[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02221125A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH02221125A
JPH02221125A JP1040003A JP4000389A JPH02221125A JP H02221125 A JPH02221125 A JP H02221125A JP 1040003 A JP1040003 A JP 1040003A JP 4000389 A JP4000389 A JP 4000389A JP H02221125 A JPH02221125 A JP H02221125A
Authority
JP
Japan
Prior art keywords
superconductor
oxide
oxide superconductor
composition
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040003A
Other languages
Japanese (ja)
Inventor
Jiyun Akimitsu
秋光 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1040003A priority Critical patent/JPH02221125A/en
Publication of JPH02221125A publication Critical patent/JPH02221125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide an oxide superconductor easy to work and exhibiting sufficient superconductivity at the b.p. of liquefied He by specifying the composition of the La-Sr-Nb-O-based superconductor. CONSTITUTION:The oxide superconductor contains a multiple oxide having the composition shown by the formula, La1SrxNbyOz. In the formula, 0.3<=x<=2.0, 1.0<=y<=10.0 and 1.0<=z<=30.0. The oxides or carbonates of La, Sr and Nb are mixed as the raw material, and the mixture is heat treated at 800-1200 deg.C in a weak reducing atmosphere to produce the superconductor. The superconductor exhibits sufficient superconductivity at the b.p. (4.2K) of liquefied He and can be directly used as the thin sheet, thin wire or small member and also formed into a thin film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化物超電導体に関する。より詳細には、液
体ヘリウムの沸点(4,2K>において、充分な超電導
特性を示す酸化物超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to oxide superconductors. More specifically, the present invention relates to an oxide superconductor that exhibits sufficient superconducting properties at the boiling point of liquid helium (4,2 K>).

従来の技術 1986年末に、ベトノル’7(Bednorz)およ
びミニラー(Muller)等により、La−Ba−C
u系の従来の金属系超電導体等と比較して極めて高い臨
界温度を有する酸化物超電導体が発見されて以来、より
優れた超電導物質の探索が続けられている。1987年
に、Y=Ba−Cu系の超電導体が90にという液体窒
素温度以上の臨界温度を有していることが見出され、こ
れをもって高温超電導体の探索は一段落したかにみえた
が、科学技術庁金属材料研究所の前出等により100に
以上で超電導現象の兆候を呈するBi −5r −Ca
−Cu系の超電導体が発見されるに及んで、再び新しい
高温超電導物質を模索する試みが盛んになっている。そ
の結果、120に級の臨界温度を有するものとみられる
TI −Ba−Ca−Cu系の超電導体が、1988年
2月のヒユーストンにおけるアーカンサス(Arkan
sas)大学により発表され、注目されている。
Prior Art At the end of 1986, Bednorz and Muller et al.
Since the discovery of an oxide superconductor having an extremely high critical temperature compared to conventional U-based metallic superconductors, the search for superior superconducting materials has continued. In 1987, it was discovered that a Y=Ba-Cu superconductor has a critical temperature of 90°C, which is higher than the liquid nitrogen temperature, and with this, the search for high-temperature superconductors seemed to have come to an end. , Bi-5r-Ca exhibiting signs of superconductivity at 100 or higher
With the discovery of -Cu-based superconductors, attempts to find new high-temperature superconducting materials are once again gaining momentum. As a result, a TI-Ba-Ca-Cu superconductor, which is believed to have a critical temperature of about 120°C, was discovered in February 1988 at Hyuston in Arkansas.
sas) was announced by the university and is attracting attention.

しかしながら、酸化物超電導体における超電導機構は、
未だに解明されておらず、どのような組成の物質が高温
超電導体になるか、現在のところ予測不可能である。
However, the superconducting mechanism in oxide superconductors is
This remains to be elucidated, and it is currently impossible to predict what composition of materials will become high-temperature superconductors.

発明が解決しようとする課題 従来の酸化物超電導体は、臨界温度こそ高いが、臨界電
流密度が小さく、大きな電流が流せない。
Problems to be Solved by the Invention Conventional oxide superconductors have high critical temperatures, but have low critical current densities and cannot carry large currents.

また、可撓性に欠けているため、加工が困難であった。In addition, it was difficult to process because of its lack of flexibility.

さらに特にY−Ba−Cu−0系、La−Ba −Cu
−Q系およびLa−3r −Cu−Q系の酸化物超電導
体は、化学的に不安定であり、超電導特性が長期間維持
できない。また、Bi −3r −Ca−Cu−0系お
よびTI −Ba −Ca−Cu −0系酸化物超電導
体は、臨界温度の高い相を得るための製造条件の幅が狭
く、所望の物質がなかなか得られない。さらにT1は、
毒性が高いだけでな(、揮発性もあるため、製造設備も
特別なものを使用する必要があった。
More particularly, Y-Ba-Cu-0 system, La-Ba-Cu
-Q-based and La-3r-Cu-Q-based oxide superconductors are chemically unstable and cannot maintain superconducting properties for a long period of time. In addition, for Bi-3r-Ca-Cu-0-based and TI-Ba-Ca-Cu-0 based oxide superconductors, the range of manufacturing conditions for obtaining a phase with a high critical temperature is narrow, making it difficult to obtain the desired material. I can't get it. Furthermore, T1 is
Not only is it highly toxic, but it is also volatile, so special manufacturing equipment had to be used.

そこで、本発明の目的は、上記従来の酸化物超電導体の
問題点を解決する可能性のある、新規な超電導体を提供
することにある。
Therefore, an object of the present invention is to provide a novel superconductor that may solve the problems of the conventional oxide superconductors.

課題を解決するための手段 本発明に従うと、下記の式 %式% をそれぞれ満たす数を表す。〕 で示される組成の複合酸化物を含有することを特徴とす
る酸化物超電導体が提供される。
Means for Solving the Problems According to the present invention, % represents a number that satisfies each of the following formulas. ] There is provided an oxide superconductor characterized by containing a composite oxide having the composition shown below.

また、上記組成の複合酸化物を含有する酸化物超電導体
を製造する方法として、La、 SrおよびNbそれぞ
れの酸化物または炭酸塩を混合し、800℃〜1200
℃の温度において、弱還元雰囲気中で熱処理することを
特徴とする酸化物超電導体の製造方法が提供される。
In addition, as a method for producing an oxide superconductor containing a composite oxide having the above composition, oxides or carbonates of La, Sr, and Nb are mixed and heated at 800°C to 1200°C.
Provided is a method for producing an oxide superconductor, characterized in that heat treatment is performed in a weakly reducing atmosphere at a temperature of .degree.

作用 本発明の酸化物超電導体は、従来の酸化物超電導体には
必ず含まれていたCuを全く含まない新規な組成の複合
酸化物で構成される。本発明の酸化物超電導体の現在測
定されている臨界温度は約12にであり、冷媒として液
体ヘリウムを使用する場合、充分な超電導特性を示す。
Function The oxide superconductor of the present invention is composed of a composite oxide having a novel composition that does not contain any Cu, which is always included in conventional oxide superconductors. The currently measured critical temperature of the oxide superconductor of the present invention is about 12°C, and exhibits sufficient superconducting properties when using liquid helium as the coolant.

従来の酸化物超電導体の例から、さらに開発が進むに従
い、臨界温度が向上することも考えられる。
From the example of conventional oxide superconductors, it is conceivable that the critical temperature will increase as development progresses further.

本発明の酸化物超電導体は、従来の酸化物超電導体と全
く異なる組成であるので、従来の酸化物超電導体の諸問
題を解決する可能性がある。また、未解明の酸化物超電
導体の超電導機構の解明にも役立つ。
Since the oxide superconductor of the present invention has a composition completely different from that of conventional oxide superconductors, it has the potential to solve various problems of conventional oxide superconductors. It will also be useful in elucidating the unexplained superconducting mechanism of oxide superconductors.

本発明の酸化物超電導体は、 しa、Sr、Nb、、O□ (xSy、zは、 0.3≦x≦2.0 1.0≦y≦10.0 1.0≦2≦30.0 をそれぞれ満たす数を表す。〕 でその組成が示されるが、Xおよびyが、0.5≦x≦
1,5 1.0≦y≦9.0 を満たす場合には、さらにその超電導特性が安定して好
ましい。
The oxide superconductor of the present invention has the following characteristics: Shia, Sr, Nb, , O represents a number that satisfies .0 respectively.] The composition is shown by
1,5 If 1.0≦y≦9.0 is satisfied, the superconducting properties are more stable, which is preferable.

本発明の方法では、上記の酸化物超電導体を製造するの
に、原料としてLa、 SrおよびNbそれぞれの酸化
物または炭酸塩を用いる。具体的には、La20.、5
rO1SrCO3、NbzOs等を用いる。これらの原
料粉末を混合し、弱還元雰囲気で焼結等の熱処理を行う
。この熱処理温度を800℃以上1200℃以下とする
のは、800℃未満では原材料の反応が十分でなく超電
導体が形成されず、1200℃を超える温度では部分的
な融解や酸素の解離が起こるためである。また、弱還元
雰囲気とするのは、Nbの酸化度すなわちイオン価数を
適切な状態に調整するためである。
In the method of the present invention, oxides or carbonates of La, Sr, and Nb are used as raw materials to produce the above-mentioned oxide superconductor. Specifically, La20. , 5
rO1SrCO3, NbzOs, etc. are used. These raw material powders are mixed and subjected to heat treatment such as sintering in a weakly reducing atmosphere. The reason why this heat treatment temperature is set at 800°C or more and 1200°C or less is because if it is less than 800°C, the reaction of the raw materials will not be sufficient and a superconductor will not be formed, and if the temperature exceeds 1200°C, partial melting or dissociation of oxygen will occur. It is. Furthermore, the reason for creating a weakly reducing atmosphere is to adjust the degree of oxidation of Nb, that is, the ion valence, to an appropriate state.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

に真空封入し、炉内温度1000℃で94時間焼結した
The sample was sealed in vacuum and sintered at a furnace temperature of 1000°C for 94 hours.

各ペレットの組成を第3図に図示する。The composition of each pellet is illustrated in FIG.

第1表 実施例 本発明の方法で、本発明の酸化物超電導体を製造した。Table 1 Example The oxide superconductor of the present invention was manufactured by the method of the present invention.

原料として、La20a、SrOまたは5rCO+、N
l]20Sの各粉末をLa:Sr:Nbの比が、第1表
に示した各割合になるよう混合し、約100kg/cr
lでそれぞれペレット成形した。各ペレットを石英管中
上記の方法で作製′した焼結体のうち■■■■■にふい
て、第1図に示すように、約12に付近に電気抵抗の急
激な減少がみられ、また、第2図に示すように12.5
に程度からマイスナー効果による反磁性の信号を観測し
た。以上によって、上記の方法で作製した酸化物が超電
導体であることを確認した。
As raw materials, La20a, SrO or 5rCO+, N
l] Each powder of 20S was mixed so that the ratio of La:Sr:Nb was as shown in Table 1, and about 100kg/cr was mixed.
Each pellet was formed into a pellet using 1. Of the sintered bodies produced by the method described above, each pellet was placed in a quartz tube, and as shown in Figure 1, a sharp decrease in electrical resistance was observed around 12. Also, as shown in Figure 2, 12.5
A diamagnetic signal due to the Meissner effect was observed to a certain degree. From the above, it was confirmed that the oxide produced by the above method was a superconductor.

発明の効果 本発明に従うと、Cuを含まない新規な酸化物超電導体
およびその製造方法が提供される。本発明により得られ
る酸化物超電導体は、液体ヘリウムの沸点(4,2K)
において充分な超電導特性を示す。
Effects of the Invention According to the present invention, a novel oxide superconductor that does not contain Cu and a method for producing the same are provided. The oxide superconductor obtained by the present invention has a boiling point of liquid helium (4.2K).
It exhibits sufficient superconducting properties.

さらに、本発明に従う酸化物超電導体は、薄板材、細線
材あるいは小部品として直接使用可能なだけでなく、ス
パッタリング等により薄膜として作製することによって
各種の電子技術分野に応用することもできる。また、全
く新規な物質のため酸化物超電導体の超電導機構の解明
にも役立つ。
Furthermore, the oxide superconductor according to the present invention can not only be used directly as a thin plate material, thin wire material, or small part, but also can be applied to various electronic technology fields by being produced as a thin film by sputtering or the like. Furthermore, since it is a completely new material, it will also be useful in elucidating the superconducting mechanism of oxide superconductors.

変度化のグラフである。It is a graph of variation.

第3図は、実施例で作製した試料の組成を示す図である
FIG. 3 is a diagram showing the composition of samples prepared in Examples.

Claims (1)

【特許請求の範囲】 (1)式:La_1Sr_xNb_yO_z〔x、y、
zは、 0.3≦x≦2.0 1.0≦y≦10.0 1.0≦z≦30.0 をそれぞれ満たす数を表す。〕 で示される組成の複合酸化物を含有することを特徴とす
る酸化物超電導体。 (2)上記xおよびyが、 0.5≦x≦1.5 1.0≦y≦9.0 を満たす組成であることを特徴とする請求項(1)に記
載の酸化物超電導体。 (3)請求項(1)または(2)に記載の組成の複合酸
化物を含有する酸化物超電導体を製造する方法において
、La、SrおよびNbそれぞれの酸化物または炭酸塩
を混合し、800℃〜1200℃の温度において、弱還
元雰囲気中で熱処理することを特徴とする酸化物超電導
体の製造方法。
[Claims] Formula (1): La_1Sr_xNb_yO_z [x, y,
z represents a number that satisfies the following, respectively: 0.3≦x≦2.0, 1.0≦y≦10.0, 1.0≦z≦30.0. ] An oxide superconductor characterized by containing a composite oxide having the composition shown below. (2) The oxide superconductor according to claim (1), wherein x and y have a composition satisfying the following: 0.5≦x≦1.5 1.0≦y≦9.0. (3) In a method for manufacturing an oxide superconductor containing a composite oxide having the composition according to claim (1) or (2), oxides or carbonates of La, Sr, and Nb are mixed, 1. A method for producing an oxide superconductor, comprising heat-treating in a weakly reducing atmosphere at a temperature of 1200°C to 1200°C.
JP1040003A 1989-02-20 1989-02-20 Oxide superconductor and its production Pending JPH02221125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040003A JPH02221125A (en) 1989-02-20 1989-02-20 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040003A JPH02221125A (en) 1989-02-20 1989-02-20 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH02221125A true JPH02221125A (en) 1990-09-04

Family

ID=12568739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040003A Pending JPH02221125A (en) 1989-02-20 1989-02-20 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH02221125A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503296B1 (en) 1998-05-20 2003-01-07 Norsk Hydro Asa Membrane and use thereof
US7566411B2 (en) * 2005-10-17 2009-07-28 Lg Chem, Ltd. Composite oxides comprising strontium, lantanium, yttrium and ionic conductors using the same
US7591966B2 (en) * 2005-10-19 2009-09-22 Lg Chem, Ltd. Composite oxides comprising strontium, lantanium, tungsten and ionic conductors using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503296B1 (en) 1998-05-20 2003-01-07 Norsk Hydro Asa Membrane and use thereof
US7566411B2 (en) * 2005-10-17 2009-07-28 Lg Chem, Ltd. Composite oxides comprising strontium, lantanium, yttrium and ionic conductors using the same
US7591966B2 (en) * 2005-10-19 2009-09-22 Lg Chem, Ltd. Composite oxides comprising strontium, lantanium, tungsten and ionic conductors using the same

Similar Documents

Publication Publication Date Title
JPS63248722A (en) Device and system based on novel superconductive material
JPS63222068A (en) Device and system based on novel superconductive material
JPH0259465A (en) Production of oxide high temperature superconductor
JPH02221125A (en) Oxide superconductor and its production
KR0125876B1 (en) Method for preparing superconducting thin film
JP3219563B2 (en) Metal oxide and method for producing the same
US5444039A (en) (Hg,Pb)-Ba-Ca-Cu-O superconductor and method of manufacturing the same
JPH04357161A (en) Oxide superconductor material and its production
JP2603688B2 (en) Superconducting material reforming method
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
US5482917A (en) T1-M-Cu-O-F superconductors
JPS63274027A (en) Manufacture of superconductive material
JPH06199520A (en) Production of metal oxide and metal oxide produced by the same producing method
JP2840475B2 (en) Method for producing oxide superconducting thin film
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH02229718A (en) Oxide superconducting material and its production
JP2010070441A (en) Superconductor and method of manufacturing the same
JPH01286921A (en) Superconducting material and production thereof
JPH0717380B2 (en) Method for producing superconducting fibrous crystal
JPH03112852A (en) Oxide superconductive material
JPH0323219A (en) Oxide superconducting material
JPH01242416A (en) Production of oxide-based superconducting material
JPS63282154A (en) Production of oxide superconductor
JPH0193483A (en) Production of superconductive material
JPS63248013A (en) Manufacture of superconductive composite oxide thin film