[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0222169B2 - - Google Patents

Info

Publication number
JPH0222169B2
JPH0222169B2 JP60125971A JP12597185A JPH0222169B2 JP H0222169 B2 JPH0222169 B2 JP H0222169B2 JP 60125971 A JP60125971 A JP 60125971A JP 12597185 A JP12597185 A JP 12597185A JP H0222169 B2 JPH0222169 B2 JP H0222169B2
Authority
JP
Japan
Prior art keywords
pile
bending moment
concrete
force
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60125971A
Other languages
Japanese (ja)
Other versions
JPS62111017A (en
Inventor
Heihachi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12597185A priority Critical patent/JPS62111017A/en
Publication of JPS62111017A publication Critical patent/JPS62111017A/en
Publication of JPH0222169B2 publication Critical patent/JPH0222169B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、支持杭の外側に水平荷重用の杭と
しての外杭を設けた二重杭構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a double pile structure in which an outer pile as a horizontal load pile is provided outside the support pile.

従来の技術 従来より水平力を受ける杭基礎の頭部を剛結と
するとき、頭部に極端に他より大きい曲げモーメ
ントが生じることが知られていた。
BACKGROUND ART It has been known that when the head of a pile foundation that receives horizontal force is rigidly connected, an extremely larger bending moment is generated at the head than at the other parts.

また、施工時の打ち込みの打撃により頭部が破
損するもことも有つた。
In addition, there were cases where the head was damaged by the impact of driving during construction.

この対策として杭の外側に同心円状に上の方だ
け別の鋼管パイプを包むように設置し、この間を
適当な距離(例えば5〜10cm)離し、ここにコン
クリート又はモルタルなどを充填して、この付着
力により一体化した合成杭があつた。
As a countermeasure, install another steel pipe in a concentric circle on the outside of the pile so that only the upper part wraps around it, keep an appropriate distance between them (for example, 5 to 10 cm), and fill this with concrete or mortar. A composite pile was created that was integrated by the force of attachment.

この例として、特開昭53−67905、特公昭48−
6888がある。
Examples of this include JP-A No. 53-67905, JP-A No. 48-Sho.
There are 6888.

発明が解決しようとする課題 橋脚などの基礎に杭を使用するとき、杭群の縁
端のものは、上部構造の地震動の左右の振れによ
り最大と最小の軸力を受ける。最小のときはマイ
ナスすなわち引抜き力になることが多い。杭の頭
部、特にフーチングに接合した所は、他より極端
に大きい曲げモーメントが生じ、この曲げモーメ
ントと、の軸力の組合わせで応力度計算をす
る必要がある。
Problems to be Solved by the Invention When piles are used in the foundations of bridge piers, etc., the edges of the pile group receive the maximum and minimum axial forces due to the horizontal swing of the superstructure due to seismic motion. When it is at its minimum, it is often a negative force, that is, a pull-out force. An extremely larger bending moment occurs at the head of the pile, especially where it connects to the footing, and it is necessary to calculate the stress level based on the combination of this bending moment and the axial force.

次に図−1の参考図表について説明する。(こ
れは後記の参考文献P、56図2、22による)この
とき鉄筋量の最も多いC種の杭についてみると軸
力が0.のとき抵抗曲げモーメントは最大である。
したがつて外杭には曲げモーメントのみが作用
し、鉛直力が作用しない構造が望ましいことにな
る。
Next, the reference chart in Figure 1 will be explained. (This is based on Reference P, 56, Figure 2, 22, which will be mentioned later).If we look at the type C pile, which has the largest amount of reinforcing bars, the resistance bending moment is maximum when the axial force is 0.
Therefore, it is desirable to have a structure in which only bending moment acts on the outer pile and no vertical force acts on it.

課題を解決するための手段 この発明は上記の課題を解決するために行つた
ものであり、外杭を水平荷重用の曲げモーメント
のみに抵抗するための杭とし、内杭を鉛直荷重用
の杭とし、大きな軸力と比較的小さい曲げモーメ
ントとの組合わせ荷重に対するものにした杭構造
とするための解決策として、外杭と内杭の合成作
用すなわち一体化を無しにし、逆に非合成にする
ことにより解決した。
Means for Solving the Problems This invention was carried out to solve the above problems, and the outer pile is a pile for resisting only the bending moment for horizontal loads, and the inner pile is a pile for vertical loads. As a solution to create a pile structure that can withstand the combined load of large axial force and relatively small bending moment, we have eliminated the synthetic action, or integration, of the outer and inner piles, and conversely made them non-synthetic. It was solved by doing.

作 用 このようにして外杭は杭と土砂との表面の摩擦
力としての微少の、の軸力以外はすべて曲げ
モーメント用の部材として考えれば良く、前記の
図−1の参考図表より判断して、はるかに大きい
曲げモーメント(例えば1.5倍)に耐えられるこ
とがわかる。内杭は鉛直荷重用の杭として考え、
この杭に作用する断面変化点の曲げモーメントは
杭の頭部より離れた小さい値であり、これと、
の軸力との組合わせであるから、この抵抗力も
飛躍的に増大する。また、参考図表(図−1)よ
り軸力がのときは抵抗曲げモーメントが急激に
減少することはわかるが、本工法では土の付着力
(又は粘着力)と短い区間のコンクリートの付着
力との合計であり、この値は小さくこれ以上の
の軸力は生じることはなく、従つて抵抗曲げモー
メントが激減することもない。
Function In this way, the outer pile can be considered as a member for bending moment except for the slight axial force caused by the friction force between the surface of the pile and the earth and sand. It can be seen that it can withstand much larger bending moments (for example, 1.5 times). Think of the inner pile as a pile for vertical loads,
The bending moment at the cross-sectional change point acting on this pile is a small value far from the head of the pile, and this,
In combination with the axial force of , this resistance force also increases dramatically. Also, from the reference chart (Figure 1), it can be seen that the resistance bending moment decreases rapidly when the axial force is This value is small and no further axial force is generated, so the resistance bending moment does not decrease drastically.

なお、杭の断面計算に関する設計基準が修正改
正されても、また、他の径や種類の杭についても
参考図表(図−1)の示す全体の傾向には変わり
ないものである。
Even if the design standards regarding pile cross-sectional calculations are amended, the overall trends shown in the reference chart (Figure 1) will remain the same for other diameters and types of piles.

実施例 次に本工法の実施例を図−2,3,4を用いて
説明する。まず、杭1を作る。次にこの杭1を外
側の半径より略2〜3cm大きい内側の半径を有す
る外杭2を杭1の上部に同心円状に設置し、外杭
2を軽打または圧入する。
Example Next, an example of this construction method will be explained using Figures 2, 3, and 4. First, make stake 1. Next, an outer pile 2 having an inner radius approximately 2 to 3 cm larger than the outer radius of the pile 1 is installed concentrically on the top of the pile 1, and the outer pile 2 is tapped or press-fitted.

外杭2の長さは杭1より短くし、例えば杭1が
30mのとき10mとする。仮に地盤が30mの間一様
の土質であつても、上の方の10mを太径にすれ
ば、水平荷重に関しては全長を太径の杭にしたの
と同じ位の効果があり、土質や杭の径にもよるが
95%の以上の効果のあるのが一般的である。これ
は後記の参考文献P、57の一行目及びP、68の
2、3、4の(2)による。
The length of outer stake 2 is shorter than that of stake 1, for example, if stake 1 is
When it is 30m, it is 10m. Even if the ground is of uniform soil quality for 30m, if the top 10m is made thicker, it will have the same effect in terms of horizontal load as if the whole length is made of thicker diameter piles, and the soil quality and It depends on the diameter of the pile.
It is generally more than 95% effective. This is based on the first line of Reference P, 57 and P, 68, 2, 3, and 4 (2) below.

外杭2には定着用の鉄筋3をあらかじめ埋め込
んでおく。次に、杭1と外杭2との間に挟まつた
土砂を取り除かず、また、モルタルなどの充填材
を注入することもしない。この土砂の効果が本工
法の重要なポイントであり、次の効果の項で詳細
に説明する。
A reinforcing bar 3 for fixing is embedded in the outer pile 2 in advance. Next, the earth and sand caught between the pile 1 and the outer pile 2 are not removed, nor is filler such as mortar injected. The effect of this earth and sand is an important point of this construction method, and will be explained in detail in the next section on effects.

次に(杭1のなかの土砂の天端が低いときは吊
型枠を用い)コンクリート5を打設して図3のよ
うな杭基礎を完成する。
Next, concrete 5 is cast (using a suspended formwork when the top of the earth and sand in the pile 1 is low) to complete the pile foundation as shown in Figure 3.

発明の効果 この発明による非合成二重杭工法には次のよう
な効果がある。
Effects of the invention The non-synthetic double pile construction method according to the invention has the following effects.

1 鉛直及び水平の二種類の荷重に対して杭1及
び外杭2でほぼ分離して耐えるものである。
1 Pile 1 and outer pile 2 can withstand two types of loads, vertical and horizontal, almost separately.

すなわち二つの杭の間にある土砂の付着力及
び砕石により無収縮モルタル注入時の付着力に
近い働きがあるが、水平荷重の小さいうちは、
この力すなわち付着力等が水平荷重に比べて割
合に大きく、従つて走行荷重や風荷重では、橋
梁などの上部構造の振れは小さく、大地震のよ
うな大きな水平力並びに振動のような繰り返し
荷重に対しては、だんだん零に近ずき、杭1と
外杭2との合成効果がなくなり、従つて杭1は
鉛直荷重用の杭となり、外杭2は水平荷重用の
杭となる。
In other words, the adhesion force of the earth and sand between the two piles and the crushed stones act close to the adhesion force when pouring non-shrinkage mortar, but as long as the horizontal load is small,
This force, that is, adhesion force, etc., is relatively large compared to horizontal loads. Therefore, the swing of superstructures such as bridges is small under running loads and wind loads, but when subjected to large horizontal forces such as large earthquakes and repetitive loads such as vibrations. gradually approaches zero, and the combined effect of pile 1 and outer pile 2 disappears, so that pile 1 becomes a pile for vertical loads, and outer pile 2 becomes a pile for horizontal loads.

なお、杭1には曲げモーメントも作用する
が、この値は杭の剛結点から離れるため比較的
小さな値である。従つて杭の応力度計算におい
て曲げモーメントと、の軸力の荷重組合わ
せが低減され最終耐力が向上する。
Note that although a bending moment also acts on the pile 1, this value is relatively small because it is far from the rigid connection point of the pile. Therefore, in the pile stress calculation, the load combination of bending moment and axial force is reduced, and the ultimate strength is improved.

2 杭1と外杭2との間の土砂を取り除く作業が
ないから、その分工費が安く、従つて工期も短
くなる。
2. Since there is no work to remove the earth and sand between the pile 1 and the outer pile 2, the construction cost is lower and the construction period is accordingly shorter.

3 杭1と外杭2との間にコンクリートを充填す
るときは、この間のあきを2〜3cmと薄くする
と、コンクリートの性質上十分な強度を発揮す
ることがむずかしく、例えば10cm前後必要とな
る。このようにすると断面が急変し、応力上好
ましくない。特に外杭2がコンクリート杭の時
が顕著である。本工法は充填材の注入が無いか
らその分有利である。
3. When filling concrete between the pile 1 and the outer pile 2, if the space between them is made as thin as 2 to 3 cm, it is difficult to exhibit sufficient strength due to the nature of concrete, and for example, a gap of around 10 cm is required. If this is done, the cross section will change suddenly, which is unfavorable in terms of stress. This is particularly noticeable when the outer pile 2 is a concrete pile. This method is advantageous because it does not require the injection of filler.

4 杭1を外杭2とを非合成のままにすると、合
成にしたものに比べて断面二次モーメントすな
わち剛性が小さく、その分杭頭曲げモーメント
が小さくなる。
4 If the pile 1 and the outer pile 2 are left uncomposed, the moment of inertia of the area, that is, the rigidity, will be smaller than that of the combined pile, and the bending moment of the pile head will be correspondingly smaller.

以上のように本発明は、数々の重要な効果を有
し、構造が簡単で、施工がしやすく、その反面経
済効果が極めて高い、土木界のみならず一般社会
にあたえる影響も非常に大きい重要な発明である
と思われる。
As described above, the present invention has a number of important effects, has a simple structure, is easy to construct, has extremely high economic effects, and has a very important impact not only on the civil engineering world but also on general society. This seems to be a great invention.

(参考文献) くい構造物の計算法と計算例、横山著 山海堂
昭和52年11月発行
(References) Calculation method and calculation examples for pile structures, written by Yokoyama, published by Sankaido, November 1971.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はN−M図表、第2図は全体の説明図、
第3図は縦断面図、第4図は横断面図である 図中1……杭、2……外杭、3……鉄筋、4…
…土砂、5……コンクリートである。
Figure 1 is an N-M chart, Figure 2 is an overall explanatory diagram,
Figure 3 is a vertical cross-sectional view, and Figure 4 is a cross-sectional view.
...Earth and sand, 5...Concrete.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛直荷重用の杭1の外側に、これより短い水
平荷重用の外杭2を同心円状に設け、該外杭2に
コンクリート5に定着する鉄筋3を設け、杭1と
外杭2との間を或る距離だけ略均等に離し、ここ
にモルタルやコンクリートなどのように両者を一
体化し合成することのない土砂4を用いた非合成
二重杭工法。
1 Outside the vertical load pile 1, a shorter outer pile 2 for horizontal load is provided concentrically, and the outer pile 2 is provided with reinforcing bars 3 that are fixed to the concrete 5, and the connection between the pile 1 and the outer pile 2 is A non-synthetic double pile construction method in which the piles are spaced approximately evenly apart by a certain distance, and earth and sand 4 are used here without integrating and synthesizing the two as in mortar or concrete.
JP12597185A 1985-06-12 1985-06-12 Double-pile construction work Granted JPS62111017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12597185A JPS62111017A (en) 1985-06-12 1985-06-12 Double-pile construction work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12597185A JPS62111017A (en) 1985-06-12 1985-06-12 Double-pile construction work

Publications (2)

Publication Number Publication Date
JPS62111017A JPS62111017A (en) 1987-05-22
JPH0222169B2 true JPH0222169B2 (en) 1990-05-17

Family

ID=14923518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12597185A Granted JPS62111017A (en) 1985-06-12 1985-06-12 Double-pile construction work

Country Status (1)

Country Link
JP (1) JPS62111017A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490149B2 (en) * 2004-03-30 2010-06-23 大和ハウス工業株式会社 Strengthening method of pile driven into the ground
JP4863120B2 (en) * 2007-03-05 2012-01-25 住友金属工業株式会社 Foundation pile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367905A (en) * 1976-11-30 1978-06-16 Nippon Concrete Ind Co Ltd Method of placing concrete pile against negative friction and horizontal load
JPS5413604A (en) * 1977-07-01 1979-02-01 Kajima Corp Method of construction of closely building casing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367905A (en) * 1976-11-30 1978-06-16 Nippon Concrete Ind Co Ltd Method of placing concrete pile against negative friction and horizontal load
JPS5413604A (en) * 1977-07-01 1979-02-01 Kajima Corp Method of construction of closely building casing

Also Published As

Publication number Publication date
JPS62111017A (en) 1987-05-22

Similar Documents

Publication Publication Date Title
CN106087742A (en) A kind of suspension bridge pier-stage type prestressing force anchorage
JP3687805B2 (en) Foundation reinforcement structure of structures
CN106759423A (en) Super-large diameter pile foundation assembled dock structure and its construction method
JPH09316892A (en) Pile foundation reinforcing structure
CN210395119U (en) Face novel bridge beam supports frame that combines forever
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JPH0222169B2 (en)
KR101082765B1 (en) Method of the bridge construction which connects the steel pipe pile of abutment substituion and the precast girder with a fixation
JP2010047933A (en) Damping reinforcement frame
JP4324085B2 (en) Seismic strengthening method and seismic strengthening structure for all directions of piers in existing bridges
JP2002364004A (en) Installation method for underwater foundation
CN202265831U (en) Deep-water bridge elevated pile cap grouped pile foundation connecting structure
CN105672524B (en) Construction method without primary stress adjustable type damper embedded part
CN114016534A (en) Rock drilling anchor cable and bearing platform combined anti-seismic foundation and construction method thereof
JP3735813B2 (en) Seismic pile group structure
CN207633197U (en) Damping bridge pier
JP4113458B2 (en) Bridge structure
CN215366865U (en) Anti-overturning structure of temporary pile foundation of river-crossing pile beam type arch bridge cast-in-place support
JP3678290B2 (en) High earthquake resistance foundation
JP3707175B2 (en) Water pier structure
RU941U1 (en) Pile support
JP3884633B2 (en) Seismic control and seismic reinforcement structure for existing buildings
JP2005083149A (en) Reinforcement method for foundation and reinforcement structure of foundation
JPS62129420A (en) Reinforcing method for tank foundation ground
Mason et al. Lizzi’s Structural System Retrofit with Reticulated Internal Reinforcement Method