JPH0230374B2 - - Google Patents
Info
- Publication number
- JPH0230374B2 JPH0230374B2 JP59068202A JP6820284A JPH0230374B2 JP H0230374 B2 JPH0230374 B2 JP H0230374B2 JP 59068202 A JP59068202 A JP 59068202A JP 6820284 A JP6820284 A JP 6820284A JP H0230374 B2 JPH0230374 B2 JP H0230374B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- roll
- corrosion
- alloy
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims 4
- 238000005260 corrosion Methods 0.000 description 27
- 230000007797 corrosion Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 12
- 229910001182 Mo alloy Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000009497 press forging Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
本発明は、鋼板の薄板に電気亜鉛メツキを施す
のに使用する通電ロールの改良に関する。
The present invention relates to improvements in current-carrying rolls used for electrogalvanizing thin steel sheets.
近年、亜鉛メツキ鋼板の製造に、電気メツキが
多用されるようになつた。電気亜鉛メツキは、亜
鉛イオンの存在する水溶液中に浸漬された通電ロ
ールに薄板を接触させながら通過させることによ
つて行なう。この通電ロールは、通電下で酸性な
ど苛酷な条件の水溶液中にあつて、高速で通過す
る鋼板と接触するため、高い耐摩耗性と耐食性と
が要求される。
従来、このロール材料としては、SUS316やNi
基台金、あるいはNi−Cr−Mo合金(たとえば特
開昭57−60044号)が使用されてきたが、前二者
は耐摩耗性が不十分であつて、たとえば7日間程
度の短期間の使用でロール表面に著しい肌荒れが
生じ、再研磨の必要がある。後者は、これより長
期にわたつて使用できるが、使用原料、とくに
Moが高価であるため、ロールはきわめて高価な
ものとなる。
In recent years, electroplating has come into widespread use in the production of galvanized steel sheets. Electrogalvanizing is carried out by passing a thin plate in contact with an energized roll immersed in an aqueous solution containing zinc ions. This energizing roll is required to have high wear resistance and corrosion resistance because it comes into contact with a steel plate passing through it at high speed in an aqueous solution under severe conditions such as acidity while being energized. Traditionally, this roll material has been SUS316 or Ni.
A base metal or a Ni-Cr-Mo alloy (for example, JP-A No. 57-60044) has been used, but the former two have insufficient wear resistance and cannot be used for a short period of time, for example, 7 days. During use, the roll surface becomes extremely rough and needs to be re-polished. The latter can be used for a longer period of time, but the raw materials used, especially
The high cost of Mo makes the rolls extremely expensive.
本発明の目的は、Ni−Cr−Mo合金の耐食耐摩
耗性を低下させることなく、高価なMoの使用量
を低減した電気亜鉛メツキ用の通電ロールを提供
することにある。
An object of the present invention is to provide a current-carrying roll for electrogalvanizing that reduces the amount of expensive Mo used without reducing the corrosion and wear resistance of the Ni-Cr-Mo alloy.
発明者らは、Ni−Cr−Mo合金において、Crを
ある程度以上に増量し、若干のNb+Taを添加す
ることにより、上記の目的が達成できることを見
出した。
上記の知見にもとづく本発明の電気亜鉛メツキ
用ロールは、基本的には、C:0.10%以下、
Mn:2.0%以下、Cr:20.0〜30.0%、Mo:7.0〜
12.0%、ならびに、Nbおよび(または)Ta:1.5
〜5.0%を含有し、Fe:5.0%以下、Si:2.0%以下
であつて、残部が実質的にNiからなる合金で製
造したことを特徴とする。
本発明の電気亜鉛メツキ用ロールの材料とする
合金は、上記の基本組成に加えて、さらに下記の
添加元素のグループ〜からえらんだものを、
一または二以上含有してもよい。
() Mg:0.1%以下、Zr:0.1%以下およびB:
0.01%以下の1種または2種以上
() N:0.2%以下およびCu:2.0%以下の1種
または2種以上
() V:3.0%以下およびW:3.0%以下の1種
または2種
The inventors have found that the above object can be achieved by increasing the amount of Cr to a certain level and adding some Nb+Ta in the Ni-Cr-Mo alloy. The electrogalvanizing roll of the present invention based on the above knowledge basically has C: 0.10% or less,
Mn: 2.0% or less, Cr: 20.0~30.0%, Mo: 7.0~
12.0%, and Nb and/or Ta: 1.5
~5.0%, Fe: 5.0% or less, Si: 2.0% or less, and the balance is made of an alloy consisting essentially of Ni. In addition to the above-mentioned basic composition, the alloy used as the material for the roll for electrogalvanizing of the present invention further contains those selected from the following groups of additive elements.
It may contain one or more. () Mg: 0.1% or less, Zr: 0.1% or less and B:
1 or 2 or more types of 0.01% or less () 1 or 2 or more types of N: 0.2% or less and Cu: 2.0% or less () V: 3.0% or less and W: 1 or 2 types of 3.0% or less
上記の合金組成を選択した理由は、つぎのとお
りである。まず基本組成についていえば、
C:0.10%以下
Cはロールに硬さを与え、含有量が増加するに
従つて硬さが高くなり耐摩耗性はよくなるが、一
方で耐食性は低くなる傾向があるので、0.10%ま
でとする。
Mn:2.0%以下
熱間加工性をよくする元素であるが、2.0%を
超える存在は耐食性を損う。
Cr:20.0〜30.0%
NiおよびMoとともにマトリクスを構成し、強
固な不動態化被膜を形成して高い耐食性を実現す
る。この効果は20%以上のCrの存在より著しく
なるが、30.0%を超えると飽和し、一方で靭延性
が低下する。Ni−Cr−Mo合金において、Cr量を
高めることにより相対的に低いMo含有量でも耐
食性が得られる事実を示せば、添付図面のグラフ
のとおりである。グラフの「通電下腐食量」は、
後に実施例に関して説明するが、亜鉛メツキ液中
で通電状態においたときの腐食量である。Crの
含有量が17.5%の場合は、Moが18%以上あつて
もなお腐食量が大きいが、Cr:21〜23%の合金
にあつては、Moが7〜8%程度で、はるかに低
い腐食量が実現することが理解されるであろう。
Mo:7.0〜12.0%
耐食性にとつて最も重要な元素であるが、高価
なため、なるべく低い含有量に止めたいことは、
前記のとおりである。本発明のロールの材料は20
%以上のCrを含有するので、Moの効果は、上記
したグラフにみるとおり、7.0%以上の含有量で
得られる。耐食性はMoの増加とともに増大する
が、これもグラフに示すように12%内外で飽和
し、しかも靭延性の低下がはじまる。
Nbおよび(または)Ta:1.5〜5.0%
これらはいずれも炭化物を形成し、結晶粒界へ
のCr炭化物の析出を防止し、耐食性の向上に寄
与する。また、加工硬化を促進して耐摩耗性を向
上させるためにも必要な元素である。これらの効
果は1.0%以上の添加で得られ、とくに1.5%以上
で顕著になるが、5.0%を超えると飽和する。
Ni:残部
マトリクスをオーステナイト組織とし、かつ耐
食性を向上させるために必要である。40%以上の
存在が望ましい。
上記合金元素のほか、Fe、SiおよびCoは不純
物として、下記の限度内で存在が許容される。
Fe:5.0%以下
耐食性の低めるので有用な存在ではないが、
5.0%まではさしつかえない。
Si:2.0%以下
脱酸に必要であるが、含有量が2.0%を超える
と靭延性が劣る。
Co:5.0%以下
Coは、Ni中の不純物として含まれることが多
いが、合金基準で5.0%以内は許容される。
前記した任意添加元素の役割と組成範囲の限定
理由は、つぎのとおりである。
() Mg:0.1%以下、Zr:0.1%以下脱酸と作用
と同時に結晶粒を微細化する効果を有し、熱間
加工性を改善する。0.1%を超える添加は、そ
れ以上の利益をもたらさない。
B:0.01%以下
MgおよびZrと同様に、結晶粒微細化効果が
ある。上記の限度を超えて添加すると、金属間
化合物が形成し、脆化を招く。
() N:0.2%以下
耐食性、とくにロールの使用環境である硫酸
亜鉛溶液中での耐孔食性を高める。多量になる
と窒化物を形成し、0.2%を超えるとかえつて
耐食性が悪くなる。
Cu:2.0%以下
Nと同様の耐食性向上効果があるが、熱間加
工性をそこなうので、2.0%までの添加に止め
る。
() V:3.0%以下、W:3.0%以下
これらは、前記したNbやTaと同様の作用を
する。その効果は、3.0%を超えると飽和する。
上記の合金材料から電気亜鉛メツキ用通電ロー
ルを製造するには、既知の方法、たとえば鋳造−
熱間鍛造−機械加工によればよい。その際、温間
(たとえば500〜800℃)または冷間の表面加工
(プレスまたは表面打撃)により表面に加工歪み
を与え、結晶粒を微細化して表面硬度を高めるこ
とが好ましい。いずれの製法によるにせよロール
機械加工により仕上げる必要があるので、数mmの
削りしろをとつても効果が残るような厚さに、上
記の硬化を実現させるべきである。表面の硬化
は、耐食性の若干の低下をひきおこすことがある
が、耐摩耗性の向上が著しく、この利益は耐食性
低下の不利益を十分に補うものである。従つて、
温間または冷間の表面加工は一般に有用というこ
とができるが、その採否はロールの使用条件に応
じて決定すればよいことは容易に理解されるであ
ろう。
The reason for selecting the above alloy composition is as follows. First, regarding the basic composition, C: 0.10% or less C gives hardness to the roll, and as the content increases, the hardness increases and wear resistance improves, but on the other hand, corrosion resistance tends to decrease. Therefore, it is limited to 0.10%. Mn: 2.0% or less An element that improves hot workability, but its presence in excess of 2.0% impairs corrosion resistance. Cr: 20.0-30.0% Forms a matrix together with Ni and Mo to form a strong passivation film and achieve high corrosion resistance. This effect becomes more pronounced when the content of Cr exceeds 20%, but it becomes saturated when the content exceeds 30.0%, and on the other hand, toughness and ductility decrease. The fact that corrosion resistance can be obtained even with a relatively low Mo content by increasing the Cr content in a Ni-Cr-Mo alloy is shown in the graph in the attached drawing. The “corrosion amount under current” in the graph is
As will be explained later with reference to Examples, this is the amount of corrosion when electrical current is applied in a galvanizing solution. When the Cr content is 17.5%, the amount of corrosion is still large even if the Mo content is 18% or more, but in the case of an alloy with Cr: 21 to 23%, the Mo content is about 7 to 8%, which is much more. It will be appreciated that a lower amount of corrosion is achieved. Mo: 7.0-12.0% This is the most important element for corrosion resistance, but since it is expensive, it is desirable to keep the content as low as possible.
As mentioned above. The material of the roll of the present invention is 20
% or more of Cr, the effect of Mo can be obtained at a content of 7.0% or more, as seen in the above graph. Corrosion resistance increases as Mo content increases, but as shown in the graph, this also saturates around 12%, and toughness and ductility begin to decrease. Nb and/or Ta: 1.5 to 5.0% Both of these form carbides, prevent the precipitation of Cr carbides at grain boundaries, and contribute to improving corrosion resistance. It is also an element necessary to promote work hardening and improve wear resistance. These effects can be obtained by adding 1.0% or more, and are particularly noticeable when 1.5% or more is added, but become saturated if it exceeds 5.0%. Ni: Remainder Necessary to make the matrix an austenitic structure and improve corrosion resistance. Presence of 40% or more is desirable. In addition to the above alloying elements, Fe, Si, and Co are allowed to exist as impurities within the following limits. Fe: 5.0% or less Although it is not useful as it reduces corrosion resistance,
Up to 5.0% is acceptable. Si: 2.0% or less Necessary for deoxidation, but if the content exceeds 2.0%, toughness and ductility will be poor. Co: 5.0% or less Co is often included as an impurity in Ni, but 5.0% or less is allowed as an alloy standard. The role of the above-mentioned optional additive elements and the reason for limiting the composition range are as follows. () Mg: 0.1% or less, Zr: 0.1% or less It has the effect of deoxidizing and refining grains at the same time, improving hot workability. Additions above 0.1% provide no further benefit. B: 0.01% or less Similar to Mg and Zr, it has a grain refining effect. If added in excess of the above limits, intermetallic compounds will form, leading to embrittlement. () N: 0.2% or less Improves corrosion resistance, especially pitting corrosion resistance in zinc sulfate solution, which is the environment in which the roll is used. If the amount is too large, nitrides will be formed, and if it exceeds 0.2%, the corrosion resistance will deteriorate. Cu: 2.0% or less Although it has the same corrosion resistance improvement effect as N, it impairs hot workability, so the addition should be limited to 2.0% or less. () V: 3.0% or less, W: 3.0% or less These act in the same way as Nb and Ta described above. The effect saturates above 3.0%. To produce current-carrying rolls for electrogalvanizing from the above-mentioned alloy materials, known methods can be used, such as casting.
Hot forging and machining may be used. At that time, it is preferable to apply processing strain to the surface by warm (for example, 500 to 800° C.) or cold surface processing (pressing or surface impact) to refine crystal grains and increase surface hardness. Regardless of the manufacturing method used, it is necessary to finish by roll machining, so the above-mentioned hardening should be achieved at a thickness such that the effect remains even after several millimeters of cutting allowance. Although surface hardening may cause a slight reduction in corrosion resistance, the wear resistance is significantly improved, and this benefit more than compensates for the disadvantage of reduced corrosion resistance. Therefore,
Although warm or cold surface treatments can be said to be generally useful, it will be readily understood that whether or not to use them may be determined depending on the conditions of use of the roll.
本発明に従つてMoの使用量を減らしてコスト
を低減したロールが、従来のNi−Cr−Mo合金に
匹敵する耐食性耐摩耗性を有することを、下記の
実施例により実証する。
第1表に示す組成の合金を溶製した。
No.1〜6は本発明に従う合金組成の材料であ
り、No.11は従来のNi合金、No.12は従来のNi−Cr
−Mo合金であり、
No.21は比較例である。
各供試材について、硬さ(ビツカース硬さ)、
比抵抗、および通電下での腐食量を測定した。
通電下の腐食量は、
(1) 稀硫酸…(H2SO4:22g+Na2SO4:100
g)/
(2) 亜鉛メツキ液…(H2SO4:22g+Fe2
(SO4)3:75g)/
に浸漬(液温はいずれも50℃)した供試材を陰極
として、電流密度100mA/cm2で7日間通電し、
減量を測定することによつて決定した。
前記の合金のうちNo.4、No.6、No.11およびNo.12
の材料から、電気亜鉛メツキ用の通電ロールを製
造した。No.6の材料は、下記の2種の製法でロー
ルにした。
(6A) 鋳造−熱間加工(プレス鍛造)−機械加工
(6B) 鋳造−熱間加工(同上)−冷間プレス鍛造
(表面層の硬化)
試作したロールは、実機テストとして電気亜鉛
メツキ槽に使用し、5日後にとり出して、ロール
中央部における最大腐食摩耗量をしらべた。
以上の結果を、第2表に示す。
The following examples demonstrate that rolls with reduced Mo content and cost reduction in accordance with the present invention have corrosion and wear resistance comparable to conventional Ni-Cr-Mo alloys. An alloy having the composition shown in Table 1 was produced. Nos. 1 to 6 are materials with alloy compositions according to the present invention, No. 11 is a conventional Ni alloy, and No. 12 is a conventional Ni-Cr material.
-Mo alloy, and No. 21 is a comparative example. For each sample material, hardness (Bitzkers hardness),
The specific resistance and the amount of corrosion under electrical current were measured. The amount of corrosion under electric current is as follows: (1) Dilute sulfuric acid...(H 2 SO 4 : 22g + Na 2 SO 4 : 100
g) / (2) Zinc plating solution...(H 2 SO 4 : 22g + Fe 2
(SO 4 ) 3 : 75 g) / (liquid temperature 50°C in each case) was used as a cathode, and current was applied at a current density of 100 mA/cm 2 for 7 days.
Determined by measuring weight loss. No. 4, No. 6, No. 11 and No. 12 of the above alloys
An energizing roll for electrogalvanizing was manufactured from this material. Material No. 6 was made into rolls using the following two manufacturing methods. (6A) Casting - hot working (press forging) - machining (6B) Casting - hot working (same as above) - cold press forging (hardening of surface layer) The prototype roll was placed in an electrogalvanizing bath as an actual machine test. After 5 days of use, the roll was taken out and the maximum amount of corrosion wear at the center of the roll was determined. The above results are shown in Table 2.
【表】【table】
【表】【table】
本発明の電気亜鉛メツキ用ロールは、従来品よ
り多量のCrを含有させることによつてMoの必要
量を減少させたものであつて、コストの大幅な低
下にもかかわらず、高価な従来材にまさるとも劣
らない耐食耐摩耗性を有する。
The electrogalvanizing roll of the present invention reduces the amount of Mo required by containing a larger amount of Cr than conventional products. It has corrosion and wear resistance comparable to that of
図面は本発明の効果を示すものであつて、Ni
−Cr−Mo合金を亜鉛メツキ液中で通電状態にお
いたときの、腐食量とMoの含有量との関係を、
高低2種のCr含有量の合金についてプロツトし
たグラフである。
The drawings show the effects of the present invention, and show the effects of the present invention.
-The relationship between the amount of corrosion and the content of Mo when a Cr-Mo alloy is placed in a galvanizing solution and energized is as follows:
This is a graph plotting alloys with two types of high and low Cr contents.
Claims (1)
〜30.0%、Mo:7.0〜12.0%、ならびに、Nbおよ
び(または)Ta:1.5〜5.0%を含有し、Fe:5.0
%以下、Si:2.0%以下であつて、残部が実質的
にNiからなる合金で製造した電気亜鉛メツキ用
ロール。 2 C:0.10%以下、Mn:2.0%以下、Cr:20.0
〜30.0%、Mo:7.0〜12.0%、Nbおよび(また
は)Ta:1.5〜5.0%、ならびに、Mg:0.1%以
下、Zr:0.1%以下およびB:0.01%以下の1種
または2種以上を含有し、Fe:5.0%以下、Si:
2.0%以下であつて、残部が実質的にNiからなる
合金で製造した電気亜鉛メツキ用ロール。 3 C:0.10%以下、Mn:2.0%以下、Cr:20.0
〜30.0%、Mo:7.0〜12.0%、Nbおよび(また
は)Ta:1.5〜5.0%、ならびに、N:0.20%以下
およびCu:2.0%以下の1種または2種を含有し、
Fe:5.0%以下、Si:2.0%以下であつて、残部が
実質的にNiからなる合金で製造した電気亜鉛メ
ツキ用ロール。 4 C:0.10%以下、、Mn:2.0%以下、Cr:20.0
〜30.0%、Mo:7.0〜12.0%、Nbおよび(また
は)Ta:1.5〜5.0%、ならびに、V:3.0%以下
およびW:3.0%以下の1種または2種を含有し、
Fe:5.0%以下、Si:2.0%以下であつて、残部が
実質的にNiからなる合金で製造した電気亜鉛メ
ツキ用ロール。[Claims] 1 C: 0.10% or less, Mn: 2.0% or less, Cr: 20.0
~30.0%, Mo: 7.0~12.0%, and Nb and/or Ta: 1.5~5.0%, Fe: 5.0
% or less, Si: 2.0% or less, and the balance is substantially Ni. 2 C: 0.10% or less, Mn: 2.0% or less, Cr: 20.0
-30.0%, Mo: 7.0-12.0%, Nb and (or) Ta: 1.5-5.0%, and one or more of the following: Mg: 0.1% or less, Zr: 0.1% or less, and B: 0.01% or less. Contains, Fe: 5.0% or less, Si:
A roll for electrogalvanizing made of an alloy containing 2.0% or less of Ni, the remainder of which is substantially composed of Ni. 3 C: 0.10% or less, Mn: 2.0% or less, Cr: 20.0
-30.0%, Mo: 7.0-12.0%, Nb and (or) Ta: 1.5-5.0%, and one or two of N: 0.20% or less and Cu: 2.0% or less,
A roll for electrogalvanizing made of an alloy containing Fe: 5.0% or less, Si: 2.0% or less, and the remainder substantially consisting of Ni. 4 C: 0.10% or less, Mn: 2.0% or less, Cr: 20.0
-30.0%, Mo: 7.0-12.0%, Nb and (or) Ta: 1.5-5.0%, and one or two of V: 3.0% or less and W: 3.0% or less,
A roll for electrogalvanizing made of an alloy containing Fe: 5.0% or less, Si: 2.0% or less, and the remainder substantially consisting of Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6820284A JPS60211030A (en) | 1984-04-05 | 1984-04-05 | Roll for galvanizing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6820284A JPS60211030A (en) | 1984-04-05 | 1984-04-05 | Roll for galvanizing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60211030A JPS60211030A (en) | 1985-10-23 |
JPH0230374B2 true JPH0230374B2 (en) | 1990-07-05 |
Family
ID=13366969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6820284A Granted JPS60211030A (en) | 1984-04-05 | 1984-04-05 | Roll for galvanizing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60211030A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04135590A (en) * | 1990-09-27 | 1992-05-11 | Universal Design:Kk | Water flow sliding-down device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199650A (en) * | 1984-10-22 | 1986-05-17 | Kubota Ltd | Alloy for electrically conductive roll |
JP2512764B2 (en) * | 1987-09-03 | 1996-07-03 | 新日本製鐵株式会社 | Energizing roll material for electroplating |
JPH01219134A (en) * | 1988-02-26 | 1989-09-01 | Kubota Ltd | Alloy for electric conductive roll in electroplating equipment |
JPH028337A (en) * | 1988-06-24 | 1990-01-11 | Nippon Stainless Steel Co Ltd | Electrifying roll for electroplating and its manufacture |
JPH0826427B2 (en) * | 1991-10-04 | 1996-03-13 | 三菱製鋼株式会社 | Energizing roll for electroplating |
JPH0617173A (en) * | 1992-07-03 | 1994-01-25 | Mitsubishi Steel Mfg Co Ltd | Conductive roll for electroplating |
SE513552C2 (en) * | 1994-05-18 | 2000-10-02 | Sandvik Ab | Use of a Cr-Ni-Mo alloy with good workability and structural stability as a component in waste incineration plants |
JP4780431B2 (en) * | 2001-04-05 | 2011-09-28 | 大同特殊鋼株式会社 | High hardness and high corrosion resistance Ni-base alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134546A (en) * | 1981-02-13 | 1982-08-19 | Sumitomo Metal Ind Ltd | Corrosion resistant alloy |
JPS57203739A (en) * | 1981-06-11 | 1982-12-14 | Sumitomo Metal Ind Ltd | Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe |
JPS58204145A (en) * | 1982-04-05 | 1983-11-28 | テレダイン・インダストリ−ズ・インコ−ポレ−テツド | Anticorrosive nickel base alloy |
JPS5928550A (en) * | 1982-08-07 | 1984-02-15 | Kubota Ltd | High hardness and high corrosion resistant alloy |
-
1984
- 1984-04-05 JP JP6820284A patent/JPS60211030A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134546A (en) * | 1981-02-13 | 1982-08-19 | Sumitomo Metal Ind Ltd | Corrosion resistant alloy |
JPS57203739A (en) * | 1981-06-11 | 1982-12-14 | Sumitomo Metal Ind Ltd | Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe |
JPS58204145A (en) * | 1982-04-05 | 1983-11-28 | テレダイン・インダストリ−ズ・インコ−ポレ−テツド | Anticorrosive nickel base alloy |
JPS5928550A (en) * | 1982-08-07 | 1984-02-15 | Kubota Ltd | High hardness and high corrosion resistant alloy |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04135590A (en) * | 1990-09-27 | 1992-05-11 | Universal Design:Kk | Water flow sliding-down device |
Also Published As
Publication number | Publication date |
---|---|
JPS60211030A (en) | 1985-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007665B1 (en) | A manufacturing process of ultrasoft ferritic stainless steel | |
US4363660A (en) | Iron-base alloy having high resistance to molten zinc attack | |
JP2023044342A (en) | Plated stainless steel plate for hot stamping and molding member | |
JPH0230374B2 (en) | ||
JP4754362B2 (en) | Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same | |
JPH1072644A (en) | Cold rolled austenitic stainless steel sheet reduced in amount of springback, and its production | |
JP2978384B2 (en) | Roll material for hot rolling | |
JP3709834B2 (en) | Ferritic stainless steel sheet excellent in deep drawability and method for producing the same | |
JPH0317887B2 (en) | ||
JPS63157828A (en) | Electrifying roll for electroplating | |
JPH01100248A (en) | Two-phase stainless steel and its production | |
JP3508698B2 (en) | Stainless steel hot rolled steel strip for civil and building structures with excellent initial rust resistance | |
JPH03227233A (en) | Wear-resistant composite steel plate having excellent workability and weldability | |
RU2063852C1 (en) | Process of manufacture of three-layer sheets and strips | |
JP2512764B2 (en) | Energizing roll material for electroplating | |
JP5131802B2 (en) | High-strength hot-dip galvanized steel sheet with excellent spot weldability and formability | |
CN112513309A (en) | Steel sheet and method for producing same | |
JPH0545661B2 (en) | ||
JPS60200936A (en) | Electrically conductive roll for electroplating | |
JPS6332857B2 (en) | ||
JPH0730424B2 (en) | Energizing roll alloy for electric plating | |
JPS6199653A (en) | Electrically conductive roll | |
JPH0978187A (en) | Free-cutting steel for plating | |
JP2005281826A (en) | Corrosion resistant steel having excellent cold workability and machinability | |
JP2715523B2 (en) | Electric roll for electroplating |