[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002306966A - Method for manufacturing highly activated photocatalyst and method for treating hydrogen sulfide using highly activated photocatalyst - Google Patents

Method for manufacturing highly activated photocatalyst and method for treating hydrogen sulfide using highly activated photocatalyst

Info

Publication number
JP2002306966A
JP2002306966A JP2001112293A JP2001112293A JP2002306966A JP 2002306966 A JP2002306966 A JP 2002306966A JP 2001112293 A JP2001112293 A JP 2001112293A JP 2001112293 A JP2001112293 A JP 2001112293A JP 2002306966 A JP2002306966 A JP 2002306966A
Authority
JP
Japan
Prior art keywords
hydrogen
sulfide
hydrogen sulfide
solution
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001112293A
Other languages
Japanese (ja)
Other versions
JP5106721B2 (en
Inventor
Kazuyuki Taji
和幸 田路
Atsuo Kasuya
厚生 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001112293A priority Critical patent/JP5106721B2/en
Priority to PCT/JP2002/003353 priority patent/WO2002083308A1/en
Publication of JP2002306966A publication Critical patent/JP2002306966A/en
Application granted granted Critical
Publication of JP5106721B2 publication Critical patent/JP5106721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/05Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/06Preparation of sulfur; Purification from non-gaseous sulfides or materials containing such sulfides, e.g. ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly activated photocatalyst interacting with hydrogen sulfide to generate sulfur and hydrogen. SOLUTION: The highly activated photocatalyst is obtained by oxidizing a metallic sulfide such as zinc sulfide under an oxidizing atmosphere or with a prescribed oxidizing agent. The method for treating hydrogen sulfide using the highly activated photocatalyst is constituted of a hydrogen sulfide dissolving process for dissolving hydrogen sulfide gas, for example in a sodium hydroxide aqueous solution in a hydrogen sulfide dissolving tank 1 to prepare a sodium sulfide solution, a hydrogen recovering process for adding the highly activated photocatalyst in the sodium sulfide solution into a photocatalytic reactor 3, irradiating with ultraviolet ray to produce gaseous hydrogen and polysulfide ion and recovering hydrogen, and a sulfur recovering process for recovering sulfur from the polysulfide ion in a sulfur recovering tank 5 and recirculating the solution after the sulfur recovery to the hydrogen sulfide dissolving tank 1 to recycle in the hydrogen sulfide dissolving process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素や硫黄等の化
学物質を生成する化学工業分野、脱硫工程などで発生し
た硫化水素等を処理する化学工業分野、及び悪臭物質や
大気汚染物質を除去する環境保全分野などで利用可能な
高活性光触媒の製造技術、並びにその利用技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical industry for producing chemical substances such as hydrogen and sulfur, a chemical industry for treating hydrogen sulfide and the like generated in a desulfurization step, and a method for removing malodorous substances and air pollutants. The present invention relates to a technology for producing a highly active photocatalyst that can be used in the field of environmental protection and the like, and its utilization technology.

【0002】[0002]

【従来の技術】光触媒技術の応用は、環境汚染物質や悪
臭成分・雑菌などの分解など、様々な化学反応を促進す
る特性を利用した実用化が始まっている。その例として
は、病院の手術室などで利用される抗菌タイル、空気清
浄機やエア・コンディショナーのフィルタ、高速道路等
の照明灯のガラスなどが挙げられる。これら光触媒の酸
化促進能力を利用した実用化の一方で、水などに光触媒
を作用させて水素を得ることや、炭酸ガスに作用させて
炭素を固定還元することを目的とした研究も行われてい
る。また、光触媒の応用はこれにとどまらず、有害物質
に光触媒を作用させて有用な化学物質を得ることも可能
である。例えば、石油精製や金属精練の脱硫工程に応用
することが考えられる。
2. Description of the Related Art The application of photocatalyst technology has begun to be put to practical use utilizing characteristics that promote various chemical reactions such as decomposition of environmental pollutants, odorous components and various germs. Examples include antibacterial tiles used in hospital operating rooms, filters for air purifiers and air conditioners, and glass for lighting on highways and the like. While these photocatalysts have been put to practical use using their oxidation promoting ability, research has also been conducted with the aim of obtaining hydrogen by applying a photocatalyst to water or the like, or reducing carbon by acting on carbon dioxide gas. I have. Further, the application of the photocatalyst is not limited to this, and it is also possible to obtain a useful chemical substance by making the harmful substance act on the photocatalyst. For example, it is conceivable to apply it to a desulfurization step of petroleum refining or metal refining.

【0003】図4は、現在、一般的に行われている原油
の脱硫工程を示すもので、原油を蒸留する際に、重質ナ
フサを水素化精製して原油に含まれる硫黄分を全て硫化
水素にして回収している。さらに、ここで発生した硫化
水素は、図5に示すように、クラウス法と呼ばれるプロ
セスを経て、酸化して硫黄を回収している。このクラウ
ス法は、硫化水素の3分の1を酸化して亜硫酸ガスと
し、これと残りの硫化水素とを反応させて硫黄とするプ
ロセスである。すなわち、化学式では以下のように表さ
れる。
[0003] Fig. 4 shows a crude oil desulfurization process which is generally performed at present. When distilling crude oil, heavy naphtha is hydrorefined to completely sulfide sulfur contained in the crude oil. It is recovered as hydrogen. Further, as shown in FIG. 5, the hydrogen sulfide generated here is oxidized to recover sulfur through a process called the Claus method. The Claus method is a process in which one-third of hydrogen sulfide is oxidized into sulfur dioxide gas, and this is reacted with the remaining hydrogen sulfide to form sulfur. That is, in the chemical formula, it is represented as follows.

【0004】[0004]

【化1】 2H2S + 3O2 → 2H2O + 2SO2 4H2S + 2SO2 → 4H2O+ 6SEmbedded image 2H 2 S + 3O 2 → 2H 2 O + 2SO 2 4H 2 S + 2SO 2 → 4H 2 O + 6S

【0005】この硫黄回収工程は、亜硫酸ガスと硫化水
素の触媒反応だけでなく、加熱や凝集を繰り返すため、
膨大なエネルギーを要している。また、亜硫酸ガスの管
理にコストがかかるなどの問題を有している。
[0005] In this sulfur recovery step, not only the catalytic reaction of sulfur dioxide and hydrogen sulfide, but also heating and coagulation are repeated,
It requires a huge amount of energy. In addition, there is a problem that management of sulfurous acid gas is costly.

【0006】一方、図4に示す原油の脱硫工程の重質ナ
フサの水素化精製に水素ガスが用いられるが、水素ガス
は一般に図6及び図7に示すような方法で製造される。
図6は、炭化水素ガス分解法と呼ばれる水素ガス製造方
法を示す。この水素ガス製造方法では、パラフィンやエ
チレン、プロピレンを原料として、まずは硫黄化合物を
除いた後、ニッケル触媒上で400℃以上で水蒸気と反
応させて水素、二酸化炭素、一酸化炭素を発生させ、つ
いで、水蒸気を加えて200℃前後まで冷却し、一酸化
鉄の触媒上を通して、一酸化炭素から二酸化炭素と水素
を発生させた後、生成ガスを冷却し、ガーボトール法に
より二酸化炭素を除去して水素を得ている。
On the other hand, hydrogen gas is used in the hydrorefining of heavy naphtha in the crude oil desulfurization step shown in FIG. 4, and hydrogen gas is generally produced by a method as shown in FIGS.
FIG. 6 shows a hydrogen gas production method called a hydrocarbon gas decomposition method. In this hydrogen gas production method, using paraffin, ethylene, and propylene as raw materials, first remove sulfur compounds, and then react with steam at 400 ° C. or more on a nickel catalyst to generate hydrogen, carbon dioxide, and carbon monoxide. After adding water vapor and cooling to about 200 ° C., passing carbon dioxide and hydrogen over the catalyst of iron monoxide to generate carbon dioxide and hydrogen, the produced gas is cooled, and carbon dioxide is removed by the Garbotol method to remove hydrogen. Have gained.

【0007】図7に示す水素ガス製造方法は、深冷水素
精製法もしくは窒素洗浄法と呼ばれ、水素に富んだガス
から水素を生成するもので、前述の炭化水素分解以外の
工程から生成する粗ガスにも適用できる。この製造方法
では、原料ガスを圧縮し、水酸化ナトリウムで洗浄して
炭酸ガス、硫化水素などをまず除去する。次に、熱交換
器で低温の精製水素ガスによって冷却し、メタン及びC
4以上の炭化水素ガスを液化除去する。ついで、窒素洗
浄塔において塔底から塔頂へ上昇させて塔頂から下降す
る液化窒素によって洗浄することによって、一酸化炭素
及び窒素が液状で塔底から排出され、精製分離された水
素が塔頂から取り出される。
[0007] The hydrogen gas production method shown in FIG. 7 is called a cryogenic hydrogen purification method or a nitrogen cleaning method, and generates hydrogen from a hydrogen-rich gas. Applicable to crude gas. In this manufacturing method, a raw material gas is compressed and washed with sodium hydroxide to first remove carbon dioxide gas, hydrogen sulfide, and the like. Next, it is cooled by a low-temperature purified hydrogen gas in a heat exchanger, and methane and C
Liquefied and removed four or more hydrocarbon gases. Then, in the nitrogen washing tower, carbon monoxide and nitrogen are discharged from the tower bottom in a liquid state by being raised from the bottom of the tower to the top and washed with liquefied nitrogen descending from the top, and purified and separated hydrogen is collected at the top of the tower. Taken out of

【0008】これらの水素製造方法では、主に硫化水素
などの硫黄化合物による触媒の被毒を避けるための精製
工程を必要とし、また加熱や凝集を繰り返すために膨大
なエネルギーを要している。
[0008] These hydrogen production methods require a purification step for avoiding poisoning of the catalyst mainly by sulfur compounds such as hydrogen sulfide, and require enormous energy to repeat heating and coagulation.

【0009】[0009]

【発明が解決しようとする課題】上述したように、従来
の硫化水素処理方法や水素製造方法では、加熱や凝集を
繰り返すために膨大なエネルギーを必要としている。し
たがって、簡便に硫化水素から硫黄と水素を取り出すこ
とができれば、硫化水素の処理と水素の製造を同時に行
うことができ、従来の硫化水素処理方法及び水素製造方
法の問題を解決することができるとともに、取り出した
水素を脱硫工程に使用することで、有用なケミカル・リ
サイクルを実現することができる。
As described above, the conventional hydrogen sulfide treatment method and the conventional hydrogen production method require enormous energy to repeat heating and coagulation. Therefore, if sulfur and hydrogen can be easily extracted from hydrogen sulfide, the treatment of hydrogen sulfide and the production of hydrogen can be performed simultaneously, and the problems of the conventional hydrogen sulfide treatment method and hydrogen production method can be solved. By using the extracted hydrogen in the desulfurization step, useful chemical recycling can be realized.

【0010】本発明は、上記従来技術の問題点に対処し
てなされたもので、硫化水素から硫黄と水素を生成する
ことができる高活性光触媒の製造方法を提供することを
目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a method for producing a highly active photocatalyst capable of producing sulfur and hydrogen from hydrogen sulfide.

【0011】また、本発明は、高活性光触媒を用いて硫
化水素から工業全般に有用な硫黄と水素を経済的な工程
で効率よく回収することができる硫化水素処理方法を提
供することを目的とする。
It is another object of the present invention to provide a method for treating hydrogen sulfide, which can efficiently recover sulfur and hydrogen useful for industry in general from hydrogen sulfide in an economical process using a highly active photocatalyst. I do.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
め検討を行った結果、本発明者らは光触媒として知られ
る金属硫化物を酸化処理によって改質することが有効で
あることを見出した。金属硫化物としては、例えば亜
鉛、カドミウム、水銀等の硫化物が挙げられるが、中で
も硫化亜鉛が好適である。
As a result of investigations to achieve the above object, the present inventors have found that it is effective to modify metal sulfide known as a photocatalyst by oxidation treatment. . Examples of the metal sulfide include sulfides such as zinc, cadmium, and mercury. Among them, zinc sulfide is preferable.

【0013】金属硫化物の酸化処理方法としては、酸化
性雰囲気中で焼成する方法が可能であり、かつ簡便であ
る。また、金属硫化物を液体中で酸化剤を用いて酸化し
てもよい。酸化剤としては、過マンガン酸またはその塩
(HMnO4 、MMnO4 )、クロム酸またはその誘導
体(CrO3 、M2Cr27 、M2CrO4 、R2CrO
4、MCrO3Cl、CrO2Cl2)、硝酸またはその誘
導体(HNO3 、N24 、N23 、N2O、Cu(N
32、Pb(NO32、AgNO3、KNO3、NH4
NO3)、ペルオクソ酸またはその塩(M228 、M2
SO5 、HCO3H、CH3CO3H、C65CO3H、C
64(COOH)CO3H、CF3CO3H)、及び硫酸
(H2SO4)を単独または二種以上混合して使用するこ
とができる。なお、列記した化学式中のMはアルカリ金
属、Rは炭化水素基を示す。
As a method for oxidizing metal sulfide, a method of firing in an oxidizing atmosphere is possible and simple. Further, the metal sulfide may be oxidized in a liquid using an oxidizing agent. As the oxidizing agent, permanganic acid or a salt thereof (HMnO 4 , MMnO 4 ), chromic acid or a derivative thereof (CrO 3 , M 2 Cr 2 O 7 , M 2 CrO 4 , R 2 CrO)
4 , MCrO 3 Cl, CrO 2 Cl 2 ), nitric acid or a derivative thereof (HNO 3 , N 2 O 4 , N 2 O 3 , N 2 O, Cu (N
O 3 ) 2 , Pb (NO 3 ) 2 , AgNO 3 , KNO 3 , NH 4
NO 3 ), peroxoic acid or a salt thereof (M 2 S 2 O 8 , M 2
SO 5 , HCO 3 H, CH 3 CO 3 H, C 6 H 5 CO 3 H, C
6 H 4 (COOH) CO 3 H, CF 3 CO 3 H) and sulfuric acid (H 2 SO 4 ) can be used alone or in combination of two or more. In the chemical formulas listed above, M represents an alkali metal, and R represents a hydrocarbon group.

【0014】このようにして金属硫化物を酸化して得ら
れた高活性光触媒は種々の反応促進に使用することがで
きる。特に、硫化水素を含有する溶液に高活性光触媒を
添加することで、高活性光触媒の酸化還元作用により硫
化水素から硫黄と水素を回収することができる。
The highly active photocatalyst obtained by oxidizing the metal sulfide in this manner can be used for promoting various reactions. In particular, by adding a highly active photocatalyst to a solution containing hydrogen sulfide, sulfur and hydrogen can be recovered from hydrogen sulfide by the redox action of the highly active photocatalyst.

【0015】この高活性光触媒による硫化水素処理方法
は、次の(1)〜(3)の工程からなることが望まし
い。すなわち、(1)中性またはアルカリ性の溶液に硫
化水素を溶解する工程、(2)硫化水素の溶液に高活性
光触媒を添加し、紫外線等の光を照射して水素ガスを回
収する工程、(3)水素ガス回収後の溶液から硫黄を回
収し、硫黄回収後の溶液を硫化水素を溶解する溶液とし
て(1)の工程に再循環する工程とで構成することがで
きる。各工程の反応式は次式で表される。
This method for treating hydrogen sulfide with a highly active photocatalyst preferably comprises the following steps (1) to (3). That is, (1) a step of dissolving hydrogen sulfide in a neutral or alkaline solution, (2) a step of adding a highly active photocatalyst to a solution of hydrogen sulfide and irradiating light such as ultraviolet rays to collect hydrogen gas, 3) recovering sulfur from the solution after recovering the hydrogen gas, and recirculating the solution after recovering the sulfur as a solution for dissolving hydrogen sulfide to the step (1). The reaction formula of each step is represented by the following formula.

【0016】[0016]

【化2】 (1)H2S → H+ + HS- (2)2HS- → H2 + S2 2- (3)S2 2- → S2- + S## STR2 ## (1) H 2 S → H + + HS - (2) 2HS - → H 2 + S 2 2- (3) S 2 2- → S 2- + S

【0017】光触媒である金属硫化物粒子は、酸化処理
を行うことで金属硫化物の表面近傍と粒子内部とで硫黄
原子、酸素原子、金属原子、酸化状態など何らかの濃度
勾配が生じているものと考えられる。このため、光照射
によって生じた自由電子と自由ホールは互いに離れる方
向に移動し、自由電子と自由ホールの再結合が減少し、
また酸化反応のサイトと還元反応のサイトが完全分離す
ることから、酸化反応生成物と還元反応生成物との再結
合を防ぐことができる。これによって、光照射によって
生成した自由電子及び自由ホールが、目的とする酸化還
元反応に有効に使われるので、本発明の方法によって酸
化処理された金属硫化物粒子は高い光触媒活性を有す
る。
The metal sulfide particles serving as the photocatalyst have a concentration gradient such as a sulfur atom, an oxygen atom, a metal atom, or an oxidation state between the vicinity of the surface of the metal sulfide and the inside of the particle due to the oxidation treatment. Conceivable. For this reason, free electrons and free holes generated by light irradiation move away from each other, and recombination of free electrons and free holes decreases,
Further, since the site of the oxidation reaction and the site of the reduction reaction are completely separated, recombination of the oxidation reaction product and the reduction reaction product can be prevented. As a result, the free electrons and free holes generated by light irradiation are effectively used for the intended redox reaction, and thus the metal sulfide particles oxidized by the method of the present invention have high photocatalytic activity.

【0018】硫化亜鉛や硫化カドミウムのような金属硫
化物粒子は、溶液中で用いると、それ自体の強い酸化力
のために金属硫化物中の金属原子が金属酸イオンとなっ
て溶解するという問題がある。したがって、本発明にか
かる高活性光触媒を使用する反応体系には硫化物イオン
を共存させている。これにより、溶液中の硫化物イオン
がポリ硫化物イオンに酸化されるため、金属硫化物中の
金属原子が金属酸イオンとなって水溶液中に溶出するこ
とを防止でき、光触媒特性が劣化しない。なお、硫化物
イオンを共存させる方法としては、中性またはアルカリ
性の溶液中に硫化水素を溶かし込む方法や、硫化水素ナ
トリウム(NaHS)や硫化ナトリウム(Na2S)の
ような硫化物イオンをもった塩を溶解する方法などが挙
げられる。
When metal sulfide particles such as zinc sulfide and cadmium sulfide are used in a solution, the metal atoms in the metal sulfide dissolve as metal oxide ions due to their strong oxidizing power. There is. Therefore, sulfide ions are allowed to coexist in the reaction system using the highly active photocatalyst according to the present invention. As a result, the sulfide ions in the solution are oxidized to polysulfide ions, so that the metal atoms in the metal sulfide can be prevented from becoming metal oxide ions and eluted into the aqueous solution, and the photocatalytic properties do not deteriorate. As a method of coexisting sulfide ions, a method of dissolving hydrogen sulfide in a neutral or alkaline solution, or a method of using sulfide ions such as sodium hydrogen sulfide (NaHS) and sodium sulfide (Na 2 S) is used. And a method of dissolving the salt.

【0019】[0019]

【発明の実施の形態】以下、本発明にかかる高活性光触
媒の製造方法及びその高活性光触媒を用いた硫化水素の
処理方法の実施の形態を説明する。本発明にかかる高活
性光触媒の製造方法の第1の実施の形態は、化合物半導
体のうち金属硫化物、例えば亜鉛、カドミウム、水銀の
硫化物を原料とし、これを酸化性雰囲気中で焼成するも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a method for producing a highly active photocatalyst and a method for treating hydrogen sulfide using the highly active photocatalyst according to the present invention will be described. The first embodiment of the method for producing a highly active photocatalyst according to the present invention is a method in which a metal sulfide among compound semiconductors, for example, a sulfide of zinc, cadmium, or mercury is used as a raw material and fired in an oxidizing atmosphere. It is.

【0020】また、本発明にかかる高活性光触媒の製造
方法の第2の実施の形態は、前述の金属硫化物を溶液中
で、過マンガン酸またはその塩、クロム酸またはその誘
導体、硝酸またはその誘導体、ペルオクソ酸またはその
塩、及び硫酸等の酸化剤により酸化処理するものであ
る。
In a second embodiment of the method for producing a highly active photocatalyst according to the present invention, the above-mentioned metal sulfide is dissolved in a solution of permanganic acid or a salt thereof, chromic acid or a derivative thereof, nitric acid or a derivative thereof. Oxidation treatment is performed with an oxidizing agent such as a derivative, peroxoacid or a salt thereof, and sulfuric acid.

【0021】原料となる硫化亜鉛を生成する場合、亜鉛
イオンを含む溶液と硫化水素の化学反応プロセスを用い
るのが一般的であるが、このプロセスによって生じる硫
化亜鉛は光触媒としての活性は乏しい。これに上記した
いずれかの酸化処理を施すことで光触媒としての活性を
著しく高めることができる。
In the case of producing zinc sulfide as a raw material, a chemical reaction process of a solution containing zinc ions and hydrogen sulfide is generally used, but zinc sulfide generated by this process has poor activity as a photocatalyst. By performing any of the above-described oxidation treatments on this, the activity as a photocatalyst can be significantly increased.

【0022】図1は、本発明にかかる硫化水素の処理方
法の一実施の形態を説明するための処理システムを概略
的に示すもので、この処理システムは、硫化水素を溶解
する硫化水素溶解槽1と、硫化水素を溶解した溶液から
水素ガスを回収する光触媒反応槽3と、水素ガス回収後
の溶液から硫黄を回収し、硫黄回収後の溶液を硫化水素
溶解槽1へリサイクルする硫黄回収槽5とで構成されて
いる。
FIG. 1 schematically shows a processing system for explaining an embodiment of a method for processing hydrogen sulfide according to the present invention. This processing system is a hydrogen sulfide dissolving tank for dissolving hydrogen sulfide. 1, a photocatalytic reaction tank 3 for recovering hydrogen gas from a solution in which hydrogen sulfide is dissolved, and a sulfur recovery tank for recovering sulfur from the solution after hydrogen gas recovery and recycling the solution after sulfur recovery to the hydrogen sulfide dissolution tank 1 5 is comprised.

【0023】上記構成において、硫化水素溶解槽1は中
性またはアルカリ性の溶液を収容し、この中に硫化水素
ガスが導入され、溶解される。中性またはアルカリ性の
溶液は、硫化水素の溶解・解離と反応の場の提供を行う
だけで、それ自体の変化は起こらない。ここでは水酸化
ナトリウム水溶液を例に挙げて説明するが、硫化水素を
溶解・解離させる液体であれば水溶液に限らない。すな
わち、メタノール、エタノールなども利用可能である。
In the above configuration, the hydrogen sulfide dissolving tank 1 contains a neutral or alkaline solution, into which hydrogen sulfide gas is introduced and dissolved. The neutral or alkaline solution merely dissolves and dissociates hydrogen sulfide and provides a reaction site, and does not change itself. Here, a description will be given by taking an aqueous sodium hydroxide solution as an example, but the liquid is not limited to an aqueous solution as long as it is a liquid that dissolves and dissociates hydrogen sulfide. That is, methanol, ethanol, and the like can also be used.

【0024】硫化水素溶解槽1内において、水酸化ナト
リウム水溶液に硫化水素ガスが混入されると、次式に示
すような中和反応が起こり、硫化水素ガスは水酸化ナト
リウム水溶液に溶解し、硫化ナトリウム溶液となる。
When hydrogen sulfide gas is mixed into the aqueous sodium hydroxide solution in the hydrogen sulfide dissolving tank 1, a neutralization reaction as shown in the following equation occurs, and the hydrogen sulfide gas is dissolved in the aqueous sodium hydroxide solution and It becomes a sodium solution.

【0025】[0025]

【化3】 2NaOH + H2S → Na2S + 2H2Embedded image 2NaOH + H 2 S → Na 2 S + 2H 2 O

【0026】硫化ナトリウム溶液は光触媒反応槽3に送
られ、ここで本発明にかかる高活性光触媒が添加され、
紫外線光源7から紫外線が照射されると、次式に示すよ
うに、水素ガスとポリ硫化物イオンが生成し、水素ガス
が回収される。
The sodium sulfide solution is sent to the photocatalyst reactor 3, where the highly active photocatalyst according to the present invention is added,
When ultraviolet light is irradiated from the ultraviolet light source 7, hydrogen gas and polysulfide ions are generated and hydrogen gas is recovered as shown in the following equation.

【0027】[0027]

【化4】 2S2- → S2 2- + 2e- 2H+ + 2e- → H2[Of 4] 2S 2- → S 2 2- + 2e - 2H + + 2e - → H 2 ↑

【0028】この溶液系にて硫化水素の溶解と水素発生
を続けると、ポリ硫化物イオンはその溶解度を越えてし
まい、ついには不均化反応(自己酸化還元反応)を起こ
して、次式に示すように、硫黄と硫化物イオンに変化す
る。
If the dissolution of hydrogen sulfide and the generation of hydrogen are continued in this solution system, the polysulfide ions exceed their solubility, and eventually cause a disproportionation reaction (self-oxidation-reduction reaction). As shown, it changes to sulfur and sulfide ions.

【0029】[0029]

【化5】S2 2- → S2- + S## STR5 ## S 2 2- → S 2- + S

【0030】硫黄回収槽5では、上記不均化反応を利用
してポリ硫化物イオンを硫黄として回収する。硫黄を回
収された溶液は水酸化ナトリウムに戻るため、硫化水素
を溶解するための溶液として再利用される。
In the sulfur recovery tank 5, polysulfide ions are recovered as sulfur using the above disproportionation reaction. The solution from which the sulfur has been recovered is returned to sodium hydroxide, and is reused as a solution for dissolving hydrogen sulfide.

【0031】上記の説明からも明らかなように、本実施
の形態においては、高活性光触媒により硫化水素を分解
することで、クラウス法と同様に硫黄を回収することが
でき、しかも脱硫工程で消費される水素を供給すること
ができる。さらに、この硫化水素処理方法では、クラウ
ス法のような加熱及び凝集など多くのエネルギーを必要
とする操作を省くことができ、しかも硫化水素よりもさ
らに危険な亜硫酸ガスが関与しないという点で非常に優
れている。
As is clear from the above description, in this embodiment, sulfur can be recovered in the same manner as in the Claus method by decomposing hydrogen sulfide with a highly active photocatalyst, and furthermore, the sulfur is consumed in the desulfurization step. Can be supplied. In addition, this hydrogen sulfide treatment method can eliminate operations requiring a lot of energy such as heating and coagulation as in the Claus method, and is very extremely low in that sulfur dioxide gas, which is more dangerous than hydrogen sulfide, is not involved. Are better.

【0032】[0032]

【実施例】以下、本発明を実施例についてさらに詳細に
説明する。まず、光触媒としての試料を3種類、以下の
ようにして作製した。
The present invention will be described below in more detail with reference to examples. First, three types of samples as photocatalysts were produced as follows.

【0033】実施例1 高純度化学社製硫化亜鉛(純度99.999%以上)1
0.0gを、電気炉で1000℃の設定温度で1時間焼
成した。この際、酸化性雰囲気とするために酸素ガスを
流量10ml/分で流した。これを乳鉢で擦って微粒子
状にした。
Example 1 Zinc sulfide (purity 99.999% or more) manufactured by Kojundo Chemical Co., Ltd.
0.0 g was fired in an electric furnace at a set temperature of 1000 ° C. for 1 hour. At this time, an oxygen gas was flowed at a flow rate of 10 ml / min to obtain an oxidizing atmosphere. This was rubbed with a mortar to obtain fine particles.

【0034】実施例2 高純度化学社製硫化亜鉛(純度99.999%以上)1
0.0gを、0.1Nの過マンガン酸カリウム溶液10
0ml中に投入し、5分間超音波洗浄機にかけた。その
後、硫化亜鉛をろ過し、純水で洗浄し、一般環境(約2
5℃、60RH%)にて乾燥させた。これを乳鉢で擦っ
て微粒子状にした。
Example 2 Zinc sulfide (purity of 99.999% or more) manufactured by Kojundo Chemical Co., Ltd.
0.0 g of a 0.1 N potassium permanganate solution 10
0 ml and placed in an ultrasonic cleaner for 5 minutes. After that, the zinc sulfide is filtered, washed with pure water, and used in a general environment (about 2).
(5 ° C., 60 RH%). This was rubbed with a mortar to form fine particles.

【0035】比較例 高純度化学社製硫化亜鉛(純度99.999%以上)1
0.0gを乳鉢で擦って微粒子状にした。
Comparative Example Zinc sulfide (purity 99.999% or more) manufactured by Kojundo Chemical Co., Ltd.
0.0 g was rubbed with a mortar to obtain fine particles.

【0036】次に、上記試料について光触媒としての活
性を調べるため、図2に示すような装置を用いて、光触
媒による水素発生の実験を行った。この装置は、図2に
示すように、石英ガラス製の光反応部分11と、発生し
た水素ガスの定量を行う水素定量部分13と、水素ガス
発生によって装置内の圧力が上昇することを防ぐための
溶液溜15と、紫外線照射用の500W水銀灯(図示省
略)と、紫外線17を集光するための集光レンズ19
と、紫外線17を光触媒に照射するための反射鏡21と
で構成されている。操作は、初めに系全体を硫化ナトリ
ウム水溶液で満たし、一定量の光触媒を光反応部分11
の底に沈殿させ、ガス抜き栓23を閉じた後、500W
水銀灯を点灯し、水素定量部分13で一定照射時間ごと
に水素発生量を測定するものである。本実験では、光触
媒の量は各試料とも50mg、硫化ナトリウム水溶液は
0.1モル/l、140ml使用した。なお、参考例と
して、光触媒を投入しないで、紫外線照射のみの水素発
生量も測定した。
Next, in order to examine the activity of the above sample as a photocatalyst, an experiment of hydrogen generation by the photocatalyst was performed using an apparatus as shown in FIG. As shown in FIG. 2, this device has a photoreactive portion 11 made of quartz glass, a hydrogen quantifying portion 13 for quantifying generated hydrogen gas, and a device for preventing the pressure in the device from increasing due to hydrogen gas generation. , A 500 W mercury lamp for irradiating ultraviolet rays (not shown), and a condenser lens 19 for condensing ultraviolet rays 17.
And a reflecting mirror 21 for irradiating the ultraviolet rays 17 to the photocatalyst. The operation is as follows. First, the entire system is filled with an aqueous solution of sodium sulfide, and a certain amount of the photocatalyst is added to the photoreaction portion 11.
After the gas vent plug 23 is closed,
The mercury lamp is turned on, and the amount of generated hydrogen is measured at a constant irradiation time in the hydrogen determination section 13. In this experiment, the amount of the photocatalyst was 50 mg for each sample, and the aqueous sodium sulfide solution was 0.1 mol / l, 140 ml. Note that, as a reference example, the amount of hydrogen generated only by irradiation with ultraviolet light without introducing a photocatalyst was also measured.

【0037】実施例1、実施例2、比較例の各試料を光
触媒にして上記実験を行った結果を表1及び図3に示
す。なお、図3において、実線aは実施例1を添加した
ときの水素発生量を、実線bは比較例を添加したときの
水素発生量を、破線cは参考例の水素発生量を示す。
Table 1 and FIG. 3 show the results of the above-described experiments using the samples of Example 1, Example 2, and Comparative Example as photocatalysts. In FIG. 3, the solid line a indicates the amount of hydrogen generated when Example 1 is added, the solid line b indicates the amount of hydrogen generated when the comparative example is added, and the broken line c indicates the amount of hydrogen generated in the reference example.

【0038】[0038]

【表1】 [Table 1]

【0039】表1及び図3からも明らかなように、実施
例1、2の光触媒は、比較例の光触媒に比べて触媒活性
が格段に高いことを示している。また、光触媒なしの参
考例は比較例と比べて水素発生量がほとんど変わらなか
った。このことから、元の硫化亜鉛は光触媒活性に乏し
いが、前述の酸化処理を施すことによって硫化亜鉛の性
状が変化し、H+ とSH- を酸化還元反応により水素と
ポリ硫化物イオンにする触媒としての活性が高まってい
ることが判る。
As is clear from Table 1 and FIG. 3, the photocatalysts of Examples 1 and 2 have significantly higher catalytic activities than the photocatalysts of Comparative Examples. Further, the reference example without the photocatalyst showed almost no change in the amount of generated hydrogen as compared with the comparative example. From this, the original zinc sulfide has poor photocatalytic activity, but the properties of zinc sulfide are changed by performing the above-mentioned oxidation treatment, and H + and SH - are converted into hydrogen and polysulfide ions by a redox reaction. It can be seen that the activity as has increased.

【0040】このような酸化処理によって高い触媒活性
が得られる理由は、硫化亜鉛の硫黄原子の一部が酸素原
子に置換され、その割合は粒子表面ほど高くなるという
連続的な組成の変化のため、空間電荷が発生し、粒子の
深さ方向に電界が発生しているためと考えられる。この
電界により、自由電子と自由ホールが互いに離れる方向
に移動するため、自由電子と自由ホールの再結合が低減
し、また酸化反応の反応場所と還元反応の反応場所も離
れることから、酸化反応生成物と還元反応生成物との再
結合が抑制され、触媒活性が高くなると考えられる。
The reason why high oxidation activity can be obtained by such oxidation treatment is that a part of sulfur atoms of zinc sulfide is replaced by oxygen atoms, and the ratio thereof becomes higher on the particle surface, and the composition changes continuously. It is considered that space charges are generated and an electric field is generated in the depth direction of the particles. This electric field causes the free electrons and free holes to move away from each other, reducing recombination between free electrons and free holes. It is considered that the recombination between the product and the reduction reaction product is suppressed, and the catalytic activity is increased.

【0041】上記の説明からも明らかなように、硫化亜
鉛のような金属硫化物に前述の酸化処理を施すことによ
って、高活性光触媒を得ることができる。そして、この
高活性光触媒を硫化水素の処理に用いることで、環境有
害物質である硫化水素を原料として、光源に必要なエネ
ルギー以外のエネルギーを要することなく、かつ亜硫酸
ガスのような有害物質を発生することなく、有用な硫黄
と水素を製造することができる。また、光源として太陽
光を利用すれば、さらに処理コストを低減することも可
能である。さらに、この高活性光触媒を用いた硫化水素
処理方法を原油などの脱硫工程に適用すれば、脱硫工程
で生じた硫化水素を原料に水素を発生し、ここで生じた
水素を再度脱硫工程に使用することができ、非常に経済
的な脱硫プロセスを実現することができる。
As is clear from the above description, a highly active photocatalyst can be obtained by subjecting a metal sulfide such as zinc sulfide to the above-mentioned oxidation treatment. By using this highly active photocatalyst for the treatment of hydrogen sulfide, harmful substances such as sulfurous acid gas are generated using hydrogen sulfide, which is an environmentally harmful substance, as a raw material without requiring energy other than the energy required for the light source. Without producing useful sulfur and hydrogen. If sunlight is used as the light source, the processing cost can be further reduced. Furthermore, if this method for treating hydrogen sulfide using a highly active photocatalyst is applied to the desulfurization step of crude oil, etc., hydrogen is generated from the hydrogen sulfide generated in the desulfurization step, and the generated hydrogen is reused in the desulfurization step. And a very economical desulfurization process can be realized.

【0042】[0042]

【発明の効果】上述したように、請求項1〜3の発明に
よれば、金属硫化物を気相中または液相中で酸化処理す
ることにより、廉価で寿命の長い高活性光触媒を得るこ
とができ、この高活性光触媒により硫化水素から硫黄と
水素を効率よく回収することができるようになる。
As described above, according to the first to third aspects of the present invention, an inexpensive and long-life photocatalyst can be obtained by oxidizing a metal sulfide in a gas phase or a liquid phase. This highly active photocatalyst makes it possible to efficiently recover sulfur and hydrogen from hydrogen sulfide.

【0043】また、請求項4及び5の発明によれば、硫
化水素を高活性光触媒を用いて処理することにより、環
境有害物質である硫化水素を原料として、簡単な工程
で、亜硫酸ガスのような有害物質を発生することなく、
工業全般に有用な硫黄と水素を効率よく安価に生成する
ことができる。さらに、この高活性光触媒を用いた硫化
水素の処理方法を原油などの脱硫工程に適用すれば、硫
化水素の処理によって生じた水素を再度脱硫工程に使用
することができ、極めて有用なケミカル・リサイクルが
可能となる。
According to the fourth and fifth aspects of the present invention, by treating hydrogen sulfide with a highly active photocatalyst, hydrogen sulfide, which is an environmentally harmful substance, can be used as a raw material in a simple process such as sulfurous acid gas. Without producing any harmful substances
It is possible to efficiently and inexpensively produce sulfur and hydrogen useful for industry in general. Furthermore, if the method for treating hydrogen sulfide using this highly active photocatalyst is applied to the desulfurization step of crude oil and the like, the hydrogen generated by the treatment of hydrogen sulfide can be reused in the desulfurization step, making it extremely useful for chemical recycling. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態にかかる硫化水素の処理
システムを概略的に示す図である。
FIG. 1 is a diagram schematically showing a hydrogen sulfide treatment system according to an embodiment of the present invention.

【図2】本発明にかかる高活性光触媒の活性を調べるた
めの実験装置を示す図である。
FIG. 2 is a view showing an experimental device for examining the activity of a highly active photocatalyst according to the present invention.

【図3】本発明にかかる高活性光触媒の活性を示す図で
ある。
FIG. 3 is a diagram showing the activity of a highly active photocatalyst according to the present invention.

【図4】一般的な原油の脱硫工程を概略的に示す図であ
る。
FIG. 4 is a view schematically showing a general crude oil desulfurization step.

【図5】硫化水素の処理方法の従来技術(クラウス法)
を例示する図である。
FIG. 5: Conventional technology for treating hydrogen sulfide (Klaus method)
FIG.

【図6】水素製造方法の従来技術(炭化水素ガス分解
法)を例示する図である。
FIG. 6 is a diagram illustrating a conventional technique (hydrocarbon gas decomposition method) of a hydrogen production method.

【図7】水素製造方法の従来技術(深冷水素精製法もし
くは窒素洗浄法)を例示する図である。
FIG. 7 is a diagram exemplifying a conventional technology of a hydrogen production method (a cryogenic hydrogen purification method or a nitrogen cleaning method).

【符号の説明】[Explanation of symbols]

1……硫化水素溶解槽、3……光触媒反応槽、5……硫
黄回収槽、7……紫外線光源、11……光反応部分、1
3……水素定量部分、15……溶液溜、17……紫外
線、19……集光レンズ、21……反射鏡、23……ガ
ス抜き栓
1 ... Hydrogen sulfide dissolving tank, 3 ... Photocatalytic reaction tank, 5 ... Sulfur recovery tank, 7 ... Ultraviolet light source, 11 ... Photoreaction part, 1
3 ... Hydrogen determination part, 15 ... Solution reservoir, 17 ... Ultraviolet light, 19 ... Condenser lens, 21 ... Reflection mirror, 23 ... Gas vent plug

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 17/04 C01B 17/04 R Fターム(参考) 4G069 AA02 AA08 BA48A BB04A BB04B BB09A BB09B BC35A BC35B BC36A BC37A CB81 FA01 FB40 FB41 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01B 17/04 C01B 17/04 RF term (Reference) 4G069 AA02 AA08 BA48A BB04A BB04B BB09A BB09B BC35A BC35B BC36A BC37A CB81 FA01 FB40 FB41

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属硫化物を酸化性雰囲気中で焼成して
なることを特徴とする高活性光触媒の製造方法。
1. A method for producing a highly active photocatalyst, comprising firing a metal sulfide in an oxidizing atmosphere.
【請求項2】 金属硫化物を過マンガン酸またはその
塩、クロム酸またはその誘導体、硝酸またはその誘導
体、ペルオクソ酸またはその塩、及び硫酸から選ばれる
一種または二種以上により酸化処理してなることを特徴
とする高活性光触媒の製造方法。
2. A method comprising oxidizing a metal sulfide with one or more selected from permanganic acid or a salt thereof, chromic acid or a derivative thereof, nitric acid or a derivative thereof, peroxoacid or a salt thereof, and sulfuric acid. A method for producing a highly active photocatalyst, comprising:
【請求項3】 金属硫化物が、亜鉛、カドミウムまたは
水銀の硫化物であることを特徴とする請求項1または2
記載の高活性光触媒の製造方法。
3. The method according to claim 1, wherein the metal sulfide is a sulfide of zinc, cadmium or mercury.
A method for producing the highly active photocatalyst according to the above.
【請求項4】 硫化水素を含有する溶液中に、金属硫化
物を酸化性雰囲気中で焼成した高活性光触媒を添加して
水素と硫黄を回収することを特徴とする高活性光触媒を
用いた硫化水素の処理方法。
4. Sulfidation using a highly active photocatalyst characterized by adding a highly active photocatalyst obtained by calcining a metal sulfide in an oxidizing atmosphere to a solution containing hydrogen sulfide to recover hydrogen and sulfur. How to treat hydrogen.
【請求項5】 中性またはアルカリ性の溶液に硫化水素
を溶解する第1の工程と、該硫化水素溶解後の溶液に金
属硫化物を酸化性雰囲気中で焼成した高活性光触媒を添
加し、光を照射して水素ガスを回収する第2の工程と、
該水素ガス回収後の溶液から硫黄を回収する第3の工程
とを備え、前記第3の工程における硫黄回収後の溶液を
前記第1の工程の溶液として再利用することを特徴とす
る硫化水素の処理方法。
5. A first step of dissolving hydrogen sulfide in a neutral or alkaline solution, and adding a highly active photocatalyst obtained by calcining a metal sulfide in an oxidizing atmosphere to the solution after dissolving the hydrogen sulfide, A second step of recovering hydrogen gas by irradiating
A third step of recovering sulfur from the solution after hydrogen gas recovery, wherein the solution after sulfur recovery in the third step is reused as the solution in the first step. Processing method.
JP2001112293A 2001-04-11 2001-04-11 Method for producing photocatalyst and method for treating hydrogen sulfide using the photocatalyst Expired - Fee Related JP5106721B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001112293A JP5106721B2 (en) 2001-04-11 2001-04-11 Method for producing photocatalyst and method for treating hydrogen sulfide using the photocatalyst
PCT/JP2002/003353 WO2002083308A1 (en) 2001-04-11 2002-04-03 Method for preparing high active photocatalyst and method for treating hydrogen sulfide using the high active photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112293A JP5106721B2 (en) 2001-04-11 2001-04-11 Method for producing photocatalyst and method for treating hydrogen sulfide using the photocatalyst

Publications (2)

Publication Number Publication Date
JP2002306966A true JP2002306966A (en) 2002-10-22
JP5106721B2 JP5106721B2 (en) 2012-12-26

Family

ID=18963736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112293A Expired - Fee Related JP5106721B2 (en) 2001-04-11 2001-04-11 Method for producing photocatalyst and method for treating hydrogen sulfide using the photocatalyst

Country Status (2)

Country Link
JP (1) JP5106721B2 (en)
WO (1) WO2002083308A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100598862B1 (en) 2004-10-19 2006-07-10 한국화학연구원 Novel metal oxide-based photocatalysts for photocatalytic decomposion of hydrogen sulfide, and Claus process-substituting method using the photocatalysts
KR100764891B1 (en) 2005-12-13 2007-10-09 한국화학연구원 Novel visible light metal oxide photocatalysts for photocatalytic decomposion of hydrogen sulfide, and photohydrogen production method under visible light irradiation using the photocatalysts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521244B (en) * 2013-09-29 2015-04-08 南昌航空大学 Photocatalytic water-splitting hydrogen production material CdS/Sr1.6Zn0.4Nb2O7 and preparation method thereof
US20240327211A1 (en) * 2023-03-30 2024-10-03 Saudi Arabian Oil Company Photocatalytic conversion of hydrogen sulfide to hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255373B2 (en) * 1985-09-14 1990-11-27 Kogyo Gijutsuin
JPH0368847B2 (en) * 1983-01-05 1991-10-30 Shozo Yanagida
JP2000503595A (en) * 1996-10-07 2000-03-28 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Novel ZnS photocatalyst, method for producing the same, and method for producing hydrogen using the same
JP4191373B2 (en) * 2000-09-01 2008-12-03 独立行政法人科学技術振興機構 Method for producing highly active photocatalyst and method for treating hydrogen sulfide for recovering hydrogen gas with low energy using highly active photocatalyst
JP4496444B2 (en) * 2000-01-06 2010-07-07 和幸 田路 Photocatalyst, method for producing the same, and method for decomposing hydrogen sulfide using the photocatalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3261445D1 (en) * 1981-06-03 1985-01-17 Graetzel Michael Process for producing hydrogen and elemental sulphur by photochemical redox reaction of hydrogen sulphide and sulphides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368847B2 (en) * 1983-01-05 1991-10-30 Shozo Yanagida
JPH0255373B2 (en) * 1985-09-14 1990-11-27 Kogyo Gijutsuin
JP2000503595A (en) * 1996-10-07 2000-03-28 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Novel ZnS photocatalyst, method for producing the same, and method for producing hydrogen using the same
JP4496444B2 (en) * 2000-01-06 2010-07-07 和幸 田路 Photocatalyst, method for producing the same, and method for decomposing hydrogen sulfide using the photocatalyst
JP4191373B2 (en) * 2000-09-01 2008-12-03 独立行政法人科学技術振興機構 Method for producing highly active photocatalyst and method for treating hydrogen sulfide for recovering hydrogen gas with low energy using highly active photocatalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100598862B1 (en) 2004-10-19 2006-07-10 한국화학연구원 Novel metal oxide-based photocatalysts for photocatalytic decomposion of hydrogen sulfide, and Claus process-substituting method using the photocatalysts
KR100764891B1 (en) 2005-12-13 2007-10-09 한국화학연구원 Novel visible light metal oxide photocatalysts for photocatalytic decomposion of hydrogen sulfide, and photohydrogen production method under visible light irradiation using the photocatalysts

Also Published As

Publication number Publication date
WO2002083308A1 (en) 2002-10-24
JP5106721B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US5607496A (en) Removal of mercury from a combustion gas stream and apparatus
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
WO2021258515A1 (en) Application of pomelo peel biochar in catalytic ozonation degradation of organic pollutant in wastewater
CN108579729A (en) The preparation method of catalyst for ozone decomposed
EA032617B1 (en) Sulphur recovery process with concurrent hydrogen production
Liu et al. Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination
Li et al. Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO2/SiO2 nanopowder
US10864511B2 (en) Methods of producing ferrihydrite nanoparticle slurries, and systems and products employing the same
Li et al. Oxidation and absorption of SO2 and NOx by MgO/Na2S2O8 solution at the presence of Cl−
Li et al. Alkali-induced metal-based coconut shell biochar for efficient catalytic removal of H2S at a medium–high temperature in blast furnace gas with significantly enhanced S selectivity
CN113289600A (en) Heteroatom doped carbon dot photocatalytic degradation of industrial waste gas
Bao et al. Thermal modification of copper slag via phase transformation for simultaneous removal of SO2 and NOx from acid-making tail gas
KR102054855B1 (en) Method for Simultaneous Treating Nitrogen Oxides and Sulfur Oxides using Iron Ethylene diamine tetraacetic acid
JP4191373B2 (en) Method for producing highly active photocatalyst and method for treating hydrogen sulfide for recovering hydrogen gas with low energy using highly active photocatalyst
Bussi et al. Photocatalytic removal of Hg from solid wastes of chlor-alkali plant
JP2002306966A (en) Method for manufacturing highly activated photocatalyst and method for treating hydrogen sulfide using highly activated photocatalyst
JP2012106215A (en) Method for purification and treatment of flue gas
Deng et al. Deactivation Influence of HF on the V2O5–WO3–TiO2 SCR Catalyst
Hong et al. Reverse conversion treatment of gaseous sulfur trioxide using metastable sulfides from sulfur-rich flue gas
Xiong et al. Removal of NO by catalytic decomposition of vaporized H2O2 over Mo–Fe/TiO2 catalyst
Hamdan et al. Photocatalytic degradation of synthetic sulfur pollutants in petroleum fractions under different pH and photocatalyst
JP3666588B2 (en) Method for producing hydrogen using multilayer thin film photocatalyst
CN117983200A (en) Carbonyl sulfide hydrolysis catalyst and preparation method and application thereof
Guo et al. Catalytic ozonation for low-temperature NOX (x= 1, 2) removal with OH radicals over Cu doped Ce0. 90Co0. 10O2− δ catalysts and mechanism analysis
KR102511410B1 (en) Organic compound degradation catalyst composition using iron oxide, preparation method thereof, and organic compound degradation method using same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees