[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0258094B2 - - Google Patents

Info

Publication number
JPH0258094B2
JPH0258094B2 JP59272013A JP27201384A JPH0258094B2 JP H0258094 B2 JPH0258094 B2 JP H0258094B2 JP 59272013 A JP59272013 A JP 59272013A JP 27201384 A JP27201384 A JP 27201384A JP H0258094 B2 JPH0258094 B2 JP H0258094B2
Authority
JP
Japan
Prior art keywords
film
pet
metal plate
lamination
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59272013A
Other languages
Japanese (ja)
Other versions
JPS61149340A (en
Inventor
Atsuo Tanaka
Akihiro Hanabusa
Harunori Kubota
Tsuneo Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP59272013A priority Critical patent/JPS61149340A/en
Publication of JPS61149340A publication Critical patent/JPS61149340A/en
Publication of JPH0258094B2 publication Critical patent/JPH0258094B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ポリエステル樹脂フイルム被覆金属
板の製造方法に関し、詳しくは、二軸配向ポリエ
チレンテレフタレート樹脂フイルム(以下PET
−BOフイルムとよぶ)の融点以上に加熱された
金属板にPET−BOフイルムをラミネートし、上
層にPET−BO樹脂層、下層に無配向PET樹脂層
を有したポリエステル樹脂フイルム被覆金属板の
製造方法に関するものである。 〔従来の技術〕 従来、熱可塑性フイルムを金属板にラミネート
した金属板は、電気部品、家具、収納ケース、内
外装建材等種々の分野で広く使用されている。一
般に金属板に熱可塑性フイルムを連続的にラミネ
ートする方法として以下の方法がよく知られてい
る。一つは、金属板表面に接着剤をロールコータ
ー等で塗布した後、溶剤等の揮発性物質を蒸発せ
しめた後、ラミネートして直ちに冷却するか、あ
るいはさらに後加熱処理を施して冷却する方法で
ある。他の一つは、熱可塑性樹脂に予め極性基等
を導入して熱接着可能な熱可塑性樹脂フイルムを
ラミネートする方法である。 一例としては、塩化ビニル樹脂フイルムを接着
剤を用いて鋼板にラミネートした塩化ビニル樹脂
被覆鋼板、ポリオレフインフイルムを金属板にラ
ミネートしたもの(特開昭53−141786)、共重合
ポリエステルフイルムを金属板にラミネートした
もの(特公昭57−23584)あるいは、ポリエステ
ルフイルムを接着剤を用いて金属板にラミネート
したもの(特開昭58−39448)などがある。 〔発明が解決しようとする問題点〕 しかし、塩化ビニル樹脂被覆鋼板は、耐熱性、
表面傷つき性に関して満足のいくものではなく、
ポリオレフイン樹脂被覆鋼板は、耐熱性、耐食性
が劣り、共重合ポリエステル樹脂被覆鋼板は、コ
ストが高く実用性に欠ける欠点を有していた。ま
た、ポリエステルフイルムを接着剤を介して金属
板にラミネートした金属板は、接着剤塗布工程お
よび溶剤等の揮発性物質を蒸発させるオーブン設
備等が必要となり作業性が著しく低下していた。 このように、従来発明された熱可塑性樹脂被覆
金属板は一長一短を有しておりいずれも満足のい
くものではなかつた。 〔問題点を解決するための手段〕 本発明は、このような背景から、耐食性、加工
性、電気絶縁性、耐熱性、耐薬品性などの緒特性
に優れたPET−BOフイルムに着目し、PET−
BOフイルムを接着剤等を使用することなく金属
板にラミネートしたポリエステル樹脂フイルム被
覆金属板を提供することを目的としたものであつ
て、つぎのような特徴と効果を有するものであ
る。 すなわち、本発明の方法は、PET−BOフイル
ムの融点あるいはそれ以上に加熱された金属板の
片面あるいは両面に、PET−BOフイルムを連続
的かつ高速でラミネートし、急冷することを特徴
とするものであつて、本発明の方法で得られたポ
リエステル樹脂フイルム被覆金属板は、金属板と
の界面付近のみが、二軸配向結晶がくずれ、薄い
無配向、無定形状態となり、表層は二軸配向結晶
層が残存しているという、いわゆる二層構造化し
ており、加工密着性、加工耐食性、耐薬品性など
の特性が優れたものである。 一般に、PET−BOフイルムは、配向結晶を有
しているため、水分、各種イオンの透過性に対し
て優れたバリヤー性を有しているため各種包装材
料分野に用いられてきた。又機械的特性及び耐熱
性が著しく優れているため磁気テープ分野、電気
絶縁分野など幅広く用いられてきたが、高度な配
向結晶を有しているため接着剤なしでは全く被着
体への接着性を有さない欠点を有していた。一方
PET−BOフイルムを融点以上に加熱し、急冷す
ることによつて得られる無配向、無定形状態の
PET樹脂は、特公昭49−34180に示されるように
金属板同志の接着剤として用いられる程優れた接
着力を有している。しかしながら、無配向、無定
形状態のPET樹脂は、水分、各種イオンの透過
性に対して著しくバリヤー性が低下し、又、機械
的強度も大幅に低下するといつた欠点を有してい
る。このようにPET樹脂は、配向結晶の有無に
よつて大きく異なつた性質を有している。 本発明の方法で得られるポリエステル樹脂フイ
ルム被覆金属板の加工密着性、加工耐食性が優れ
ている原因は、すでに記したように、金属板と接
触している面に接着力の優れた無配向、無定形
PET樹脂層がうすく均一に形成されていること、
無配向、無定形PET樹脂層の上層には、水ある
いは各種イオンに対してバリヤー性能を有し、か
つ、機械的特性の優れたPET−BO樹脂層が存在
し両者がうまくバランスしているためと考えられ
る。 本発明によるポリエステル樹脂フイルム被覆金
属板は、加工密着性、加工耐食性、耐熱性、電気
絶縁性などの多くの優れた特性を有しているた
め、缶蓋、絞り缶、2回絞り缶等の缶用材料のみ
ならず、PET樹脂の電気絶縁性、耐熱性を利用
して電気製品部材としても適用できるものであ
る。 以下、本発明の内容について詳細に説明する。
まず、PET−BOフイルムとしては、ポリエチレ
ングリコールとテレフタール酸の重縮合物であつ
て、公知の押し出し加工後フイルム成型され、そ
の後、縦、横二軸方向に延伸された後、熱固定工
程を経たものであつて、フイルム厚みとしては、
特に制限するものではないが、5〜300μmが好
ましい、フイルムの厚みが5μm以下の場合は、
ラミネート作業性が著しく低下するとともに、ラ
ミネート後、無配向、無定形PET樹脂層と二軸
配向PET樹脂層とにうまくバランスさせること
は非常に困難となる。一方300μm以上になつた
場合は、加工耐食性、電気絶縁性などの特性は確
保されるものの経済性に劣る。これらのフイルム
は、必要に応じて、熱、光安定剤、酸化防止剤、
顔料、帯電防止剤などの添加剤の添加、あるい
は、接着性改善のためにコロナ放電処理等の活性
化処理を施しても差支えない。 つぎに、本発明に用いられる金属板としては、
シート状およびコイル状の鋼板、鋼箔、鉄箔およ
びアルミニウム板、アルミニウム箔または、該金
属板に表面処理を施したものがあげられる。特に
下層が金属クロム、上層がクロム水和酸化物の二
層構造をもつ電解クロム酸処理鋼板、極薄錫めつ
き鋼板、極薄鉄錫合金被覆鋼板、極薄クロムめつ
き鋼板、ニツケルめつき鋼板、銅めつき鋼板、亜
鉛めつき鋼板、クロム水和酸化物被覆鋼板、カル
ボキシル基等の極性基あるいはキレート構造を有
した有機物処理鋼板あるいはリン酸塩処理、クロ
メート処理あるいは前述の有機物処理を施したア
ルミニウム板はPET−BOフイルムとの接着力に
特に優れているので、本発明において用いられる
金属板として適している。さらにつぎに示す二層
および三層被覆鋼板、合金めつきおよび複合めつ
き鋼板も適している。その例として、クロメート
処理、リン酸塩処理、クロム−クロメート処理あ
るいは有機物処理を施したこれらの金属めつき鋼
板、これらの金属の二層あるいは三層めつき、ニ
ツケル錫のような合金めつき鋼板、少量のニツケ
ル、コバルト、鉄、クロム、モリブデンの少くと
も一種を金属状あるいは化合物で含む複合亜鉛め
つき鋼板などがあげられる。 つぎに、本発明における重要な因子の1つであ
るPET−BOフイルムをラミネートする直前の金
属板の温度は、PET−BOフイルムの融点(Tm)
〜(Tm+100)℃にすることが必要である。な
お、ここでいう融点(Tm)とは、10℃/minの
加熱速度での示差走査熱量計(DSC)の吸熱ピ
ークから求めるものであつて、吸熱ピークの最大
深さを示す点をTmとよぶ。金属板の温度がTm
以下の温度であると、ラミネートしたPET−BO
フイルムの金属板と接する面においてPET−BO
フイルムが充分に無配向、無定形化せず充分な接
着力が得られない。一方、(Tm+100)℃以上に
金属板を加熱した場合、ラミネートしたPET−
BOフイルムの大部分が無配向、無定形化してし
まい加工耐食性、電気絶縁性等の特性を低下して
しまう。また、(Tm+100)℃以上の温度になる
と、金属板の形状(平坦度)もくずれやすくな
る。 つぎに、PET−BOフイルムを金属板にラミネ
ートする際のラミネートロールの表面温度も本発
明における重要な因子である。すなわち、本発明
のPET−BOフイルムの二層構造化は、ラミネー
トロールニツプにPET−BOフイルムが接してい
るごく短時間の間で一義的に決定されてしまう。
すなわち、PET−BOフイルムを高温加熱された
金属板にラミネートした時、PET−BOフイルム
中に温度勾配が生じ、金属板側が高温で、ラミネ
ートロール側が低温になつている。ラミネートロ
ール通過中、PETフイルム中には温度勾配が生
じ続け、金属板の温度は、PETフイルムの配向
結晶の融解熱およびラミネートロールからの吸熱
により低下してくる。そして、ラミネート金属板
がラミネートロールのニツプより出た瞬間には、
PETフイルム中には温度勾配がなくなり、金属
板の温度と一致する。従つて、ラミネートロール
通過中に、金属板の温度をPET−BOフイルムの
二軸配向の破壊開始温度(To)以下に下げてや
る必要がある。かかる条件を作り出すためには、
ラミネートロールの表面温度は特に重要な因子で
ある。すなわち、ラミネートロールの表面温度を
30〜180℃、より好ましくは50〜150℃にコントロ
ールしてやる必要がある。ラミネートロールの表
面温度が180℃以上になると、PET−BOフイル
ムを金属板にラミネートした時、PET−BOフイ
ルムの厚みによつても異なるが、フイルム中の金
層に亘り二軸配向結晶がくずれ、加工耐食性、電
気絶縁性等が低下してくる。一方、ラミネートロ
ールの表面温度を30℃以下にしようとした場合、
ラミネートロール自身を外部冷却など特別の冷却
装置を付設してやる必要があり設備が大規模にな
り好ましくない。このラミネートロールの表面温
度の管理は、ラミネート速度をあげるとより重要
になつてくる。ラミネートロールの材質は、クロ
ムめつきロール、セラミツクロール、ゴムロール
いずれも使用可能であるが、高速で美麗にラミネ
ートするためには、ゴムロールが好ましい。ゴム
ロールのゴム材質については、特に規制するもの
ではないが、熱伝導性、耐熱性に優れたシリコン
ロールが好ましい。 つぎに、PET−BOフイルムを金属板にラミネ
ートした後の冷却条件も本発明において重要な因
子である。すなわち、ラミネート後10秒以内にポ
リエステル樹脂フイルム被覆金属板を100℃以下
に急冷することも重要で、もし長時間100℃以上
の温度に保たれた場合は、ラミネート時に金属板
界面に生成した無配向、無定形PET樹脂層が粗
大球晶化し加工密着性、加工耐食性が大きく低下
してくる。急冷する方法は、特に規制するもので
はないが、水中浸漬法、水スプレー法などが好ま
しい。 つぎに、金属板を加熱する方法としては、公知
の熱風伝熱方式、抵抗加熱方式、誘導加熱方式、
ヒートロール伝熱方式などがあげられ、特に制限
するものではないが、設備費、設備の簡素化、及
び短時間昇温特性を考慮した場合、ヒートロール
伝熱方式が好ましい。 つぎに、PET−BOフイルムを金属板にラミネ
ート後の無配向、無定形PET樹脂の生成量も重
要な因子で、PET−BO樹脂の厚みが全PET樹脂
層の15〜95%であることが重要である。PET−
BO樹脂層の厚みが、全PET樹脂層の95%以上の
場合は、加工密着性が劣り特に深絞り加工等を施
すと剥離しやすくなる。一方、15%以下になる
と、加工性、耐食性、電気絶縁性などが著しく低
下してくる。このように、二軸配向結晶残存量は
重要な因子であるが、二軸配向結晶残存量を求め
る手段としては、複屈折法、密度法、X線回折法
などがあるが、例えばX線回折法によりつぎのよ
うにして求められる。 (1) ラミネート前のPET−BOフイルムおよびラ
ミネート後のPETフイルムについてのX線回
折強度を2θ=20〜30゜の範囲で測定する。 (2) 2θ=20゜、2θ=30゜におけるX線回折強度曲線
を直線で結びベースラインとする。 (3) 2θ=26゜近辺にあらわれるシヤープなピーク
高さをベースラインより測定する。 (4) ラミネート前のフイルムのピーク高さをIaラ
ミネート後のフイルムのピーク高さをIbとした
とき、Ib/Ia×100を二軸配向結晶残存量とす
る。 〔実施例〕 以下、実施例にて詳細に説明する。 実施例 1 板厚0.23mmの冷延鋼板を70g/水酸化ナトリ
ウム溶液中で電解脱脂し、100g/硫酸溶液で
酸洗し水洗した後、無水クロム酸30g/、フツ
化ナトリウム1.5g/の溶液中で、電流密度
20A/dm2、電解液温度30℃の条件で陰極電解処
理を施し、80℃の温水を用いて湯洗し、乾燥し
た。 このように処理された巾300mmの帯状電解クロ
ム酸処理鋼板に厚さ16μmのPET−BOフイルム
(商品名 ルミラー 東レ(株))をつぎの条件で連
続的に両面ラミネートした。 帯状鋼板の加熱方法……ヒートロール加熱 ラミネート直前の鋼板の温度……290℃ ラミネートロール……シリコンロール ラミネートロールの表面温度……max90℃ ラミネートされた鋼板が100℃以下へ冷却される
までの時間……2秒 得られたポリエステル樹脂フイルム被覆鋼板の
二軸配向結晶量は、X線回折法により以下の条件
で算出した。 回折条件 ターゲツト:Cu 管電圧 40KV 管電流 20mA 二軸配向量の算出方法 (1) ラミネート前のフイルム及びラミネート後の
被覆金属板について各々2θ=20〜30゜の範囲で
測定した。 (2) 2θ=20゜、2θ=30゜におけるX線回折強度曲線
を直線で結びベースラインとした。 (3) 2θ=26゜近辺にあらわれるシヤープなピーク
のピーク高さをベースラインより測定した。 (4) ラミネート前のフイルムのピーク高さをIa、
ラミネート後のフイルムのピーク高さをIbとし
たとき、Ib/Ia×100を二軸配向結晶残存量と
した。 実施例 2 実施例1と同様の冷延鋼板を、実施例1と同様
の前処理を施した後、硫酸錫25g/、フエノー
ルスルフオン酸(60%水溶液)15g/、エトキ
シ化α−ナフトールスルフオン酸2g/の電解
液を用い、電流密度20A/dm2、電解液温度40℃
の条件で、錫0.3g/m2の錫めつきを施し、水洗、
乾燥した。この巾300mmの錫めつき帯状鋼板に厚
さ38μmのPET−BOフイルム(商品名ルミラ
ー:東レ(株)製)をつぎの条件で連続的に両面ラミ
ネートした。 帯状鋼板の加熱方法……ヒートロール加熱 ラミネート直前の鋼板の温度……280℃ ラミネートロール……シリコンロール ラミネートロールの表面温度……160℃ ラミネートされた鋼板が100℃以下へ冷却される
迄の時間……3秒 得られたポリエステル樹脂フイルム被覆鋼板の
二軸配向結晶量は、実施例1と同様な手法でX線
回折法により求めた。 実施例 3 実施例1と同様の冷延鋼板を、実施例1と同様
の前処理を施した後、塩化ニツケル(6水塩)40
g/、硫酸ニツケル(6水塩)250g/、ホ
ウ酸40g/からなるワツト浴を用いて、電流密
度10A/dm2、浴温45℃の条件で、0.6g/m2
ニツケルめつきを施した。水洗後、重クロム酸ソ
ーダ30g/の溶液中で、電流密度10A/dm2
電解温度45℃の条件でクロメート処理を施し、水
洗、乾燥した。この巾300mmのニツケルめつき帯
状鋼板に厚さ188μmのPET−BOフイルム(商品
名 ルミラー:東レ(株)製)をつぎの条件で連続的
に両面ラミネートした。 帯状鋼板の加熱方法……ヒートロール加熱 ラミネート直前の鋼板の温度……350℃ ラミネートロール……シリコンロール ラミネートロールの表面温度……120℃ ラミネートされた鋼板が100℃以下へ冷却される
迄の時間……8秒 得られたポリエステル樹脂フイルム被覆鋼板の
二軸配向結晶量は、実施例1と同様な手法でX線
回折法により求めた。 実施例 4 板厚0.30mmのアルミニウム板を30g/の炭酸
ソーダ溶液中で陰極電解脱脂し、水洗後、リン酸
60g/、クロム酸10g/、フツ化ナトリウム
5g/からなる浴を用いて、浴温25℃で浸漬処
理後、水洗、乾燥した。この巾300mmの帯状アル
ミニウム板に厚み75μmのPET−BOフイルム
(商品ダイヤホイル:ダイヤホイル(株)製)をつぎ
の条件で連続的に両面ラミネートした。 帯状アルミニウム板の加熱方法……ヒートロール
加熱 ラミネート直前のアルミニウム板の温度……300
℃ ラミネートロール……シリコンロール ラミネートロールの表面温度……40℃ ラミネートされたアルミニウム板が100℃以下へ
冷却される迄の時間……1秒 得られたポリエステル樹脂フイルム被覆アルミ
ニウム板の二軸配向結晶量は、実施例1と同様な
手法でX線回折法により求めた。 実施例 5 板厚0.30mmのアルミニウム板を30g/の炭酸
ソーダ溶液中で陰極電解脱脂し、水洗後30g/
の重クロム酸ナトリウム溶液を用い、クロメート
処理を施し、水洗、乾燥した。この巾300mmの帯
状アルミニウム板に厚み25μmのPET−BOフイ
ルム(商品名ダイヤホイル:ダイヤホイル(株)製)
をつぎの条件で連続的に両面ラミネートした。 帯状アルミニウム板の加熱方法……ヒートロール
加熱 ラミネート直前のアルミニウム板の温度……270
℃ ラミネートロール……シリコンロール ラミネートロールの表面温度……120℃ ラミネートされたアルミニウム板が100℃以下へ
冷却される迄の時間……5秒 得られたポリエステル樹脂フイルム被覆アルミ
ニウム板の二軸配向結晶量は、実施例1と同様な
手法でX線回折法により求めた。 比較例 1 実施例1と同様のPET−BOフイルム、鋼板を
用いてラミネートロールの表面温度を除き他は同
じ条件でラミネートした。 ラミネートロールの表面温度……max210℃ 得られたポリエステル樹脂フイルム被覆鋼板の
二軸配向結晶量は、実施例1と同様な手法でX線
回折法により求めた。 比較例 2 実施例1と同様のPET−BOフイルム、鋼板を
用いてラミネート後の冷却条件を除き、他は同じ
条件でラミネートした。 ラミネートされた鋼板が100℃以下へ冷却される
までの時間……25秒 得られたポリエステル樹脂フイルム被覆鋼板の
二軸配向結晶量は、実施例1と同様な手法でX線
回折法により求めた。 比較例 3 実施例4と同じアルミニウム板、PET−BOフ
イルムを用いて、ラミネート温度を除き、他は同
じ条件でラミネートした。 ラミネート直前のアルミニウム板の温度……255
℃ 得られたポリエステル樹脂フイルム被覆アルミ
ニウム板の二軸配向結晶量は、実施例1と同様な
手法でX線回折法により求めた。 比較例 4 実施例5と同じアルミニウム板、PET−BOフ
イルムを用いて、ラミネート温度を除き、他は同
じ条件でラミネートした。 ラミネート直前のアルミニウム板の温度……405
℃ 得られたポリエステル樹脂フイルム被覆アルミ
ニウム板の二軸配向結晶量は、実施例1と同様な
手法でX線回折法により求めた。 ポリエステル樹脂フイルム被覆金属板はつぎに
示す試験法で評価し、その結果を第1表に示し
た。 (1) 金属板のめつき量の測定 螢光X線法でめつき量、皮膜量を測定した。 (2) 金属板とポリエステル樹脂フイルムの接着力 ポリエステル樹脂フイルム被覆金属板を直径
80mmの円板に打ち抜き、絞り比2.0で円筒状カ
ツプに絞り加工を施した後、100℃の沸騰水中
で1hr熱水処理を施した後、胴部におけるポリ
エステル樹脂フイルムの剥離程度を、剥離なし
を5点、全面剥離を1点として5段階に分け
た。 (3) 加工耐食性 上記(2)項で述べた筒状カツプにPH2.2に調整
されたクエン酸を50ml入れ、55℃で30日間放置
し溶出鉄あるいは溶出アルミニウムを測定し
た。又、同様のカツプに3%NaClを入れ55℃
で30日間放置後肉眼観察により腐食状況を調査
した。
[Industrial Application Field] The present invention relates to a method for manufacturing a metal plate coated with a polyester resin film, and more particularly, the present invention relates to a method for manufacturing a metal plate coated with a polyester resin film, and more particularly, a biaxially oriented polyethylene terephthalate resin film (hereinafter referred to as PET).
A PET-BO film is laminated onto a metal plate heated above the melting point of the PET-BO film (referred to as -BO film), and a polyester resin film-coated metal plate having a PET-BO resin layer on the upper layer and a non-oriented PET resin layer on the lower layer is manufactured. It is about the method. [Prior Art] Conventionally, a metal plate obtained by laminating a thermoplastic film onto a metal plate has been widely used in various fields such as electrical parts, furniture, storage cases, and interior and exterior building materials. Generally, the following method is well known as a method for continuously laminating a thermoplastic film on a metal plate. One method is to apply adhesive to the surface of the metal plate using a roll coater, etc., evaporate volatile substances such as solvents, then laminate and cool immediately, or further perform post-heat treatment and cool. It is. Another method is to introduce a polar group or the like into a thermoplastic resin in advance and laminate a thermoplastic resin film that can be thermally bonded. Examples include a vinyl chloride resin-coated steel plate made by laminating a vinyl chloride resin film to a steel plate using an adhesive, a polyolefin film laminated to a metal plate (Japanese Patent Application Laid-Open No. 141786-1986), and a copolymerized polyester film laminated to a metal plate. There are laminated ones (Japanese Patent Publication No. 57-23584) and ones in which a polyester film is laminated to a metal plate using an adhesive (Japanese Patent Publication No. 58-39448). [Problems to be solved by the invention] However, vinyl chloride resin-coated steel sheets have poor heat resistance and
The surface scratch resistance is not satisfactory,
Polyolefin resin-coated steel sheets have poor heat resistance and corrosion resistance, and copolymer polyester resin-coated steel sheets have the disadvantage of being high in cost and lacking in practicality. Furthermore, a metal plate in which a polyester film is laminated to a metal plate via an adhesive requires an adhesive coating process and oven equipment for evaporating volatile substances such as solvents, resulting in a significant decrease in workability. As described above, the thermoplastic resin-coated metal plates conventionally invented have advantages and disadvantages, and none of them are satisfactory. [Means for Solving the Problems] Against this background, the present invention focuses on a PET-BO film that has excellent properties such as corrosion resistance, processability, electrical insulation, heat resistance, and chemical resistance. PET-
The object of this invention is to provide a metal plate coated with a polyester resin film in which a BO film is laminated to a metal plate without using an adhesive or the like, and has the following characteristics and effects. That is, the method of the present invention is characterized by laminating the PET-BO film continuously and at high speed on one or both sides of a metal plate heated to the melting point of the PET-BO film or higher, and then rapidly cooling the film. In the metal plate coated with a polyester resin film obtained by the method of the present invention, the biaxially oriented crystals are broken only near the interface with the metal plate, resulting in a thin non-oriented and amorphous state, and the surface layer is biaxially oriented. It has a so-called two-layer structure in which a crystal layer remains, and has excellent properties such as processing adhesion, processing corrosion resistance, and chemical resistance. In general, PET-BO film has oriented crystals and has excellent barrier properties against moisture and various ion permeability, and has been used in various packaging material fields. In addition, it has extremely excellent mechanical properties and heat resistance, so it has been widely used in fields such as magnetic tape and electrical insulation, but because it has highly oriented crystals, it has no adhesion to adherends without an adhesive. It had the disadvantage of not having. on the other hand
A non-oriented, amorphous state obtained by heating PET-BO film above its melting point and rapidly cooling it.
PET resin has such excellent adhesive strength that it is used as an adhesive between metal plates, as shown in Japanese Patent Publication No. 49-34180. However, non-oriented, amorphous PET resin has the drawbacks of significantly lowering its barrier properties against moisture and various ion permeability, and also significantly lowering its mechanical strength. As described above, PET resin has properties that vary greatly depending on whether or not it has oriented crystals. The reason why the polyester resin film-coated metal plate obtained by the method of the present invention has excellent processing adhesion and processing corrosion resistance is that, as already mentioned, the surface in contact with the metal plate has a non-oriented structure with excellent adhesive strength. amorphous
The PET resin layer is thin and uniformly formed.
On top of the unoriented, amorphous PET resin layer, there is a PET-BO resin layer that has barrier properties against water and various ions and has excellent mechanical properties, and the two are well balanced. it is conceivable that. The polyester resin film-coated metal plate according to the present invention has many excellent properties such as processing adhesion, processing corrosion resistance, heat resistance, and electrical insulation, so it can be used for can lids, squeezed cans, double-drawn cans, etc. It can be used not only as a material for cans, but also as a component for electrical products, taking advantage of the electrical insulation and heat resistance properties of PET resin. Hereinafter, the content of the present invention will be explained in detail.
First, PET-BO film is a polycondensate of polyethylene glycol and terephthalic acid, which is formed into a film after a known extrusion process, then stretched in both the vertical and horizontal directions, and then subjected to a heat-setting process. As for the film thickness,
Although not particularly limited, it is preferably 5 to 300 μm, and when the film thickness is 5 μm or less,
Lamination workability is significantly reduced, and after lamination, it is extremely difficult to maintain a good balance between the non-oriented, amorphous PET resin layer and the biaxially oriented PET resin layer. On the other hand, when the thickness is 300 μm or more, properties such as processing corrosion resistance and electrical insulation properties are ensured, but the economic efficiency is inferior. These films can be treated with heat, light stabilizers, antioxidants,
Additives such as pigments and antistatic agents may be added, or activation treatment such as corona discharge treatment may be performed to improve adhesion. Next, the metal plate used in the present invention is as follows:
Examples include sheet-like and coil-like steel plates, steel foils, iron foils and aluminum plates, aluminum foils, and surface-treated metal plates. In particular, electrolytic chromic acid treated steel sheets with a two-layer structure of metallic chromium in the lower layer and chromium hydrated oxide in the upper layer, ultra-thin tin-plated steel sheets, ultra-thin iron-tin alloy coated steel sheets, ultra-thin chromium-plated steel sheets, nickel-plated steel sheets. Steel sheets, copper-plated steel sheets, galvanized steel sheets, chromium hydrated oxide-coated steel sheets, organic-treated steel sheets with polar groups such as carboxyl groups or chelate structures, or phosphate-treated, chromate-treated, or organic-treated steel sheets as described above. This aluminum plate has particularly excellent adhesive strength with the PET-BO film, and is therefore suitable as the metal plate used in the present invention. Furthermore, the following two-layer and three-layer coated steel sheets, alloy plated and composite plated steel plates are also suitable. Examples include chromate-treated, phosphate-treated, chromium-chromate-treated or organic-treated steel sheets coated with these metals, double- or triple-layer plating of these metals, and steel sheets coated with alloys such as nickel-tin. Examples include composite galvanized steel sheets containing a small amount of at least one of nickel, cobalt, iron, chromium, and molybdenum in the form of a metal or a compound. Next, the temperature of the metal plate immediately before laminating the PET-BO film, which is one of the important factors in the present invention, is the melting point (Tm) of the PET-BO film.
It is necessary to keep the temperature at ~(Tm+100)°C. The melting point (Tm) here is determined from the endothermic peak of a differential scanning calorimeter (DSC) at a heating rate of 10°C/min, and Tm is the point indicating the maximum depth of the endothermic peak. Call me. The temperature of the metal plate is Tm
At the following temperatures, laminated PET-BO
PET-BO on the side of the film in contact with the metal plate
The film is not sufficiently oriented or amorphous, and sufficient adhesion cannot be obtained. On the other hand, if the metal plate is heated above (Tm+100)℃, the laminated PET−
Most of the BO film becomes non-oriented and amorphous, resulting in a decline in properties such as processing corrosion resistance and electrical insulation. Furthermore, when the temperature reaches (Tm+100)°C or higher, the shape (flatness) of the metal plate tends to collapse. Next, the surface temperature of the laminating roll when laminating the PET-BO film on the metal plate is also an important factor in the present invention. That is, the formation of the two-layer structure of the PET-BO film of the present invention is uniquely determined during the very short time that the PET-BO film is in contact with the laminating roll nip.
That is, when a PET-BO film is laminated onto a metal plate heated to a high temperature, a temperature gradient occurs in the PET-BO film, with the metal plate side being high temperature and the lamination roll side being low temperature. While passing through the laminating roll, a temperature gradient continues to occur in the PET film, and the temperature of the metal plate decreases due to the heat of fusion of the oriented crystals of the PET film and heat absorption from the laminating roll. Then, the moment the laminated metal plate comes out of the nip of the laminating roll,
There is no temperature gradient in the PET film, which matches the temperature of the metal plate. Therefore, it is necessary to lower the temperature of the metal plate to below the biaxially oriented fracture initiation temperature (To) of the PET-BO film while passing through the laminating rolls. In order to create such conditions,
The surface temperature of the laminating roll is a particularly important factor. In other words, the surface temperature of the laminating roll is
It is necessary to control the temperature at 30-180°C, more preferably at 50-150°C. When the surface temperature of the laminating roll exceeds 180°C, when a PET-BO film is laminated onto a metal plate, the biaxially oriented crystals will collapse across the gold layer in the film, although this will vary depending on the thickness of the PET-BO film. , processing corrosion resistance, electrical insulation properties, etc. deteriorate. On the other hand, if you try to lower the surface temperature of the laminating roll to 30℃ or less,
It is necessary to attach a special cooling device such as external cooling to the laminating roll itself, which is undesirable because the equipment becomes large-scale. Controlling the surface temperature of the laminating roll becomes more important as the laminating speed increases. As for the material of the laminating roll, any of chrome-plated rolls, ceramic rolls, and rubber rolls can be used, but rubber rolls are preferable in order to perform high-speed and beautiful lamination. The rubber material of the rubber roll is not particularly limited, but a silicone roll with excellent thermal conductivity and heat resistance is preferred. Next, the cooling conditions after laminating the PET-BO film on the metal plate are also important factors in the present invention. In other words, it is important to rapidly cool the polyester resin film-coated metal plate to below 100°C within 10 seconds after lamination.If the temperature is kept at 100°C or higher for a long time, the metal plate formed at the interface of the metal plate during lamination may The oriented and amorphous PET resin layer turns into coarse spherulites, resulting in a significant decrease in processing adhesion and processing corrosion resistance. The method of rapid cooling is not particularly limited, but preferred are an underwater immersion method, a water spray method, and the like. Next, methods for heating the metal plate include the known hot air heat transfer method, resistance heating method, induction heating method,
Examples include a heat roll heat transfer method, and although it is not particularly limited, the heat roll heat transfer method is preferable in consideration of equipment cost, simplification of equipment, and short-time temperature rising characteristics. Next, the amount of non-oriented, amorphous PET resin produced after laminating the PET-BO film to the metal plate is also an important factor, and the thickness of the PET-BO resin should be 15 to 95% of the total PET resin layer. is important. PET-
If the thickness of the BO resin layer is 95% or more of the total PET resin layer, the processing adhesion will be poor and it will be easy to peel off, especially when deep drawing processing is performed. On the other hand, when the content is less than 15%, workability, corrosion resistance, electrical insulation properties, etc. decrease significantly. As described above, the remaining amount of biaxially oriented crystals is an important factor, and methods for determining the remaining amount of biaxially oriented crystals include the birefringence method, density method, and X-ray diffraction method. According to the law, it is required as follows. (1) Measure the X-ray diffraction intensity of the PET-BO film before lamination and the PET film after lamination in the range of 2θ = 20 to 30°. (2) Connect the X-ray diffraction intensity curves at 2θ=20° and 2θ=30° with a straight line to form the baseline. (3) Measure the sharp peak height that appears around 2θ = 26° from the baseline. (4) When the peak height of the film before lamination is Ia and the peak height of the film after lamination is Ib, Ib/Ia×100 is the remaining amount of biaxially oriented crystals. [Example] Hereinafter, a detailed explanation will be given in Examples. Example 1 A cold-rolled steel plate with a thickness of 0.23 mm was electrolytically degreased in 70 g/sodium hydroxide solution, pickled with 100 g/sulfuric acid solution, washed with water, and then treated with a solution of chromic anhydride 30 g/sodium fluoride/1.5 g/sodium fluoride solution. Among them, the current density
A cathodic electrolytic treatment was performed under the conditions of 20 A/dm 2 and an electrolyte temperature of 30° C., followed by washing with hot water of 80° C. and drying. A 16 μm thick PET-BO film (trade name: Lumirror, manufactured by Toray Industries, Inc.) was laminated continuously on both sides of the electrolytically chromic acid treated steel plate having a width of 300 mm as described above under the following conditions. Heating method for steel strip strips...Temperature of steel plate just before heat roll heating lamination...290℃ Lamination roll...Silicon roll Surface temperature of lamination roll...max 90℃ Time until the laminated steel plate is cooled to below 100℃ ...2 seconds The amount of biaxially oriented crystals of the obtained polyester resin film-coated steel plate was calculated by X-ray diffraction method under the following conditions. Diffraction conditions Target: Cu Tube voltage 40KV Tube current 20mA Method for calculating the amount of biaxial orientation (1) The film before lamination and the coated metal plate after lamination were each measured in the range of 2θ=20 to 30°. (2) The X-ray diffraction intensity curves at 2θ=20° and 2θ=30° were connected with a straight line to form a baseline. (3) The peak height of the sharp peak that appears around 2θ = 26° was measured from the baseline. (4) The peak height of the film before lamination is Ia,
When the peak height of the film after lamination is Ib, Ib/Ia×100 is defined as the remaining amount of biaxially oriented crystals. Example 2 A cold-rolled steel sheet similar to that in Example 1 was pretreated in the same manner as in Example 1, and then treated with 25 g of tin sulfate, 15 g of phenolsulfonic acid (60% aqueous solution), and ethoxylated α-naphtholsulfur. Using an electrolyte containing 2 g of fonic acid, a current density of 20 A/dm 2 and an electrolyte temperature of 40°C.
Tin plating with a tin concentration of 0.3g/m 2 was carried out under the conditions of
Dry. A PET-BO film (trade name: Lumirror, manufactured by Toray Industries, Inc.) having a thickness of 38 μm was laminated continuously on both sides of the tin-plated steel strip having a width of 300 mm under the following conditions. Heating method for steel strip strips...Temperature of steel strip just before heating with heat roll and lamination...280℃ Lamination roll...Silicon roll Surface temperature of lamination roll...160℃ Time until laminated steel plates are cooled to below 100℃ ...3 seconds The amount of biaxially oriented crystals in the obtained polyester resin film-coated steel sheet was determined by X-ray diffraction in the same manner as in Example 1. Example 3 A cold-rolled steel sheet similar to that in Example 1 was pretreated in the same manner as in Example 1, and then treated with nickel chloride (hexahydrate) 40
Nickel plating of 0.6 g/m 2 was performed using a Watts bath consisting of 250 g/g of nickel sulfate (hexahydrate) and 40 g of boric acid at a current density of 10 A/dm 2 and a bath temperature of 45°C. provided. After washing with water, in a solution of 30 g of sodium dichromate, at a current density of 10 A/dm 2 ,
Chromate treatment was performed at an electrolysis temperature of 45°C, washed with water, and dried. A PET-BO film (trade name: Lumirror, manufactured by Toray Industries, Inc.) having a thickness of 188 μm was continuously laminated on both sides of the nickel-plated steel strip having a width of 300 mm under the following conditions. Heating method for steel strip strips...Temperature of steel strip just before heat roll heating and lamination...350℃ Laminating roll...Silicon roll Surface temperature of laminating roll...120℃ Time until the laminated steel plate is cooled to below 100℃ ...8 seconds The amount of biaxially oriented crystals in the obtained polyester resin film-coated steel sheet was determined by X-ray diffraction in the same manner as in Example 1. Example 4 An aluminum plate with a thickness of 0.30 mm was cathodic electrolytically degreased in a 30 g/soda carbonate solution, washed with water, and then treated with phosphoric acid.
After immersion treatment at a bath temperature of 25° C. using a bath containing 60 g of chromic acid, 10 g of sodium fluoride, and 5 g of sodium fluoride, the sample was washed with water and dried. A 75 μm thick PET-BO film (product: Diafoil, manufactured by Diafoil Co., Ltd.) was continuously laminated on both sides of this 300 mm wide strip aluminum plate under the following conditions. Heating method for strip aluminum plate...Temperature of aluminum plate just before heat roll heating lamination...300
℃ Laminating roll...Silicon roll Laminating roll surface temperature...40℃ Time until the laminated aluminum plate is cooled to below 100℃...1 second Biaxially oriented crystals of the obtained polyester resin film-coated aluminum plate The amount was determined by X-ray diffraction in the same manner as in Example 1. Example 5 An aluminum plate with a thickness of 0.30 mm was cathodic electrolytically degreased in a 30 g sodium carbonate solution, and after washing with water, the
Chromate treatment was performed using a sodium dichromate solution, washed with water, and dried. A 25μm thick PET-BO film (product name: Diafoil: manufactured by Diafoil Co., Ltd.) is placed on this 300mm wide strip aluminum plate.
were continuously laminated on both sides under the following conditions. Heating method for strip aluminum plate...Temperature of aluminum plate just before heat roll heating lamination...270
°C Laminating roll...Silicon roll Surface temperature of the laminating roll...120°C Time until the laminated aluminum plate is cooled to below 100°C...5 seconds Biaxially oriented crystals of the obtained polyester resin film-coated aluminum plate The amount was determined by X-ray diffraction in the same manner as in Example 1. Comparative Example 1 Using the same PET-BO film and steel plate as in Example 1, lamination was carried out under the same conditions except for the surface temperature of the laminating roll. Surface temperature of laminating roll...max 210°C The amount of biaxially oriented crystals in the obtained polyester resin film coated steel plate was determined by X-ray diffraction in the same manner as in Example 1. Comparative Example 2 Using the same PET-BO film and steel plate as in Example 1, lamination was performed under the same conditions except for the cooling conditions after lamination. Time required for the laminated steel plate to cool to below 100°C...25 seconds The amount of biaxially oriented crystals in the obtained polyester resin film coated steel plate was determined by X-ray diffraction using the same method as in Example 1. . Comparative Example 3 Using the same aluminum plate and PET-BO film as in Example 4, lamination was performed under the same conditions except for the lamination temperature. Temperature of aluminum plate just before lamination...255
C. The amount of biaxially oriented crystals in the obtained aluminum plate coated with a polyester resin film was determined by X-ray diffraction in the same manner as in Example 1. Comparative Example 4 Using the same aluminum plate and PET-BO film as in Example 5, lamination was performed under the same conditions except for the lamination temperature. Temperature of aluminum plate just before lamination...405
C. The amount of biaxially oriented crystals in the obtained aluminum plate coated with a polyester resin film was determined by X-ray diffraction in the same manner as in Example 1. The polyester resin film-coated metal plate was evaluated by the following test method, and the results are shown in Table 1. (1) Measurement of the amount of plating on the metal plate The amount of plating and film amount was measured using a fluorescent X-ray method. (2) Adhesive strength between metal plate and polyester resin film The diameter of the metal plate coated with polyester resin film
After punching out an 80 mm disc and drawing it into a cylindrical cup at a drawing ratio of 2.0, the polyester resin film on the body was subjected to hot water treatment for 1 hour in boiling water. It was divided into 5 grades, with 5 points being rated as 1 point and 1 point being total peeling. (3) Processing corrosion resistance 50 ml of citric acid adjusted to pH 2.2 was placed in the cylindrical cup described in item (2) above, and the cup was left at 55°C for 30 days, and eluted iron or eluted aluminum was measured. Also, put 3% NaCl in the same cup and heat it at 55°C.
After being left for 30 days, the corrosion status was investigated by visual observation.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

かくして得られた片面あるいは両面にPET−
BOフイルムをラミネートした金属板は、加工耐
食性、加工密着性に優れているため、容器用材
料、建材部材、電機品部材等幅広い用途に適用で
きるものである。
PET− on one or both sides thus obtained.
Metal plates laminated with BO film have excellent processing corrosion resistance and processing adhesion, so they can be used in a wide range of applications such as container materials, building materials, and electrical equipment components.

Claims (1)

【特許請求の範囲】[Claims] 1 二軸配向ポリエチレンテレフタレート樹脂の
融点(Tm)〜(Tm+100℃)に加熱された金属
板の片面あるいは両面に、PET−BOフイルムを
ラミネートするに際し、ラミネートロールの表面
温度を30〜180℃にコントロールしたラミネート
ロールによりラミネート後、10秒以内に100℃以
下に冷却し、上層にPET−BO樹脂層を有し、下
層に無配向PET樹脂層を有して、PET−BO樹脂
層の厚みが全PET樹脂層の15〜95%であること
を特徴とするポリエステル樹脂フイルム被覆金属
板の製造方法。
1 When laminating PET-BO film on one or both sides of a metal plate heated to the melting point (Tm) of biaxially oriented polyethylene terephthalate resin (Tm) to (Tm + 100℃), the surface temperature of the laminating roll is controlled at 30 to 180℃. After laminating with a laminating roll, the film is cooled to 100°C or less within 10 seconds, and the upper layer has a PET-BO resin layer, the lower layer has a non-oriented PET resin layer, and the thickness of the PET-BO resin layer is completely covered. A method for producing a metal plate coated with a polyester resin film, characterized in that the PET resin layer is 15 to 95%.
JP59272013A 1984-12-25 1984-12-25 Manufacture of polyester resin film-covered metal plate Granted JPS61149340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59272013A JPS61149340A (en) 1984-12-25 1984-12-25 Manufacture of polyester resin film-covered metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59272013A JPS61149340A (en) 1984-12-25 1984-12-25 Manufacture of polyester resin film-covered metal plate

Publications (2)

Publication Number Publication Date
JPS61149340A JPS61149340A (en) 1986-07-08
JPH0258094B2 true JPH0258094B2 (en) 1990-12-06

Family

ID=17507914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59272013A Granted JPS61149340A (en) 1984-12-25 1984-12-25 Manufacture of polyester resin film-covered metal plate

Country Status (1)

Country Link
JP (1) JPS61149340A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078538B2 (en) * 1986-12-29 1995-02-01 川鉄鋼板株式会社 Method for producing fluororesin film laminating plate
GB8724239D0 (en) * 1987-10-15 1987-11-18 Metal Box Plc Laminated metal sheet
GB8724238D0 (en) * 1987-10-15 1987-11-18 Metal Box Plc Laminated metal sheet
GB8724237D0 (en) * 1987-10-15 1987-11-18 Metal Box Plc Laminated metal sheet
US5149389A (en) * 1987-10-15 1992-09-22 Cmb Foodcan Plc Laminated metal sheet
JPH085159B2 (en) * 1988-01-28 1996-01-24 新日本製鐵株式会社 Laminated steel sheet having a two-layer coating structure and method for producing the same
JP2691756B2 (en) * 1988-12-07 1997-12-17 新日本製鐵株式会社 Method for producing resin-coated steel sheet with excellent resistance to cresting and ironing
JPH0755552B2 (en) * 1989-09-18 1995-06-14 東洋製罐株式会社 Deep drawing can manufacturing method
GB2242159B (en) * 1990-03-19 1994-02-02 Toyo Kohan Co Ltd Copolyester resin film-metal sheet laminates
JPH07115411B2 (en) * 1990-06-25 1995-12-13 東洋鋼鈑株式会社 Method and apparatus for manufacturing coated metal plate
JP2000006978A (en) 1998-06-26 2000-01-11 Ishida Co Ltd Composite container
JP3602044B2 (en) * 2000-09-25 2004-12-15 東洋鋼鈑株式会社 Method for producing resin-coated metal plate
EP3427945A4 (en) * 2016-03-10 2019-10-09 Nippon Steel Corporation Metal sheet for container and method for manufacturing same
US11220094B2 (en) 2016-03-10 2022-01-11 Nippon Steel Corporation Film-laminated metal plate having excellent retort adhesiveness, and method for manufacturing same
JP6774827B2 (en) * 2016-09-15 2020-10-28 昭和電工パッケージング株式会社 Coating material for rolled aluminum alloy plates for small electronic equipment cases
CN113211906B (en) * 2021-05-10 2022-06-28 深圳市华鼎星科技有限公司 Circuit material attaching method and formed material

Also Published As

Publication number Publication date
JPS61149340A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
JPH0258094B2 (en)
US4517255A (en) Method for production of metal sheet covered with polyester resin film
RU2590546C2 (en) White tin coated with polymer coating, and methods of production thereof
US4614691A (en) Method for production of metal sheet covered with polyester resin film
WO2012036203A1 (en) Steel plate for containers and manufacturing method for same
US5234516A (en) Method for production of a polyethylene laminated metal sheet
JP5729230B2 (en) Steel plate for container and method for producing the same
JP2012062509A (en) Surface-treated steel plate, manufacturing method therefor, and resin-coated steel plate using the surface-treated steel plate
JPH0225784B2 (en)
JPS5882717A (en) Manufacture of polyester resin film-coated metal plate
GB2164899A (en) Method for production or metal sheet covered with polyester resin film
JPH01249331A (en) Manufacture of metallic sheet coated with polyester resin superior in processability
JPH0474176B2 (en)
CN108698376B (en) Film laminated metal plate with excellent cooking adhesion and method for producing same
JPH03212433A (en) Production of metal plate coated with polyester resin having excellent heat resistance
GB2123746A (en) Method for production of metal sheet covered with polyester resin film
KR850001958B1 (en) Method for producing polyester film resin coated metal plate
JP5772845B2 (en) Manufacturing method of surface-treated steel sheet
JPH0387249A (en) Polyester resin coated metal plate excellent in processability and production thereof
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JP2010255065A (en) Surface treated steel sheet and method of manufacturing the same
KR20220117892A (en) Manufacturing method of laminated tin plate, laminated tin plate, and use of laminated tin plate
JPS58220729A (en) Manufacture of metallic plate coated with polyester resin film
JPS62227642A (en) Resin coated metallic plate for vessel cover
JP4339046B2 (en) Method for producing resin-coated aluminum material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees