[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02223342A - Rotor with permanent magnet and its manufacture - Google Patents

Rotor with permanent magnet and its manufacture

Info

Publication number
JPH02223342A
JPH02223342A JP1206106A JP20610689A JPH02223342A JP H02223342 A JPH02223342 A JP H02223342A JP 1206106 A JP1206106 A JP 1206106A JP 20610689 A JP20610689 A JP 20610689A JP H02223342 A JPH02223342 A JP H02223342A
Authority
JP
Japan
Prior art keywords
permanent magnet
yoke
permanent magnets
outer periphery
reinforcing ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1206106A
Other languages
Japanese (ja)
Other versions
JP2636430B2 (en
Inventor
Hiroshi Harie
針江 博史
Atsushi Ashizawa
芦澤 厚
Masaji Moriyasu
森安 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCE KOOJIENEREESHIYON SYST GIJUTSU KENKYU KUMIAI
Original Assignee
ADVANCE KOOJIENEREESHIYON SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCE KOOJIENEREESHIYON SYST GIJUTSU KENKYU KUMIAI filed Critical ADVANCE KOOJIENEREESHIYON SYST GIJUTSU KENKYU KUMIAI
Priority to JP1206106A priority Critical patent/JP2636430B2/en
Publication of JPH02223342A publication Critical patent/JPH02223342A/en
Application granted granted Critical
Publication of JP2636430B2 publication Critical patent/JP2636430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To give circumferential positional precision for permanent magnets and to prevent them from being broken by fitting a squirrel-cage-shaped body made of a non-magnetic material where a plurality of inserting holes to insert permanent magnets after they were positioned are provided in the circumferential direction into the outside circumference of a yoke and by securing this squirrel-cage-shaped body and the permanent magnets inserted into the inserting holes to the outside circumference of the yoke. CONSTITUTION:A squirrel-cage-shaped body 11 where a plurality of inserting holes 11a to insert permanent magnets 3 in position are provided in the circumferential direction is fitted into the outside circumference of a yoke 2. This squirrel-cage-shaped body 11 and the permanent magnets 3 inserted into the above inserting holes 11a are secured to the outside circumference of the yoke 2 with adhesive, etc. The squirrel-cage-shaped body 11 consists of a non-magnetic material such as aluminium, brass, synthetic resin, etc. The inserting holes 11a are formed in the size tightly to fit the permanent magnets 3. Circumferential positional precision can thereby be given so as to install the permanent magnets 3, while they can be protected against breakage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、回転電機の磁性材からなる円筒状継鉄の外
周に磁極を形成する永久磁石を円周方向に複数配設して
なる永久磁石付き回転子及びその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a permanent magnet made of a cylindrical yoke made of a magnetic material for a rotating electric machine, and a plurality of permanent magnets forming magnetic poles arranged around the outer circumference of the cylindrical yoke. The present invention relates to a rotor with magnets and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

回転電機の永久磁石付き回転子の従来例を第6図にもと
づいて説明する。この図において、回転軸1に嵌着した
磁性材からなる円筒状継鉄2の外周に磁極を形成する永
久磁石3が円周方向に複数配設されている。この永久磁
石3は継鉄2の外周に密接するように断面形状が弓形に
湾曲した板状に形成され、隣接する磁極ごとに径方向に
交互に反対方向に着磁されている。前記永久磁石3は位
置決め治具等により円周方向の位置精度を出して位置決
めした後接着剤等で継鉄2の外周に固着される。
A conventional example of a rotor with permanent magnets for a rotating electric machine will be explained based on FIG. 6. In this figure, a plurality of permanent magnets 3 forming magnetic poles are disposed in the circumferential direction on the outer periphery of a cylindrical yoke 2 made of a magnetic material fitted onto a rotating shaft 1. The permanent magnet 3 is formed into a plate shape having an arcuate cross-sectional shape so as to be in close contact with the outer periphery of the yoke 2, and is magnetized alternately in opposite directions in the radial direction for each adjacent magnetic pole. The permanent magnet 3 is positioned on the outer periphery of the yoke 2 with an adhesive or the like after being positioned with circumferential positional accuracy using a positioning jig or the like.

また、永久磁石3を継鉄2の外周に固着させるには、前
記のように接着剤を用いるほかに、特開昭61−124
6号(以下、文献という)に示されるように、継鉄の外
周上に配置した永久磁石の外周面に熱硬化性樹脂を含浸
したガラス繊維を1又は2層巻き回して加熱硬化して固
着させることにより、超高速回転時の遠心力に耐えるよ
うにしたものが知られている。
Moreover, in order to fix the permanent magnet 3 to the outer periphery of the yoke 2, in addition to using an adhesive as described above,
As shown in No. 6 (hereinafter referred to as literature), one or two layers of glass fiber impregnated with a thermosetting resin are wound around the outer circumferential surface of a permanent magnet placed on the outer circumference of a yoke and fixed by heating. It is known that this structure can withstand centrifugal force during ultra-high speed rotation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記第6図の構造では継鉄2の大きさおよび磁極数によ
り多数の位置決め治具を用意する必要があり、また接着
剤等で固着する際に位置ずれが生じると位置精度を出す
ことが困難になり特に磁極が大きくなって多数の永久磁
石3で磁極を形成する必要のある場合には位置決め固定
作業に多くの手数を要するという欠点があった。さらに
回転子の固定子への組み込み時に永久磁石3をその吸引
力で固定子鉄心等の硬いものにぶつけたりすると希土類
、フェライト等からなる永久磁石3では材質がもろいの
で欠損することがある。永久磁石3が欠損すると吸引力
が減るのみでなく破片が鉄心等に付着して除去作業に多
くの手数を要し、さらに破片を回転子と固定子の間隙に
取残すと回転子を1常に回転させることができなくなる
という多くの欠点があった。
In the structure shown in Fig. 6, it is necessary to prepare a large number of positioning jigs depending on the size of the yoke 2 and the number of magnetic poles, and it is difficult to achieve positional accuracy if positional deviation occurs when fixing with adhesive etc. In particular, when the magnetic pole becomes large and it is necessary to form the magnetic pole with a large number of permanent magnets 3, there is a drawback that a lot of work is required for positioning and fixing. Furthermore, when the rotor is assembled into the stator, if the permanent magnet 3 is hit by its attractive force against a hard object such as a stator core, the permanent magnet 3 made of rare earth, ferrite, etc. may break because the material is brittle. If the permanent magnet 3 is missing, not only will the attraction force be reduced, but fragments will adhere to the iron core, etc., requiring a lot of work to remove them.Furthermore, if the fragments are left in the gap between the rotor and stator, the rotor will be permanently damaged. It had many drawbacks, including the inability to rotate it.

また、前記文献には前述の永久磁石の位置決めと欠損に
ついては何も示すことがないので、同様な欠点が存在す
ると思われるほか、文献に示す構造では、樹脂を含浸し
たガラス繊維の巻回は作業時間が長い。また超高速回転
数における遠心力に関しては、硬化した樹脂とガラス繊
維の引張強さ、並びに巻回数に依存して使用回転数に限
界がある。
In addition, the above-mentioned document does not show anything about the positioning and loss of the permanent magnet, so it seems that the same drawback exists, and in the structure shown in the document, the winding of glass fiber impregnated with resin is not possible. Long working hours. Regarding centrifugal force at ultra-high rotational speeds, there is a limit to the number of rotations that can be used depending on the tensile strength of the cured resin and glass fiber, as well as the number of turns.

この発明の目的は、円筒状継鉄の外周に磁極を形成する
複数の永久磁石を簡易な構造で円周方向の位置精度を出
しかつ欠損防止可能に取付けることができ、遠心力に基
く使用回転数を大きくすることができ、あわせて着磁済
の希土類等からなる永久磁石の磁力が回転子の製造工程
で:$i磁することがないような永久磁石付き回転子及
びその製造方法を提供することにある。
An object of the present invention is to enable a plurality of permanent magnets forming magnetic poles on the outer periphery of a cylindrical yoke to be mounted with a simple structure, to achieve positional accuracy in the circumferential direction and to prevent damage, and to reduce rotation during use based on centrifugal force. To provide a rotor with permanent magnets and a method for manufacturing the same, which can increase the number of permanent magnets and which prevent magnetic force of magnetized permanent magnets made of rare earth elements from becoming magnetized during the manufacturing process of the rotor. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

発明1の永久磁石付き回転子は、 磁性材からなる円筒状継鉄の外周に磁極を形成する永久
磁石を円周方向に複数配設してなる永久磁石付き回転子
において、 円筒の外周部に前記永久磁石を位置決めして挿入する挿
入穴を円周方向に複数設けた非磁性材からなるかご状体
を前記継鉄の外周にはめ込み、このかご状体と前記挿入
穴に挿入した前記永久磁石とを前記継鉄の外周に接着剤
等で固着するものである。
A rotor with permanent magnets according to invention 1 is a rotor with permanent magnets in which a plurality of permanent magnets forming magnetic poles are arranged in the circumferential direction on the outer periphery of a cylindrical yoke made of a magnetic material. A cage-shaped body made of a non-magnetic material provided with a plurality of insertion holes circumferentially into which the permanent magnets are positioned and inserted is fitted onto the outer periphery of the yoke, and the permanent magnets are inserted into the cage-shaped body and the insertion holes. and is fixed to the outer periphery of the yoke with adhesive or the like.

発明2の永久磁石付き回転子は、 磁性材からなる円筒状継鉄の外周に磁極を形成する永久
磁石を円周方向に複数配設してなる永久磁石付き回転子
において、 円筒の外周部に前記永久磁石を位置決めして挿入する挿
入穴を円周方向に複数設けた非磁性材からなるかご状体
を前記継鉄の外周にはめ込み、前記永久磁石の厚さより
前記かご状体の厚さを大きくし、このかご状体と前記挿
入穴に挿入した前記永久磁石との外側に非磁性材からな
る円筒状の補強環を嵌合して固着し、前記継鉄と前記補
強環との間の前記永久磁石の周辺に硬化性樹脂を充填す
るものである。
A rotor with permanent magnets according to invention 2 is a rotor with permanent magnets in which a plurality of permanent magnets forming magnetic poles are arranged in the circumferential direction on the outer periphery of a cylindrical yoke made of a magnetic material. A cage-shaped body made of a non-magnetic material provided with a plurality of insertion holes in the circumferential direction into which the permanent magnets are positioned and inserted is fitted onto the outer periphery of the yoke, and the thickness of the cage-shaped body is made smaller than the thickness of the permanent magnets. A cylindrical reinforcing ring made of a non-magnetic material is fitted and fixed to the outer side of the cage-shaped body and the permanent magnet inserted into the insertion hole, and the gap between the yoke and the reinforcing ring is The periphery of the permanent magnet is filled with a curable resin.

発明3の永久磁石付き回転子の製造方法は、円筒状継鉄
の外周に着磁済みの永久磁石を配置し、この永久磁石を
囲む補強環を焼ばめして前記永久磁石を前記継鉄の外周
に固着する永久磁石付き回転子の製造方法において、 焼ばめのために温度を上げた前記補強環の外周を着脱可
能な磁性材からなる円筒状の保持具で保持し、この保持
具で保持された前記補強環の内側に前記着磁済みの永久
磁石を仮着けした前記継鉄を挿入し、前記補強環の温度
が下って焼ばめが完了した後に、前記保持具を前記補強
環から取り外すものである。
In the method for manufacturing a rotor with permanent magnets according to the third aspect, a magnetized permanent magnet is arranged on the outer periphery of a cylindrical yoke, and a reinforcing ring surrounding this permanent magnet is shrink-fitted to attach the permanent magnet to the yoke. In a method for manufacturing a rotor with permanent magnets that are fixed to the outer circumference, the outer circumference of the reinforcing ring, which has been heated for shrink fitting, is held by a removable cylindrical holder made of a magnetic material, and this holder is used to The yoke to which the magnetized permanent magnet is temporarily attached is inserted inside the held reinforcing ring, and after the temperature of the reinforcing ring has decreased and the shrink fit is completed, the holder is attached to the reinforcing ring. It is to be removed from the

〔作用〕[Effect]

発明lにおいては、 前記かご状体により位置決め治具を使用することなく円
周方向の位置精度を出して永久磁石を取付けできるのみ
でなく永久磁石を保護して欠損を防止することもできる
In invention 1, the cage-like body not only allows permanent magnets to be mounted with high positional accuracy in the circumferential direction without using a positioning jig, but also protects the permanent magnets and prevents them from being damaged.

発明2においては、発明1の作用に加えるに、例えばオ
ーステナイト系のステンレス鋼等の非磁性材からなる補
強環は永久磁石の遠心力を保持し、磁束分布を変化させ
ない。硬化性樹脂は、永久磁石の円周方向、軸方向及び
径方向の寸法誤差による隙間を埋めて、永久磁石をかご
状体の挿入穴に固定するとともに、各永久磁石自身が遠
心力によって受ける曲げ力を負担して磁石が破断するこ
とを防止する。
In invention 2, in addition to the effect of invention 1, the reinforcing ring made of a non-magnetic material such as austenitic stainless steel retains the centrifugal force of the permanent magnet and does not change the magnetic flux distribution. The hardening resin fills gaps caused by dimensional errors in the circumferential direction, axial direction, and radial direction of the permanent magnets, fixes the permanent magnets in the insertion holes of the cage, and prevents the bending that each permanent magnet itself undergoes due to centrifugal force. Prevents the magnet from breaking due to force.

発明3においては、 補強環を焼ばめする時に、永久磁石に伝達される熱によ
って永久磁石の温度が熱減磁温度限界を超えても、永久
磁石の内側の継鉄と補強環の外側の磁性材からなる保持
具によって、磁気回路のパーミアンス係数が大きくなり
、高温時の磁束の減少をおさえ、予め着磁した個々の永
久磁石を回転子に取付けられ、回転子組立後に着磁する
必要がない。
In invention 3, when the reinforcing ring is shrink-fitted, even if the temperature of the permanent magnet exceeds the thermal demagnetization temperature limit due to the heat transferred to the permanent magnet, the yoke inside the permanent magnet and the outside yoke of the reinforcing ring The holder made of magnetic material increases the permeance coefficient of the magnetic circuit, suppresses the decrease in magnetic flux at high temperatures, and allows individual pre-magnetized permanent magnets to be attached to the rotor, eliminating the need for magnetization after the rotor is assembled. do not have.

〔実施例〕〔Example〕

第1図は実施例1の展開斜視図であり、第2図は実施例
2の斜視図、第3図は第2図の軸に直角な部分断面図、
第4図は第2図の組立工程図であり、第5図は実施例3
の組立工程図である。いずれも第6図と同一符号を付け
るものはおよそ同一機能を持つ。
FIG. 1 is a developed perspective view of Embodiment 1, FIG. 2 is a perspective view of Embodiment 2, and FIG. 3 is a partial sectional view perpendicular to the axis of FIG.
Fig. 4 is an assembly process diagram of Fig. 2, and Fig. 5 is an assembly process diagram of Embodiment 3.
It is an assembly process diagram. Components with the same reference numerals as in FIG. 6 have roughly the same functions.

第1図において、円筒の外周部に永久磁石3を位置決め
して挿入する挿入穴11aを円周方向に複数設けたかご
状体11が円筒状継鉄2の外周にはめ込まれ、このかご
状体11と前記挿入穴11aに挿入した永久磁石3とは
継鉄2の外周に接着剤等で固着されている。この図では
個々の磁極を多数の永久磁石3で形成するものを示した
が、これに限定されるものではない。前記かご状体11
オーステナイト系ステンレス鋼、はアルミニウム、しん
ちゅう合成樹脂等の非磁性材からなり、挿入穴11aは
永久磁石3をぴったりはめ込むことのできる寸法で形成
されている。またかご状体11と永久磁石3のそれぞれ
外周面はほぼ同一径寸法で形成される。前記継鉄2は回
転軸1に嵌着されているが、これらを一体形成すること
もできる。
In FIG. 1, a cage-shaped body 11 is fitted onto the outer periphery of a cylindrical yoke 2, and a cage-shaped body 11 is provided with a plurality of insertion holes 11a in the circumferential direction into which permanent magnets 3 are positioned and inserted. 11 and the permanent magnet 3 inserted into the insertion hole 11a are fixed to the outer periphery of the yoke 2 with adhesive or the like. Although this figure shows that each magnetic pole is formed by a large number of permanent magnets 3, the present invention is not limited to this. The cage-shaped body 11
The austenitic stainless steel is made of a non-magnetic material such as aluminum or brass synthetic resin, and the insertion hole 11a is formed with a size that allows the permanent magnet 3 to be snugly fitted therein. Further, the outer circumferential surfaces of the cage-like body 11 and the permanent magnet 3 are formed to have substantially the same diameter. Although the yoke 2 is fitted onto the rotating shaft 1, they can also be formed integrally.

前記実施例1によればかご状体11により位置決め治具
を使用することなく円周方向の位置精度を出して永久磁
石3を取付けできるのみでなく永久磁石3を保護して欠
損を防止することもできる。
According to the first embodiment, the cage-like body 11 not only allows the permanent magnet 3 to be mounted with high positional accuracy in the circumferential direction without using a positioning jig, but also protects the permanent magnet 3 and prevents it from being damaged. You can also do it.

実施例2を示す第2図から第4図においては、第1図と
同じく円筒の外周部に永久磁石3を位置決めして挿入す
る挿入穴21aを円周方向に複数設けたかご状体21が
円筒状継鉄2の外周に焼ばめ又はすきまばめではめ込ま
れる。この図では個々の磁極を多数の永久磁石3で形成
するものを示したが、これに限定されるものではない。
In FIGS. 2 to 4 showing Embodiment 2, a cage-shaped body 21 is provided with a plurality of insertion holes 21a in the circumferential direction for positioning and inserting permanent magnets 3 on the outer periphery of the cylinder, as in FIG. 1. It is fitted onto the outer periphery of the cylindrical yoke 2 by shrink fit or clearance fit. Although this figure shows that each magnetic pole is formed by a large number of permanent magnets 3, the present invention is not limited to this.

前記かご状体21オーステナイト系ステンレス鋼、はア
ルミニウム、しんちゅう合成樹脂等の非磁性材からなり
、挿入穴21aは永久磁石3をぴったりはめ込むことの
できる寸法で形成されている。図では回転子が細長いの
で継鉄2の中央の突起2aの両隣りにかご状体21が使
用される。
The cage-like body 21 is made of austenitic stainless steel, and is made of a non-magnetic material such as aluminum or brass synthetic resin, and the insertion hole 21a is formed with a size that allows the permanent magnet 3 to be snugly fitted therein. In the figure, since the rotor is elongated, cage-like bodies 21 are used on both sides of the central protrusion 2a of the yoke 2.

第1図と異り、実施例2では永久磁石3の厚さよりかご
状体21の厚さを大きく、その外側に非磁性材で引張強
さの大きい、例えばオーステナイト系、ステンレス鋼等
からなる円筒状の補強環4を嵌合し、固着される。固着
には焼ばめが簡便であるが、かご状体21の挿入穴21
aのない骨格部分を貫通して非磁性の図示しない複数の
ねじで継鉄2に対し固着してもよく、補強環4を焼ばめ
して固着するとかご状体21も同時に固着できるように
してもよい。
Different from FIG. 1, in Example 2, the thickness of the cage-shaped body 21 is larger than that of the permanent magnet 3, and the outside is made of a non-magnetic material with high tensile strength, such as austenitic or stainless steel. A reinforcing ring 4 of a shape is fitted and fixed. Shrink fitting is convenient for fixing, but the insertion hole 21 of the cage-shaped body 21
It may be fixed to the yoke 2 with a plurality of non-magnetic screws (not shown) that penetrate through the skeleton part without a, and when the reinforcing ring 4 is shrink-fitted and fixed, the cage-shaped body 21 can also be fixed at the same time. Good too.

継鉄2と補強環4との間であって永久磁石3の周辺は硬
化性樹脂5が充填される。充填には熱硬化性又は常温硬
化性のエポキシ系等の樹脂を真空含浸法で充填する。そ
のための注入口6が例えばかご状体21の端面の外周に
設けられ、注入口61が隣り合う挿入穴21aの外周に
設けられる。注入口6等に代り、注入口62を継鉄2に
設けたり、補強環4の外周に径方向の穴を設けて注入口
63としたりできる。
A curable resin 5 is filled between the yoke 2 and the reinforcing ring 4 and around the permanent magnet 3. For filling, thermosetting or room temperature curing resin such as epoxy resin is filled by vacuum impregnation method. An injection port 6 for this purpose is provided, for example, on the outer periphery of the end surface of the cage-like body 21, and an injection port 61 is provided on the outer periphery of the adjacent insertion hole 21a. Instead of the injection port 6 or the like, an injection port 62 may be provided in the yoke 2, or a radial hole may be provided in the outer periphery of the reinforcing ring 4 to serve as the injection port 63.

かご状体21は永久磁石3より厚いと前述したが、それ
は永久磁石3が一般に焼結で形成され、硬くて研削等が
しにり(、寸法誤差があるからである。厚さ方向すなわ
ち径方向だけでなく円周方向、軸方向にも挿入穴21a
に対し隙間を予め設けるようにし、それらの径方向、円
周方向、軸方向の隙間を埋めるため硬化性樹脂5が使用
される。
As mentioned above, the cage-like body 21 is thicker than the permanent magnet 3, but this is because the permanent magnet 3 is generally formed by sintering, is hard, and resists grinding (and has dimensional errors. Insertion hole 21a not only in the direction but also in the circumferential direction and the axial direction
A curable resin 5 is used to fill the gaps in the radial direction, circumferential direction, and axial direction.

この硬化性樹脂5の効用には、個々の永久磁石3自身を
遠心力から保護することである。すなわち第3図に例示
するように永久磁石3が一点で補強環4に接していると
き、永久磁石3は遠心力Fで曲げ力を受けるが、充填し
た硬化性樹脂がその力を負担し永久磁石の破断を防止す
る。例えば希土類系磁石の強さは約14kg/la”で
あり、高速回転数での使用には遠心力による曲げ力は考
慮しなければならない事項となる。
The effect of this curable resin 5 is to protect each permanent magnet 3 itself from centrifugal force. In other words, when the permanent magnet 3 is in contact with the reinforcing ring 4 at one point, as illustrated in FIG. Prevents magnet breakage. For example, the strength of rare earth magnets is about 14 kg/la'', and bending force due to centrifugal force must be taken into consideration when used at high rotational speeds.

実施例3を示す第5図は前記実施例2において補強環4
を焼ばめ固着し、かつ焼ばめ前に永久磁石3が着磁済の
場合に有効な製造方法を示す。回転子組立後に着磁する
には極めて大きな着磁装置が必要であるのに対し、永久
磁石ごとに着磁しておく場合の着磁装置は小形でよい。
FIG. 5 showing Embodiment 3 shows the reinforcing ring 4 in Embodiment 2.
This is a manufacturing method that is effective when the permanent magnet 3 is fixed by shrink fitting and the permanent magnet 3 is already magnetized before the shrink fitting. Whereas an extremely large magnetizing device is required to magnetize the rotor after assembly, a small magnetizing device is sufficient for magnetizing each permanent magnet.

図において、軸1を持つ継鉄2には、予め着磁された円
周上に複数に分割された永久磁石3が実施例2のように
かご状体付きで又はなしで配置されている。一方、非磁
性材からなる補強環4は焼ばめのために例えば200〜
400℃に温度を上げ、ねじ8により締めつけた磁性材
からなる円筒状の保持具7(7a、7b)で保持されて
いる。
In the figure, on a yoke 2 having a shaft 1, permanent magnets 3 which are magnetized in advance and are divided into a plurality of parts on the circumference are arranged with or without a cage-shaped body as in the second embodiment. On the other hand, the reinforcing ring 4 made of a non-magnetic material has a diameter of 200 to
It is held by a cylindrical holder 7 (7a, 7b) made of a magnetic material that is heated to 400° C. and tightened with screws 8.

補強環4と保持具とは一体にして焼ばめ温度に昇温する
のがよいが、別々に昇温しで保持してもよい。
It is preferable that the reinforcing ring 4 and the holder are heated together to the shrink fit temperature, but they may be heated and held separately.

このように保持具7で保持され昇温させた補強環4に前
記着磁済の永久磁石3を仮着けした継鉄2を挿入し、温
度が下って焼ばめが完了してから、前記保持具7のみを
ねじ8を外して補強環4から取り外す。
The yoke 2 to which the magnetized permanent magnet 3 is temporarily attached is inserted into the reinforcing ring 4 held by the holder 7 and raised in temperature, and after the temperature has decreased and the shrink fit is completed, the above-mentioned Remove only the holder 7 from the reinforcing ring 4 by removing the screw 8.

円筒状の保持具は図示のものに限らず、例えば円筒状の
ものを1の母線又は180°離れた2個所の母線で切離
して軸方向の対をなすフランジを設けたりしてもよい。
The cylindrical holder is not limited to the one shown in the drawings; for example, a cylindrical holder may be separated along one generatrix line or two generatrix lines separated by 180 degrees to provide a pair of flanges in the axial direction.

前記の製造方法によれば、焼ばめの時に加熱された補強
環4から永久磁石3に熱が伝達され、永久磁石3が熱減
磁限界を超える温度になって、せっかく着磁した永久磁
石の磁束が減少することがおさえられる。
According to the above manufacturing method, heat is transferred from the reinforcing ring 4 heated during shrink fitting to the permanent magnet 3, and the temperature of the permanent magnet 3 exceeds the thermal demagnetization limit, and the magnetized permanent magnet This prevents the magnetic flux from decreasing.

その理由は、例えば焼ばめ温度は200〜300°Cで
あり、永久磁石の熱減磁温度は、NK鋼では約500℃
、希土類磁石では約200℃であり、中でも例えばネオ
ジム(原子記号;Nd)系希土類磁石では約100℃で
ある。このように熱減磁温度を超える焼ばめ温度では、
補強環4のみを磁石に当てかうと着磁済の永久磁石3の
磁束は熱減磁してしまう。
The reason is that, for example, the shrink fit temperature is 200 to 300°C, and the thermal demagnetization temperature of a permanent magnet is approximately 500°C for NK steel.
For rare earth magnets, the temperature is about 200°C, and for example, for neodymium (atomic symbol: Nd) rare earth magnets, it is about 100°C. In this way, at a shrink fit temperature exceeding the thermal demagnetization temperature,
If only the reinforcing ring 4 is applied to the magnet, the magnetic flux of the magnetized permanent magnet 3 will be thermally demagnetized.

それに対し、補強環4の外周に磁性材からなる保持具7
を取り付けることにより、高温時での磁気回路のパーミ
アンス係数(=磁束密度/起磁力)は磁性材の保持具7
がない場合に比べ大きくなり、高温時の磁束の減少をお
さえるのである。
On the other hand, a holder 7 made of a magnetic material is attached to the outer periphery of the reinforcing ring 4.
By attaching the magnetic material holder 7, the permeance coefficient (=magnetic flux density/magnetomotive force) of the magnetic circuit at high temperatures is reduced.
This is larger than when there is no magnetic flux, suppressing the decrease in magnetic flux at high temperatures.

〔発明の効果〕〔Effect of the invention〕

この発明1の永久磁石付き回転子は、 磁性材からなる円筒状継鉄の外周に磁極を形成する永久
磁石を円周方向に複数配設してなる永久磁石付き回転子
において、 円筒の外周部に前記永久磁石を位置決めして挿入する挿
入穴を円周方向に複数設けた非磁性材からなるかご状体
を前記継鉄の外周にはめ込み、このかご状体と前記挿入
穴に挿入した前記永久磁石とを前記継鉄の外周に接着剤
等で固着するようにしたので、 永久磁石を簡易な構造で位置決め治具を使用することな
く円周方向の位置精度を出して回転速度の豚動かなくか
つ欠損防止可能に取付けることができるという効果があ
る。
A rotor with permanent magnets according to the first aspect of the present invention is a rotor with permanent magnets, in which a plurality of permanent magnets forming magnetic poles are arranged in the circumferential direction on the outer periphery of a cylindrical yoke made of a magnetic material. A cage-shaped body made of a non-magnetic material having a plurality of insertion holes in the circumferential direction into which the permanent magnets are positioned and inserted is fitted onto the outer periphery of the yoke, and the cage-shaped body and the permanent magnets inserted into the insertion holes are fitted into the outer periphery of the yoke. Since the magnet is fixed to the outer periphery of the yoke with adhesive, etc., the permanent magnet has a simple structure and can achieve positional accuracy in the circumferential direction without using a positioning jig, and the rotational speed does not move. It also has the effect of being able to be installed in a way that prevents damage.

発明2のものは、 磁性材からなる円筒状継鉄の外周に磁極を形成する永久
磁石を円周方向に複数配設してなる永久磁石付き回転子
において、 円筒の外周部に前記永久磁石を位置決めして挿入する挿
入穴を円周方向に複数設けた非磁性材からなるかご状体
を前記継鉄の外周にはめ込み、前記永久磁石の厚さより
前記かご状体の厚さを大きくし、このかご状体と前記挿
入穴に挿入した前記永久磁石との外側に非磁性材からな
る円筒状の補強環を嵌合して固着し、前記継鉄と前記補
強環との間の前記永久磁石の周辺に硬化性樹脂を充填す
るようにしたので、発明1の効果に加えて、永久磁石の
遠心力は補強環で保持され、かつ永久磁石の形状寸法誤
差により生じる個々の永久磁石自身の遠心力による曲げ
力は硬化性樹脂で負担されることにより超高速回転数で
の使用に耐えるという効果がある。
Invention 2 is a rotor with permanent magnets, in which a plurality of permanent magnets forming magnetic poles are arranged in the circumferential direction on the outer periphery of a cylindrical yoke made of a magnetic material, and the permanent magnets are arranged on the outer periphery of the cylinder. A cage-shaped body made of a non-magnetic material having a plurality of insertion holes provided in the circumferential direction for positioning and insertion is fitted onto the outer periphery of the yoke, the thickness of the cage-shaped body is made larger than the thickness of the permanent magnet, and this A cylindrical reinforcing ring made of a non-magnetic material is fitted and fixed to the outside of the cage-like body and the permanent magnet inserted into the insertion hole, and the permanent magnet is fixed between the yoke and the reinforcing ring. Since the periphery is filled with hardening resin, in addition to the effect of invention 1, the centrifugal force of the permanent magnet is held by the reinforcing ring, and the centrifugal force of each permanent magnet itself caused by shape and size errors of the permanent magnet is reduced. The bending force caused by this is borne by the curable resin, which has the effect of being able to withstand use at ultra-high rotational speeds.

発明3の製造方法は、 円筒状継鉄の外周に着磁済みの永久磁石を配置し、この
永久磁石を囲む補強環を焼ばめして前記永久磁石を前記
継鉄の外周に固着する永久磁石付き回転子の製造方法に
おいて、 焼ばめのために温度を上げた前記補強環の外周を着脱可
能な磁性材からなる円筒状の保持具で保持し、この保持
具で保持された前記補強環の内側に前記着磁済みの永久
磁石を仮着けした前記継鉄を挿入し、前記補強環の温度
が下って焼ばめが完了した後に、前記保持具を前記補強
環から取り外すようにしたので、 焼ばめ温度が希土類磁石のような磁石の減磁温度を超え
るような場合には、パーミアンス係数の大きい磁気回路
の構成により磁束の減少をおさえて、回転子を小形にで
きるという効果があり、予め永久磁石ごとに着磁するの
で着磁装置が小形になるという効果がある。
The manufacturing method of invention 3 is a permanent magnet in which a magnetized permanent magnet is arranged on the outer periphery of a cylindrical yoke, and a reinforcing ring surrounding the permanent magnet is shrink-fitted to fix the permanent magnet to the outer periphery of the yoke. In the method for manufacturing a rotor with a rotor, the outer periphery of the reinforcing ring whose temperature has been raised for shrink fitting is held by a removable cylindrical holder made of a magnetic material, and the reinforcing ring held by the holder is The yoke to which the magnetized permanent magnet is temporarily attached is inserted inside the reinforcing ring, and the holder is removed from the reinforcing ring after the temperature of the reinforcing ring has decreased and shrink fitting is completed. , When the shrink fit temperature exceeds the demagnetization temperature of magnets such as rare earth magnets, the configuration of a magnetic circuit with a large permeance coefficient has the effect of suppressing the decrease in magnetic flux and making the rotor smaller. Since each permanent magnet is magnetized in advance, the magnetizing device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の展開斜視図であり、第2図は実施例
2の斜視図、第3図は第2図の軸に直角な部分断面図、
第4図は第2図の組立工程図であり、第5図は実施例3
の組立工程図であり、第6図は従来例の斜視図である。 2・・・継鉄、3・・・永久磁石、4・・・補強環、5
・・・硬化性樹脂、6.61.62.63・・・注入口
、7a。 7b・・・保持具、11.21・・・かご状体、11a
。 第1図 第2図 第351 第 図
FIG. 1 is a developed perspective view of Embodiment 1, FIG. 2 is a perspective view of Embodiment 2, and FIG. 3 is a partial sectional view perpendicular to the axis of FIG.
Fig. 4 is an assembly process diagram of Fig. 2, and Fig. 5 is an assembly process diagram of Embodiment 3.
FIG. 6 is a perspective view of a conventional example. 2... Yoke, 3... Permanent magnet, 4... Reinforcement ring, 5
... Curing resin, 6.61.62.63 ... Inlet, 7a. 7b...Holder, 11.21...Cage-shaped body, 11a
. Figure 1 Figure 2 Figure 351 Figure

Claims (1)

【特許請求の範囲】 1)磁性材からなる円筒状継鉄の外周に磁極を形成する
永久磁石を円周方向に複数配設してなる永久磁石付き回
転子において、 円筒の外周部に前記永久磁石を位置決めして挿入する挿
入穴を円周方向に複数設けた非磁性材からなるかご状体
を前記継鉄の外周にはめ込み、このかご状体と前記挿入
穴に挿入した前記永久磁石とを前記継鉄の外周に接着剤
等で固着することを特徴とする永久磁石付き回転子。 2)磁性材からなる円筒状継鉄の外周に磁極を形成する
永久磁石を円周方向に複数配設してなる永久磁石付き回
転子において、 円筒の外周部に前記永久磁石を位置決めして挿入する挿
入穴を円周方向に複数設けた非磁性材からなるかご状体
を前記継鉄の外周にはめ込み、前記永久磁石の厚さより
前記かご状体の厚さを大きくし、このかご状体と前記挿
入穴に挿入した前記永久磁石との外側に非磁性材からな
る円筒状の補強環を嵌合して固着し、前記継鉄と前記補
強環との間の前記永久磁石の周辺に硬化性樹脂を充填す
ることを特徴とする永久磁石付き回転子。 3)円筒状継鉄の外周に着磁済みの永久磁石を配置し、
この永久磁石を囲む補強環を焼ばめして前記永久磁石を
前記継鉄の外周に固着する永久磁石付き回転子の製造方
法において、 焼ばめのために温度を上げた前記補強環の外周を着脱可
能な磁性材からなる円筒状の保持具で保持し、この保持
具で保持された前記補強環の内側に前記着磁済みの永久
磁石を仮着けした前記継鉄を挿入し、前記補強環の温度
が下って焼ばめが完了した後に、前記保持具を前記補強
環から取り外すことを特徴とする永久磁石付き回転子の
製造方法。
[Scope of Claims] 1) A rotor with permanent magnets in which a plurality of permanent magnets forming magnetic poles are arranged in the circumferential direction on the outer periphery of a cylindrical yoke made of a magnetic material, wherein the permanent magnets are arranged on the outer periphery of the cylinder. A cage-shaped body made of a non-magnetic material having a plurality of insertion holes circumferentially provided for positioning and inserting magnets is fitted onto the outer periphery of the yoke, and this cage-shaped body and the permanent magnet inserted into the insertion hole are connected. A rotor with permanent magnets, characterized in that the rotor is fixed to the outer periphery of the yoke with an adhesive or the like. 2) In a rotor with permanent magnets, which includes a plurality of permanent magnets arranged circumferentially to form magnetic poles on the outer periphery of a cylindrical yoke made of a magnetic material, the permanent magnets are positioned and inserted on the outer periphery of the cylinder. A cage-shaped body made of a non-magnetic material with a plurality of insertion holes provided in the circumferential direction is fitted onto the outer periphery of the yoke, and the thickness of the cage-shaped body is made larger than the thickness of the permanent magnet. A cylindrical reinforcing ring made of a non-magnetic material is fitted and fixed to the outside of the permanent magnet inserted into the insertion hole, and a hardening material is attached around the permanent magnet between the yoke and the reinforcing ring. A rotor with a permanent magnet characterized by being filled with resin. 3) Place a magnetized permanent magnet around the outer circumference of the cylindrical yoke,
In a method for manufacturing a rotor with a permanent magnet, in which a reinforcing ring surrounding the permanent magnet is shrink-fitted to fix the permanent magnet to the outer periphery of the yoke, the outer periphery of the reinforcing ring, which has been heated to a temperature for shrink-fitting, is The reinforcing ring is held by a removable cylindrical holder made of magnetic material, and the yoke to which the magnetized permanent magnet is temporarily attached is inserted inside the reinforcing ring held by the holder, and the reinforcing ring is A method for manufacturing a rotor with permanent magnets, characterized in that the retainer is removed from the reinforcing ring after the temperature of the retainer has decreased and shrink fitting has been completed.
JP1206106A 1988-11-01 1989-08-09 Rotor with permanent magnet and method of manufacturing the same Expired - Fee Related JP2636430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206106A JP2636430B2 (en) 1988-11-01 1989-08-09 Rotor with permanent magnet and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-142981 1988-11-01
JP14298188 1988-11-01
JP1206106A JP2636430B2 (en) 1988-11-01 1989-08-09 Rotor with permanent magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02223342A true JPH02223342A (en) 1990-09-05
JP2636430B2 JP2636430B2 (en) 1997-07-30

Family

ID=26474824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206106A Expired - Fee Related JP2636430B2 (en) 1988-11-01 1989-08-09 Rotor with permanent magnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2636430B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919173A (en) * 1986-08-22 1990-04-24 Tholander Lars H G Yarn storage and feeding device with resilient blocking belt
US5012843A (en) * 1987-06-16 1991-05-07 Ichikawa Woolen Textile Co., Ltd. Cop winding device with knot disalignment for shuttle loom
EP0774826A1 (en) * 1995-11-15 1997-05-21 Oswald Elektromotoren GmbH Synchronous motor
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor
JP2001025189A (en) * 1999-07-09 2001-01-26 Toyota Motor Corp Permanent magnet of permanent magnet rotor
WO2001017093A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Permanent magnet field small dc motor
JP2005354899A (en) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp Permanent magnet type motor
JP2007037288A (en) * 2005-07-27 2007-02-08 Meidensha Corp Rotor for permanent magnet type rotary electric machine and its manufacturing process
JP2009095200A (en) * 2007-10-12 2009-04-30 Mitsubishi Electric Corp Rotor of rotary electric machine
JP2009189096A (en) * 2008-02-04 2009-08-20 Mitsubishi Electric Corp Rotor for permanent magnet-type rotary electric machine, and method of manufacturing rotor for permanent magnet-type rotary electric machine
JP2010011611A (en) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp Permanent magnet-type rotary electric machine and power steering system
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
JP2011010439A (en) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp Rotor for permanent magnet type rotary electric machine
JP2013169103A (en) * 2012-02-16 2013-08-29 Fanuc Ltd Rotor of motor having structure for attaching magnet securely to outer peripheral surface of core, and manufacturing method thereof
US20140183777A1 (en) * 2010-08-24 2014-07-03 Dyson Technology Limited Rotor core assembly
US9755466B2 (en) 2010-08-24 2017-09-05 Dyson Technology Limited Rotor for an electrical machine
JP2022033401A (en) * 2020-08-17 2022-03-02 三菱電機株式会社 Rotor of rotary electric machine, rotary electric machine, method for manufacturing rotor of rotary electric machine, and method for manufacturing rotary electric machine
JP2022527414A (en) * 2019-04-12 2022-06-01 ヤコビ モータース エルエルシー Variable Flux Memory Motor, and How to Control a Variable Flux Motor
US12126297B2 (en) 2019-10-25 2024-10-22 Jacobi Motors LLC Methods of magnetizing and controlling a variable-flux memory motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168654U (en) * 1984-10-06 1986-05-10
JPH01114353A (en) * 1987-10-27 1989-05-08 Matsushita Electric Works Ltd Inside rotation type brushless motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168654U (en) * 1984-10-06 1986-05-10
JPH01114353A (en) * 1987-10-27 1989-05-08 Matsushita Electric Works Ltd Inside rotation type brushless motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919173A (en) * 1986-08-22 1990-04-24 Tholander Lars H G Yarn storage and feeding device with resilient blocking belt
US5012843A (en) * 1987-06-16 1991-05-07 Ichikawa Woolen Textile Co., Ltd. Cop winding device with knot disalignment for shuttle loom
EP0774826A1 (en) * 1995-11-15 1997-05-21 Oswald Elektromotoren GmbH Synchronous motor
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor
JP2001025189A (en) * 1999-07-09 2001-01-26 Toyota Motor Corp Permanent magnet of permanent magnet rotor
WO2001017093A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Permanent magnet field small dc motor
US6995488B1 (en) 1999-08-27 2006-02-07 Matsushita Electric Industrial Co., Ltd. Permanent magnet field small DC motor
JP2007037288A (en) * 2005-07-27 2007-02-08 Meidensha Corp Rotor for permanent magnet type rotary electric machine and its manufacturing process
JP2005354899A (en) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp Permanent magnet type motor
JP2009095200A (en) * 2007-10-12 2009-04-30 Mitsubishi Electric Corp Rotor of rotary electric machine
JP2009189096A (en) * 2008-02-04 2009-08-20 Mitsubishi Electric Corp Rotor for permanent magnet-type rotary electric machine, and method of manufacturing rotor for permanent magnet-type rotary electric machine
JP2010011611A (en) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp Permanent magnet-type rotary electric machine and power steering system
JP2010220440A (en) * 2009-03-18 2010-09-30 Nissan Motor Co Ltd Permanent magnet type rotary electric machine
JP2011010439A (en) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp Rotor for permanent magnet type rotary electric machine
US20140183777A1 (en) * 2010-08-24 2014-07-03 Dyson Technology Limited Rotor core assembly
US9755466B2 (en) 2010-08-24 2017-09-05 Dyson Technology Limited Rotor for an electrical machine
US10505414B2 (en) * 2010-08-24 2019-12-10 Dyson Technology Limited Rotor core assembly
US10756586B2 (en) 2010-08-24 2020-08-25 Dyson Technology Limited Rotor for an electrical machine
JP2013169103A (en) * 2012-02-16 2013-08-29 Fanuc Ltd Rotor of motor having structure for attaching magnet securely to outer peripheral surface of core, and manufacturing method thereof
US8729760B2 (en) 2012-02-16 2014-05-20 Fanuc Corporation Rotor of electric motor having structure for attaching magnet securely to outer circumferential surface of rotor core and manufacturing method thereof
JP2022527414A (en) * 2019-04-12 2022-06-01 ヤコビ モータース エルエルシー Variable Flux Memory Motor, and How to Control a Variable Flux Motor
KR20240142559A (en) 2019-04-12 2024-09-30 자코비 모터스 엘엘씨 A variable-flux memory motor and methods of controlling a variable-flux motor
US12126297B2 (en) 2019-10-25 2024-10-22 Jacobi Motors LLC Methods of magnetizing and controlling a variable-flux memory motor
JP2022033401A (en) * 2020-08-17 2022-03-02 三菱電機株式会社 Rotor of rotary electric machine, rotary electric machine, method for manufacturing rotor of rotary electric machine, and method for manufacturing rotary electric machine

Also Published As

Publication number Publication date
JP2636430B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP2636430B2 (en) Rotor with permanent magnet and method of manufacturing the same
US4625392A (en) Method of manufacturing a molded rotatable assembly for dynamoelectric machines
US7466058B2 (en) Transverse flux electrical machine with segmented core stator
US20050225190A1 (en) Rotor for brushless motor and brushless motor
JPH1189142A (en) Permanent magnet type synchronous electric motor, its manufacture and centrifugal compressor provided with the permanent magnet type synchronous electric motor
JPWO2018221008A1 (en) Rotor, rotating electric machine, and method of manufacturing rotor
JP4397466B2 (en) Permanent magnet rotating electric machine
JP7072375B2 (en) Rotor for rotating equipment and its manufacturing method
JP6135770B2 (en) Permanent magnet embedded rotary electric machine and method for manufacturing the same
JP2006034024A (en) Permanent magnet rotor of dynamo-electric machine
JP4678321B2 (en) Rotor manufacturing method and electric power steering motor
US11233430B2 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
EP3223409B1 (en) Orientation magnetization device and magnet-embedded rotor
JPH1189143A (en) Permanent magnet type rotor
JP2005312250A (en) Magnet fixing method of permanent magnet type rotating electric machine
JPS6142257A (en) Magnet rotary type motor
JPS6323543A (en) Structure of permanent magnet field type rotor
JPH08275470A (en) Rotor of permanent-magnet type electric rotating machine and manufacture thereof
JPH0698489A (en) Rotor for servo motor
TWI648939B (en) Axial gap type rotary motor
JP2003299278A (en) Rotor for rotating machine and its manufacturing method, rotating machine and gas turbine power plant
JP2000134837A (en) Synchronous motor
JP2023050322A (en) Method for manufacturing magnetic pole and method for manufacturing rotor
JP2023070691A (en) Rotator, rotator production method, and rotator-equipped rotary electric machine
JP2002238191A (en) Rotor of rotary machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees