[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0255373B2 - - Google Patents

Info

Publication number
JPH0255373B2
JPH0255373B2 JP60203865A JP20386585A JPH0255373B2 JP H0255373 B2 JPH0255373 B2 JP H0255373B2 JP 60203865 A JP60203865 A JP 60203865A JP 20386585 A JP20386585 A JP 20386585A JP H0255373 B2 JPH0255373 B2 JP H0255373B2
Authority
JP
Japan
Prior art keywords
zinc
ions
present
platinum
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60203865A
Other languages
Japanese (ja)
Other versions
JPS6265743A (en
Inventor
Hisashi Ueda
Michiko Yonemura
Tadao Sekine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60203865A priority Critical patent/JPS6265743A/en
Publication of JPS6265743A publication Critical patent/JPS6265743A/en
Publication of JPH0255373B2 publication Critical patent/JPH0255373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔利用分野〕 本発明は光触媒活性を有する亜鉛化合物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a zinc compound having photocatalytic activity.

酸化亜鉛を主体とする金属酸化物触媒を用い
て、アルカリ金属の硫化物あるいは亜硫酸塩のよ
うな被酸化性陰イオンを含む水溶液の可視光によ
る光分解を行う場合、触媒に要求される性質は主
として4つある。その(1)は可視光を吸収する性質
であり、その(2)は硫化物イオンや亜硫酸イオン等
の電子供与性物質から電子を奪う性質、即ち光酸
化能であり、その(3)は電子供与性物質から受取つ
た電子を電子受容性物質に渡す性質、即ち光還元
能である。その(4)は前記の(2)と(3)の過程で生成し
た被酸化物質と被還元物質が結合して酸化や還元
作用を受ける以前の物質に逆戻りする反応、即ち
再結合反応を防止する性能でである。これらの4
つの性能がバランスよく機能を果してはじめて光
触媒活性が発揮される。
When photolyzing an aqueous solution containing oxidizable anions such as alkali metal sulfide or sulfite using visible light using a metal oxide catalyst mainly composed of zinc oxide, the properties required of the catalyst are as follows. There are four main types. (1) is the property of absorbing visible light, (2) is the property of taking electrons from electron-donating substances such as sulfide ions and sulfite ions, that is, photooxidation ability, and (3) is the property of absorbing electrons. This is the property of transferring electrons received from a donating substance to an electron-accepting substance, that is, photoreducibility. Part (4) prevents the reaction in which the oxidized substance and the reduced substance generated in the processes of (2) and (3) above combine and revert to the substance before undergoing oxidation or reduction, that is, the recombination reaction. It has the performance of These 4
Photocatalytic activity is achieved only when the two functions function in a well-balanced manner.

これらの性質は亜鉛の酸化物や亜鉛の硫化物の
半導体としての性質に含まれているものである。
これまで多くの半導体物質の光触媒機能が研究さ
れ、かなりの種類の異種物質のドーピングが試み
られているが、本発明において作成したような高
度に分散したZn+イオンやCd+イオンを粒子表面
に形成分散させるドーピングの方法は知られてい
ない。
These properties are included in the properties of zinc oxide and zinc sulfide as semiconductors.
Until now, the photocatalytic function of many semiconductor materials has been studied, and attempts have been made to dope them with a considerable variety of different materials. A doping method for formation and dispersion is not known.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、亜鉛酸化物や硫化物からなる光
活性触媒において、一般に、酸化物の光吸収は紫
外部に偏つており、これに対して、一般に硫化物
の光吸収は可視部にわたつているが、水溶液中で
硫化物は不安定であるという欠点を有している
点、そして硫化物の光吸収能力と酸化物の化学的
安定性の両方を取り入れた複合材料が得られ、か
つそれが可視光領域で安定な触媒材料として使用
できる点に着目し、鋭意研究を重ねた結果、粒子
表面にZn+やCd+を高分散度で形成させたものが
その目的に適合することを見出し、本発明を完成
するに至つた。
The present inventors discovered that in photoactive catalysts made of zinc oxide and sulfide, the light absorption of oxides is generally concentrated in the ultraviolet region, whereas the light absorption of sulfides is generally concentrated in the visible region. However, sulfides have the disadvantage of being unstable in aqueous solutions, and a composite material that incorporates both the light absorption ability of sulfides and the chemical stability of oxides can be obtained. Focusing on the fact that it can be used as a stable catalytic material in the visible light region, we conducted extensive research and found that particles with highly dispersed Zn + and Cd + formed on the particle surface were suitable for this purpose. This finding led to the completion of the present invention.

すなわち、本発明によれば、白金あるいはカド
ミウムを含有させた亜鉛酸化物粒子の表面に、
Zn+やCd+を高分散度で形成させたことを特徴と
する光触媒活性を有する亜鉛化合物を提供するも
のである。
That is, according to the present invention, on the surface of zinc oxide particles containing platinum or cadmium,
The present invention provides a zinc compound having photocatalytic activity, which is characterized by forming Zn + and Cd + with a high degree of dispersion.

本発明の亜鉛化合物は、酸化亜鉛に対して重量
で1%に相当する白金を化合させてから、亜鉛の
一部を還元してZn+を形成分散させたものであ
る。酸化カドミウムを加する場合には、酸化亜鉛
と酸化カドミウム粉末を電磁式振動乳鉢に入れて
1時間粉砕混合する。本発明において、硫化物の
形成は、硫化剤として2硫化炭素、硫化水素、硫
化メチル等を含む硫化性ガス雰囲気中において温
度700℃程度(酸化カドミウム添加量の多い場合
は600℃)に加熱することによつて行うことがで
きる。このようにして生成した硫化物を酸素また
は酸素を含む雰囲気中において温度400℃程度に
加熱することにより亜鉛化合物粒子の表面に生成
したS2-イオンを酸化してO2-イオンに変化させ
ることができる。また触媒成分として加える白金
は塩化白金酸カリ(K2PtCl4、K2PtCl6)で加え
ても、白金黒の形で加えてもよい。白金を加えな
くても触媒作用は発揮されるが、白金を加えるこ
とにより触媒活性を50%程度向上させることがで
きる。白金はまたニツケルにより代用することも
できる。
The zinc compound of the present invention is obtained by combining platinum equivalent to 1% by weight with respect to zinc oxide, and then reducing a portion of the zinc to form and disperse Zn + . When adding cadmium oxide, zinc oxide and cadmium oxide powder are placed in an electromagnetic vibrating mortar and ground and mixed for one hour. In the present invention, sulfides are formed by heating to a temperature of approximately 700°C (600°C if a large amount of cadmium oxide is added) in a sulfurizing gas atmosphere containing carbon disulfide, hydrogen sulfide, methyl sulfide, etc. as a sulfurizing agent. This can be done by By heating the sulfide thus generated to a temperature of approximately 400°C in oxygen or an atmosphere containing oxygen, the S 2- ions generated on the surface of the zinc compound particles are oxidized and converted into O 2- ions. Can be done. Further, platinum added as a catalyst component may be added in the form of potassium chloroplatinate (K 2 PtCl 4 , K 2 PtCl 6 ) or in the form of platinum black. Catalytic activity can be achieved without adding platinum, but adding platinum can improve catalytic activity by about 50%. Platinum can also be substituted by nickel.

本発明により触媒中のZn2+を還元してZn+を生
成させる場合、通常の還元方法ではZn+は局部的
に集中して高濃度に生成してしまい、格子間亜鉛
イオンと言われる、結晶格子外に生長した還元状
態にある亜鉛イオンの集合体に変化するのを防止
するために、本発明では硫化処理の際には二硫化
炭素や硫化メチルのような弱い硫化剤を用いる。
その圧力も例えば硫化剤分圧1万分の1〜1万分
の2気圧程度にするのがよく、また酸化処理の際
には集団的に生成したZn+を酸化してその大部分
を元のZn2+に戻すため酸素分圧1気圧程度にす
る。よく分散して生成したZn+イオンの濃度をよ
り高くするためには、弧立したZn+イオンを安定
化するような亜鉛酸化物の粒子表面の特異点の濃
度を高くすることが必要である。そのためには亜
鉛酸化物を電磁式振動乳鉢で粉砕しながらそのよ
うな粒子表面の特異点を露出させ、かつそのよう
な点が露出した際にその特異的な活性状態を保存
するために、ハイドロキノンのような還元剤を加
えておく。このようにすることにより、特異点は
ハイドロキノンと反応して酸化されにくくなるの
で、その後の硫化処理を受ける迄その還元的状態
を保つ。また触媒表面は酸化状態の方が安定であ
るので、最終処理は酸化状態でなければならな
い。
When Zn + is produced by reducing Zn 2+ in the catalyst according to the present invention, with the usual reduction method, Zn + is locally concentrated and produced at a high concentration, which is called an interstitial zinc ion. In order to prevent zinc ions from changing into aggregates of reduced zinc ions grown outside the crystal lattice, a weak sulfiding agent such as carbon disulfide or methyl sulfide is used in the sulfiding process in the present invention.
The pressure is preferably set to, for example, 1/10,000 to 2/10,000 atmospheres of the sulfurizing agent partial pressure, and during the oxidation treatment, the collectively generated Zn + is oxidized and most of it is converted back to the original Zn. To return to 2+ , reduce the oxygen partial pressure to about 1 atm. In order to increase the concentration of well-dispersed Zn + ions, it is necessary to increase the concentration of singular points on the surface of zinc oxide particles that stabilize the erect Zn + ions. . For this purpose, zinc oxide is crushed in an electromagnetic vibrating mortar to expose the singular points on the particle surface, and when such points are exposed, hydroquinone is added to preserve the specific active state. Add a reducing agent such as By doing so, the singular point becomes less likely to react with hydroquinone and be oxidized, so that it maintains its reducing state until it is subjected to the subsequent sulfurization treatment. Further, since the catalyst surface is more stable in an oxidized state, the final treatment must be in an oxidized state.

〔発明の効果〕〔Effect of the invention〕

本発明の亜鉛化合物はバンドギヤツプの中間に
Zn+の中間電子帯を作つて光吸収特性を紫外部よ
り可視部に拡大改良したものであり、かつ白金の
添加により還元能が向上したため、半導体触媒が
本来有している光酸化能と相まつて高い光触媒活
性を発揮する。本発明によれば、硫化物や亜硫酸
塩等の水溶液のほか、電子供与性の強い液体(例
えばメタノール、エチルアミン等)又は電子供与
性の強い固体物質(例えばブドウ糖、グルタミン
酸等)の水溶液に本発明の亜鉛化合物を接触させ
た状態で、可視光を照射すると、還元性物質(水
素等)と酸化性物質(硫黄、硫酸イオン、あるい
は上記反応基質が酸化されて生ずるアルデヒド、
ニトロソ化合物等)を製造することができる。
The zinc compound of the present invention is placed in the middle of the band gap.
By creating an intermediate electron band in Zn + , the light absorption properties have been expanded from the ultraviolet region to the visible region, and the reduction ability has been improved by adding platinum, which is compatible with the photooxidation ability that semiconductor catalysts inherently have. It exhibits high photocatalytic activity. According to the present invention, in addition to aqueous solutions of sulfides, sulfites, etc., the present invention can be applied to aqueous solutions of strongly electron-donating liquids (e.g., methanol, ethylamine, etc.) or aqueous solutions of strongly electron-donating solid substances (e.g., glucose, glutamic acid, etc.). When exposed to visible light while in contact with a zinc compound, reducing substances (hydrogen, etc.) and oxidizing substances (sulfur, sulfate ions, or aldehydes produced by oxidation of the above reaction substrates,
nitroso compounds, etc.) can be produced.

実施例 次に本発明を実施例により更に詳細に説明す
る。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 1.0重量%のハイドロキノンと1時間電磁式振
動乳鉢で粉砕混合した酸化亜鉛を0.1TorrのCS2
中で700℃、30分間処理し、次いで1気圧の酸素
中で400℃、30分間処理する。さらに30分間CS2
中で700℃に加熱処理する。得られた粉末に対し
て1.0重量%に相当する白金を含有する塩化白金
酸カリウムを水溶液から吸着させ、イソプロパノ
ールと水とピロガロールの混合液中で紫外線照射
により白金を還元する。この粉末をさらに700℃
のCS2中で30分間加熱し、さらに400℃の酸素中
で30分間加熱して本発明の亜鉛化合物を得た。
Example 1 1.0% by weight of hydroquinone and zinc oxide ground and mixed in an electromagnetic vibrating mortar for 1 hour were mixed with 0.1 Torr of CS 2
700° C. for 30 minutes in an atmosphere of 1 atmosphere of oxygen, and then 400° C. for 30 minutes in 1 atmosphere of oxygen. Another 30 minutes CS 2
Heat-treated at 700℃ in a vacuum chamber. Potassium chloroplatinate containing platinum corresponding to 1.0% by weight of the obtained powder is adsorbed from an aqueous solution, and the platinum is reduced by ultraviolet irradiation in a mixed solution of isopropanol, water, and pyrogallol. This powder is further heated to 700℃.
The zinc compound of the present invention was obtained by heating in CS 2 at 400° C. for 30 minutes and further heating in oxygen at 400° C. for 30 minutes.

次に前記亜鉛化合物0.3gを、10mlの0.35M濃
度のNa2SO3溶液に入れ、光波長領域480nm〜
750nmの光を300μアインシユタイン照射した。そ
の結果光エネルギーの変換効率23%で水素0.83ml
を発生させることができた。またこの際水相には
0.83モルの硫酸イオンを生成させることができ
た。
Next, 0.3 g of the zinc compound was added to 10 ml of Na 2 SO 3 solution with a concentration of 0.35 M, and a light wavelength range of 480 nm ~
750nm light was irradiated with a 300μ einstein beam. As a result, 0.83ml of hydrogen with a light energy conversion efficiency of 23%
was able to occur. Also, at this time, in the aqueous phase
It was possible to generate 0.83 moles of sulfate ion.

実施例 2 酸化カドミウムと酸化亜鉛をモル比で1:1の
割に混合したものを電磁式振動乳鉢で1時間粉砕
混合したものを実施例1と同じ方法で硫化・酸化
処理および白金添加を行つて本発明の亜鉛化合物
を得た。
Example 2 A mixture of cadmium oxide and zinc oxide at a molar ratio of 1:1 was pulverized and mixed in an electromagnetic vibrating mortar for 1 hour, and then sulfurized and oxidized and platinum was added in the same manner as in Example 1. Thus, the zinc compound of the present invention was obtained.

次にここに得た亜鉛化合物0.3gを実施例1と
同じ方法で0.35M亜硫酸ソーダ水溶液中で可視光
照射を行つたところ、光エネルギーの変換効率22
%で水素0.79mlを発生させることができた。また
水溶液中に33μモルの硫酸イオンが生成した。
Next, when 0.3 g of the zinc compound obtained here was irradiated with visible light in a 0.35M sodium sulfite aqueous solution in the same manner as in Example 1, the conversion efficiency of light energy was 22.
%, it was possible to generate 0.79ml of hydrogen. Additionally, 33 μmol of sulfate ions were generated in the aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] 1 白金又はカドミウムを含有させた亜鉛の酸化
物を硫化酸化処理することによりZn+イオンある
いはCd+イオンを粒子表面に高分散度に形成させ
ることを特徴とする光触媒活性を有する亜鉛化合
物。
1. A zinc compound having photocatalytic activity, which is characterized by forming Zn + ions or Cd + ions with a high degree of dispersion on the particle surface by subjecting a zinc oxide containing platinum or cadmium to sulfidation oxidation treatment.
JP60203865A 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity Granted JPS6265743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203865A JPS6265743A (en) 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203865A JPS6265743A (en) 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity

Publications (2)

Publication Number Publication Date
JPS6265743A JPS6265743A (en) 1987-03-25
JPH0255373B2 true JPH0255373B2 (en) 1990-11-27

Family

ID=16480981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203865A Granted JPS6265743A (en) 1985-09-14 1985-09-14 Zinc compound having photocatalytic activity

Country Status (1)

Country Link
JP (1) JPS6265743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306966A (en) * 2001-04-11 2002-10-22 Japan Science & Technology Corp Method for manufacturing highly activated photocatalyst and method for treating hydrogen sulfide using highly activated photocatalyst

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0180606B1 (en) * 1995-09-18 1999-03-20 강박광 Novel photocatalyst, its preparation process and hydrotreating process using it
KR100202238B1 (en) * 1996-10-07 1999-06-15 이서봉 Novel zns photocatalyst, method thereof and production of hydrogen gas
JP4191373B2 (en) 2000-09-01 2008-12-03 独立行政法人科学技術振興機構 Method for producing highly active photocatalyst and method for treating hydrogen sulfide for recovering hydrogen gas with low energy using highly active photocatalyst
JP2003181297A (en) * 2001-12-19 2003-07-02 Japan Science & Technology Corp Thin film-like photocatalyst, forming method thereof, method of treating hydrogen sulfide using the thin film- like photocatalyst, and method of manufacturing hydrogen
JP2006082071A (en) * 2004-02-20 2006-03-30 Sekisui Jushi Co Ltd Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance
JP4997454B2 (en) * 2005-09-06 2012-08-08 独立行政法人産業技術総合研究所 Semiconductor electrode and energy conversion system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306966A (en) * 2001-04-11 2002-10-22 Japan Science & Technology Corp Method for manufacturing highly activated photocatalyst and method for treating hydrogen sulfide using highly activated photocatalyst

Also Published As

Publication number Publication date
JPS6265743A (en) 1987-03-25

Similar Documents

Publication Publication Date Title
Liu et al. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation
Jiang et al. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method
Gupta et al. An overview of commonly used semiconductor nanoparticles in photocatalysis
JP5493572B2 (en) Photocatalyst and reduction catalyst using the same
CA1177049A (en) Catalysts for photo-assisted oxidation-reduction reactions
JP5537858B2 (en) Photocatalyst material and method for producing the same
US6060026A (en) Photoelectrochemical device containing a quantum confined silicon particle
Nishimoto et al. Photoinduced oxygen formation and silver-metal deposition in aqueous solutions of various silver salts by suspended titanium dioxide powder
JP2019130523A (en) Catalyst for methane synthesis, methane production method, and method for producing catalyst for methane synthesis
JPH0255373B2 (en)
Devi et al. Room temperature synthesis of colloidal platinum nanoparticles
WO2023108950A1 (en) PREPARATION METHOD FOR Z-SCHEME α-FE2O3/ZNIN2S4 COMPOSITE PHOTOCATALYST AND USE THEREOF
Gómez-Romero Polyoxometalates as photoelectrochemical models for quantum-sized colloidal semiconducting oxides
JP3870267B2 (en) Bismuth complex oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same
CN109317160B (en) Semiconductor heterojunction photocatalytic material and preparation method and application thereof
Wang et al. Study on photocatalytic activity of Ag2O modified BiOI/g-C3N4 composite photocatalyst for degradation of RhB
JPS63107815A (en) Niobium compound with photocatalytic activity
JPH0527459B2 (en)
CN109174129B (en) Double-sensitized titanium dioxide photocatalyst and preparation method thereof
JPH0255379B2 (en)
KR100486388B1 (en) MyM'zS Photocatalys Supported by Semiconductor Particle and Preparation Thereof and Method Producing Hydrogen by Use of the Same
CN112390291A (en) Preparation method of vanadate cocatalyst material
CN115155625B (en) Multi-junction nano catalyst and preparation method and application thereof
Yan et al. LaVO 4 with alkali metal doping for enhanced photocatalytic water splitting
JPH0417697B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term