and 11 g. The results are shown in Figure 4. As is clear from the figure, NdOF was fired over a wider temperature range than when fired in the air. It can be seen that NdF with almost no content can be obtained and the product can be obtained in a short time.
The diffraction X-rays of F showed a pattern similar to that shown in FIG.
以上述べたように、本発明のNd F3製造方法はN’
d OFか殆ど含有しないNdF、が得られるので、こ
れを原料としてNd或いはNd合金を製造する際、Ca
還元法、溶融電解法のいずれにおいても、収率が大幅に
増大し、またトラブルの発生が解消されるので、運転が
簡単となって省力化され、設備の維持が容易となるなど
多くの効果が発揮される。As described above, the method for producing NdF3 of the present invention is based on N'
Since NdF containing almost no dOF or Ca is obtained, when producing Nd or Nd alloy using this as a raw material, Ca
Both the reduction method and the melting electrolysis method greatly increase the yield and eliminate the occurrence of troubles, making operation easier and saving labor, making equipment maintenance easier, and many other benefits. is demonstrated.
第1図は、大気中で焼成した場合の各種温度における脱
水率および上部および下部における試料のNdOF/N
dF3の重量比を示す図、第2図は大気中で400℃の
温度で焼成したNd F、の回折X線の図、第3図は市
販NdF、の回折X線の図、第4図は10−’mmHg
の減圧下で焼成した試料の各温度における脱水率、およ
び上部、下部の試料のN d OF / N d F
3の重量比を示す図である。Figure 1 shows the dehydration rate and NdOF/N of the upper and lower samples at various temperatures when fired in the air.
A diagram showing the weight ratio of dF3, Figure 2 is an X-ray diffraction diagram of NdF fired at a temperature of 400°C in the air, Figure 3 is an X-ray diffraction diagram of commercially available NdF, and Figure 4 is an X-ray diffraction diagram of NdF fired at a temperature of 400°C in the atmosphere. 10-'mmHg
Dehydration rate at each temperature of the sample fired under reduced pressure, and N d OF / N d F of the upper and lower samples
FIG. 3 is a diagram showing the weight ratio of No. 3.
Claims (1)
2wt%以下の無水フッ化ネオジムを製造する方法であ
って、大気中で100〜800℃の温度で焼成すること
を特徴とする無水フッ化ネオジムの製造方法。 2、NdF_3・nH_2Oを加熱焼成してNdOFが
2wt%以下の無水フッ化ネオジムを製造する方法であ
って、10^−^1mmHg以下の減圧下、50〜11
00℃の温度で焼成することを特徴とする無水フッ化ネ
オジムの製造方法。[Claims] 1. A method for producing anhydrous neodymium fluoride containing 2 wt% or less of NdOF by heating and sintering NdF_3.nH_2O, characterized in that the sintering is performed in the air at a temperature of 100 to 800°C. A method for producing anhydrous neodymium fluoride. 2. A method for producing anhydrous neodymium fluoride containing NdOF of 2 wt% or less by heating and calcining NdF_3.nH_2O, under reduced pressure of 10^-^1 mmHg or less, 50 to 11
A method for producing anhydrous neodymium fluoride, which comprises firing at a temperature of 0.000C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63210103A JP2638620B2 (en) | 1988-08-24 | 1988-08-24 | Method for producing anhydrous neodymium fluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63210103A JP2638620B2 (en) | 1988-08-24 | 1988-08-24 | Method for producing anhydrous neodymium fluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0259424A true JPH0259424A (en) | 1990-02-28 |
JP2638620B2 JP2638620B2 (en) | 1997-08-06 |
Family
ID=16583864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63210103A Expired - Lifetime JP2638620B2 (en) | 1988-08-24 | 1988-08-24 | Method for producing anhydrous neodymium fluoride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2638620B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516644A (en) * | 1991-07-29 | 1996-05-14 | Mochida Pharmaceutical Co., Ltd. | Electrochemical immunochromatographic assay |
JP2013056826A (en) * | 2012-10-29 | 2013-03-28 | Tokyo Univ Of Science | METHOD FOR PRODUCING FINE PARTICLE DISPERSION SOLUTION, AND METHOD FOR PRODUCING LnOX-LnX3 COMPLEX PARTICLE |
-
1988
- 1988-08-24 JP JP63210103A patent/JP2638620B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516644A (en) * | 1991-07-29 | 1996-05-14 | Mochida Pharmaceutical Co., Ltd. | Electrochemical immunochromatographic assay |
US6218134B1 (en) | 1991-07-29 | 2001-04-17 | Mochida Pharmaceutical Co., Ltd. | Process for specific binding assay for measuring the amount of analyte in a liquid test sample |
JP2013056826A (en) * | 2012-10-29 | 2013-03-28 | Tokyo Univ Of Science | METHOD FOR PRODUCING FINE PARTICLE DISPERSION SOLUTION, AND METHOD FOR PRODUCING LnOX-LnX3 COMPLEX PARTICLE |
Also Published As
Publication number | Publication date |
---|---|
JP2638620B2 (en) | 1997-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0224902B2 (en) | ||
RU2233898C2 (en) | Method of preparation of magnesium chloride solution | |
JP3591756B2 (en) | Production method of metal fluoride | |
JPH0259424A (en) | Production of anhydrous neodymium fluoride | |
JPH0645456B2 (en) | Rare earth element boride manufacturing method | |
JP5421088B2 (en) | Method for producing valuable materials and hydrochloric acid from waste liquid | |
JP6177173B2 (en) | High purity boron and method for producing the same | |
KR920007932B1 (en) | Making process for rare metals-fe alloy | |
JPH01116038A (en) | Manufacture of high purity rare earth metal | |
JP2559040B2 (en) | Method for producing metal fluoride | |
JP2008513345A (en) | Manufacturing method of manganese tetrafluoride | |
JPH0327390A (en) | Manufacture of high purity copper alkoxido | |
RU2829387C1 (en) | Method of dissolving tantalum pentoxide | |
JP2856636B2 (en) | Production method of ammonium cryolite | |
Hirsch | The preparation and properties of metallic cerium | |
JPH0790410A (en) | Production of low-oxygen rare earth metal | |
JP2000169141A (en) | Production of ammonium hexafluoroaluminate | |
JPH03137003A (en) | Production of high-purity metal fluoride | |
CN108911794B (en) | A kind of treatment method for improving the purity of Ti3B2N material | |
JP2019173148A (en) | Method for producing oxalate of rare earth element | |
RU2084398C1 (en) | Method of preparing rare-earth metal, yttrium, and scandium hydrides | |
SU1723040A1 (en) | Method of potassium heptafluorotantalate synthesis | |
JP3591746B2 (en) | Method for producing zinc fluoride | |
SU1100233A1 (en) | Method for producing aluminium trifluoride | |
RU2270263C2 (en) | Method of production of iron, cobalt or nickel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |