JPH0193483A - Production of superconductive material - Google Patents
Production of superconductive materialInfo
- Publication number
- JPH0193483A JPH0193483A JP62250954A JP25095487A JPH0193483A JP H0193483 A JPH0193483 A JP H0193483A JP 62250954 A JP62250954 A JP 62250954A JP 25095487 A JP25095487 A JP 25095487A JP H0193483 A JPH0193483 A JP H0193483A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- oxygen plasma
- oxygen
- annealing
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 57
- 239000001301 oxygen Substances 0.000 claims abstract description 57
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000000137 annealing Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 27
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 4
- 150000002367 halogens Chemical class 0.000 claims abstract description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 4
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 4
- 238000010583 slow cooling Methods 0.000 claims description 16
- 238000012423 maintenance Methods 0.000 claims description 12
- -1 and one or more of O Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 4
- 239000002887 superconductor Substances 0.000 abstract 3
- 229910002480 Cu-O Inorganic materials 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0661—Processes performed after copper oxide formation, e.g. patterning
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は酸化物系超電導材料の製造方法に関する。さら
に詳しくは、低温での短時間のアニールを可能にし、超
電導材料を基板上に作成するばあいに種々の基板上に酸
化物系超電導材料を作成可能にする酸化物系超電導材料
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing oxide-based superconducting materials. More specifically, it relates to a method for manufacturing oxide-based superconducting materials that enables short-time annealing at low temperatures and enables the creation of oxide-based superconducting materials on various substrates when superconducting materials are created on substrates. .
[従来の技術]
酸化物系超電導材料を製造する方法としては、たとえば
、Las Y %Bas 5rSCuなどの金属の酸化
物などの粉末を機械的に混合して酸素雰囲気中、900
〜950℃程度まで昇温し、焼成し、徐冷することによ
り1〜10時間かけてアニールする方法(粉末法)、ま
たは、前記金属の硝酸塩などを溶媒中に溶解させたのち
、しゅう酸などを添加してえた沈澱物を酸素雰囲気中、
800〜950℃程度まで昇温し、焼成し、徐冷するこ
とにより1〜10時間かけてアニールする方法(共沈法
)などが従来において一般に知られている。[Prior Art] As a method for producing oxide-based superconducting materials, for example, powders of metal oxides such as Las Y %Bas 5rSCu are mechanically mixed and heated at 900% in an oxygen atmosphere.
A method of annealing for 1 to 10 hours by raising the temperature to ~950°C, firing, and slow cooling (powder method), or a method in which nitrates of the metals mentioned above are dissolved in a solvent, and then oxalic acid, etc. The precipitate obtained by adding
Conventionally, a method (co-precipitation method) is generally known in which the temperature is raised to about 800 to 950° C., fired, and then annealed for 1 to 10 hours by slow cooling.
また、酸化物系超電導材料をたとえば薄膜の形で基板上
に形成する方法としては、前記のごとき金属の酸化物な
どを混合・成形したものをターゲットとしてスパッタリ
ングし、そののち、酸素雰囲気中で800〜950℃程
度に加熱し、温度維持し、徐冷することによって1.5
〜5時間かけてアニールするという方法などが知られて
いる。In addition, as a method for forming an oxide-based superconducting material on a substrate in the form of a thin film, for example, sputtering is performed using a mixture and molded material of the metal oxides as mentioned above as a target, and then sputtering is performed in an oxygen atmosphere for 800 min. 1.5 by heating to around 950℃, maintaining the temperature, and slowly cooling.
A method of annealing for ~5 hours is known.
[発明が解決しようとする問題点]
しかしながら、前記の方法では緻密な酸化物系超電導材
料かえられに<<、そのため、臨界電流密度の低いもの
しかえられにくいという問題や、均質な超電導層かえら
れにくいという問題がある。[Problems to be Solved by the Invention] However, with the above method, it is difficult to replace dense oxide-based superconducting materials, and therefore it is difficult to obtain only materials with low critical current density, and it is difficult to replace homogeneous superconducting layers. The problem is that it is difficult to
さらに、酸化物系超電導材料をたとえば薄膜の形で基板
上に作成するばあい、前述のごとくアニール時にたとえ
ば900℃という高温に加熱する必要があり、そのよう
な高温に基因する基板反応性の低下および熱膨張係数の
不一致による応力の問題を低減させるために、基板材料
としてはペロブスカイト型の5rTiOs 、YSZ
(イツトリア安定化、ジルコニア)などの高価な材料
しか用いることができないという問題もある。Furthermore, when creating an oxide superconducting material in the form of a thin film on a substrate, it is necessary to heat it to a high temperature of, for example, 900°C during annealing, as described above, and the substrate reactivity decreases due to such high temperatures. In order to reduce stress problems due to thermal expansion coefficient mismatch, the substrate materials are perovskite-type 5rTiOs, YSZ
Another problem is that only expensive materials such as (Ittria stabilized, zirconia) can be used.
本発明は低温での短時間のアニールによって緻密な酸化
物系超電導材料をうろことを可能にし、酸化物系超電導
材料を基板上に作成するばあいに種々の基板の使用を可
能にする酸化物系超電導材料の製造方法を提供すること
を目的とする。The present invention makes it possible to scale dense oxide-based superconducting materials by short-time annealing at low temperatures, and enables the use of various substrates when creating oxide-based superconducting materials on substrates. The purpose of the present invention is to provide a method for manufacturing superconducting materials.
[問題点を解決するための手段] 本発明はCas Sr、Baの1種以上の元素と、Y。[Means for solving problems] The present invention includes one or more elements of Cas, Sr, and Ba, and Y.
ランタニドの1種以上の元素と、Cus AJ % F
eの1種以上の元素と、0、ハロゲン、IIの1種以上
の元素とを含ものを酸素プラズマを温度維持工程および
(または)徐冷工程に用いてアニールする酸化物系超電
導材料の製造方法に関する。One or more lanthanide elements and Cus AJ % F
Production of an oxide-based superconducting material by annealing a material containing one or more elements of e and one or more elements of 0, halogen, and II using oxygen plasma in a temperature maintenance step and/or slow cooling step. Regarding the method.
なお、本明細書においてアニールとは、昇温し、温度維
持し、徐冷することを意味し、従来の酸化物系超電導材
料の製造における焼成・徐冷を含む概念である。Note that in this specification, annealing means raising the temperature, maintaining the temperature, and slow cooling, and is a concept that includes firing and slow cooling in the production of conventional oxide-based superconducting materials.
[実施例]
本発明に用いるCa−、Srs Baの1種以上の元素
と、Y1ランタニドの1種以上の元素と、Cu sMI
SFeのIF1i以上の元素と、0、ハロゲン、11
の1種以上の元素とを含むものにはとくに限定はなく、
酸化することによって酸化物系超電導材料となりうるち
のであれば用いることができる。[Example] One or more elements of Ca- and Srs Ba used in the present invention, one or more elements of Y1 lanthanide, and Cu sMI
SFe IF1i or higher elements, 0, halogen, 11
There are no particular limitations on those containing one or more elements,
Any material that can become an oxide-based superconducting material by oxidation can be used.
このようなものの例としては、たとえば、La−3r−
Cu−0系、La−Ca−Cu−0系、Y−Ba−Cu
−0系、Y−Ba−3r−Cu−0系、Er−Ba−C
u−0系、Yb−Ba−Cu−0系などの酸化物、Y−
Ba−Cu−F系、Y−Ba−/V−F系、Y−Ba−
Cu−0−11系、Y−Ba−Cu−0−Ca系などの
化合物、前記各元素を混合し固めたもの、前記各元素の
酸化物を混合し固めたものなどがあげられる。Examples of such things include, for example, La-3r-
Cu-0 series, La-Ca-Cu-0 series, Y-Ba-Cu
-0 series, Y-Ba-3r-Cu-0 series, Er-Ba-C
Oxides such as u-0 series, Yb-Ba-Cu-0 series, Y-
Ba-Cu-F system, Y-Ba-/V-F system, Y-Ba-
Examples include compounds such as Cu-0-11 series and Y-Ba-Cu-0-Ca series, compounds obtained by mixing and solidifying each of the above-mentioned elements, and compounds obtained by mixing and solidifying oxides of each of the above-mentioned elements.
前記各元素を含むものは、要すれば成形され、または薄
膜化されたのち酸素プラズマを少なくとも一部に用いて
アニールされ、良好な超電導特性を有する酸化物系超電
導材料が製造される。The material containing each of the above elements is molded or made into a thin film, if necessary, and then annealed using oxygen plasma at least in part to produce an oxide-based superconducting material having good superconducting properties.
前記成形の方法や圧力にもとくに限定はなく、たとえば
プレスを用いて10kg / cJ G程度で成形され
る。There are no particular limitations on the molding method or pressure, and for example, molding is performed using a press at a pressure of about 10 kg/cJ G.
本発明に用いる酸素プラズマは、酸素の存在下で高周波
またはDC放電によって形成される。The oxygen plasma used in the present invention is formed by high frequency or DC discharge in the presence of oxygen.
前記酸素プラズマにおいては酸素は酸素ラジカルおよび
酸素イオンの形で存在する。酸素ラジカル密度は放電パ
ワーに依存するため制御可能であり、えられる酸化物系
超電導材料の構造の均質さや緻密さに影響を与え、所要
アニール温度や所要アニール時間に影響を与える。本発
明における酸素ラジカル密度は、酸素ラジカルが充分に
存在し酸素ラジカルが供給律速にならないという状態に
なり低温かつ短時間でアニールできるようになる点で1
O1OcI11−3以上であるのが好ましく、さらには
10’c111−3が好ましい。In the oxygen plasma, oxygen exists in the form of oxygen radicals and oxygen ions. Oxygen radical density can be controlled because it depends on the discharge power, and it affects the homogeneity and density of the structure of the resulting oxide-based superconducting material, and affects the required annealing temperature and time. The oxygen radical density in the present invention is 1 in that there are sufficient oxygen radicals and the oxygen radicals do not become rate-limiting in supply, making it possible to anneal at low temperatures and in a short time.
It is preferably O1OcI11-3 or more, and more preferably 10'c111-3.
また、前記酸素プラズマ中のイオンエネルギーは放電パ
ワーおよび外部バイアスによって制御可能であり、えら
れる酸化物系超電導特性に影響を与える。本発明におい
て、良好な超電導を実現させるイオンエネルギー値は、
アニールされる酸化物の重量(とくに厚さ)などの条件
に応じた最適値を有し、一般には100eV以下である
ことが好ましく、さらには30eV以下が好ましい。Moreover, the ion energy in the oxygen plasma can be controlled by discharge power and external bias, and affects the obtained oxide-based superconducting properties. In the present invention, the ion energy value that realizes good superconductivity is
It has an optimum value depending on conditions such as the weight (especially thickness) of the oxide to be annealed, and is generally preferably 100 eV or less, more preferably 30 eV or less.
かかる酸素プラズマの発生に使用される前記高周波また
はDC放電の具体例としては、(ωECR放電、市磁場
を用いたRP放電、DC放電、DC−RF混合励起放電
、(C)圧力5 Torr以上でのRF放電、DC放電
、MW放電が好ましい。Specific examples of the high frequency or DC discharge used to generate such oxygen plasma include (ωECR discharge, RP discharge using a commercial magnetic field, DC discharge, DC-RF mixed excitation discharge, (C) at a pressure of 5 Torr or more). RF discharge, DC discharge, and MW discharge are preferred.
第2図は本発明に用いる酸素プラズマ発生装置の一例を
示すグラフであり、示された装置は圧力5〜200To
rr 、RPパワー150〜1kWでの使用に適してお
り、前記磁場を用いたRF放電および圧力5 Torr
以上でのRF放電を利用したものである。第2図におい
て(21)は試料、のはマグネット、のはRP発生部で
ある。FIG. 2 is a graph showing an example of an oxygen plasma generator used in the present invention.
rr, suitable for use with RP power 150-1 kW, RF discharge with said magnetic field and pressure 5 Torr
This utilizes the RF discharge described above. In FIG. 2, (21) is a sample, (21) is a magnet, and (21) is an RP generating part.
第3図は本発明に用いる酸素プラズマ発生装置の別の例
を示すグラフであり、示された装置は前記圧力5 To
rr以上でのMW放電を利用したものである。第3図に
おいて(31)は試料、(32)は石英管、(33)は
マイクロ波発生部である。FIG. 3 is a graph showing another example of the oxygen plasma generating device used in the present invention, and the shown device has the above-mentioned pressure 5 To
This utilizes MW discharge at rr or higher. In FIG. 3, (31) is a sample, (32) is a quartz tube, and (33) is a microwave generator.
酸素プラズマは前記温度維持工程、徐冷工程のいずれの
工程において適用してもよく、両工程に適用してもよい
。とくに、温度維持工程に適用したばあいには通常のア
ニールに比べ維持温度を低く、かつ維持時間を短かくで
き、徐冷工程に適用したばあいには通常のアニールに比
べ冷却速度を大きくすることができる。Oxygen plasma may be applied to either the temperature maintenance step or the slow cooling step, or may be applied to both steps. In particular, when applied to a temperature maintenance process, the maintenance temperature can be lowered and the maintenance time can be shortened compared to normal annealing, and when applied to a slow cooling process, the cooling rate can be increased compared to normal annealing. be able to.
酸素プラズマを用いてアニールする温度は試料の種類や
前記酸素ラジカル密度、酸素イオンエネルギーなどによ
って異なるが一般に200〜900℃である。また要す
る時間は試料の厚さや前記酸素ラジカル密度、酸素イオ
ンエネルギーなどによって異なるが一般に0.1〜2時
間程度であり、たとえば厚さ2mmの円板上焼結体のば
あいは1時間程度温度維持し、0.5時間程度かけて徐
冷すればよい。これは、従来の方法によって酸化物系超
電導材料を作成する際にアニールに要する時間の約17
5に相等する。The temperature for annealing using oxygen plasma varies depending on the type of sample, the oxygen radical density, oxygen ion energy, etc., but is generally 200 to 900°C. The time required varies depending on the thickness of the sample, the oxygen radical density, oxygen ion energy, etc., but is generally about 0.1 to 2 hours. For example, in the case of a 2 mm thick disk-shaped sintered body, the temperature It is sufficient to maintain the temperature and slowly cool it over about 0.5 hours. This is approximately 17 times longer than the time required for annealing when creating oxide-based superconducting materials by conventional methods.
Equivalent to 5.
なお、本発明における酸素プラズマによるアニールの回
数にはとくに限定はない。Note that there is no particular limitation on the number of times of annealing using oxygen plasma in the present invention.
かかるアニールによって密度の向上した緻密な酸化物系
超電導材料かえられ、とくに、酸素ラジカル密度や酸素
イオンエネルギーを前述のように制御することにより臨
界電流密度(」C)が従来の酸素雰囲気中のアニールに
よるものの値に比べたとえば1桁〜2桁程度向上し、さ
らに、電気抵抗率−温度曲線が急峻になる。Through such annealing, a dense oxide-based superconducting material with improved density can be obtained. In particular, by controlling the oxygen radical density and oxygen ion energy as described above, the critical current density ('C) can be lowered compared to conventional annealing in an oxygen atmosphere. The electrical resistivity-temperature curve is improved by, for example, one to two orders of magnitude compared to the value obtained by the method.
また、アニールの温度が従来に比べ低くてすむため、基
板上に酸化物系超電導材料を形成するばあい、従来のご
とき高温に起因する基板反応性の低下および熱膨張係数
の不一致による応力の問題が緩和され、使用できる基板
の種類が広がる。In addition, since the annealing temperature is lower than conventional methods, when forming oxide-based superconducting materials on a substrate, there are problems with reduced substrate reactivity and stress due to mismatch in thermal expansion coefficients caused by conventional high temperatures. This eases the problem and expands the types of substrates that can be used.
つぎに本発明の方法を実施例に基づいて説明する。Next, the method of the present invention will be explained based on examples.
実施例1〜3および比較例1
一般に知られている粉末法により、Y2O3、BaCO
3およびCuOをY/Ba/Cuの原子比が1/2/3
となるように混合・形成し、第2図に示す装置にセット
し、磁場を用いたRF放電を起こし酸素プラズマ中で9
00℃、1時間温度維持し、酸素プラズマ中で1時間か
けて徐冷することによりアニールを行ない、実施例1の
サンプルをえた。Examples 1 to 3 and Comparative Example 1 Y2O3, BaCO
3 and CuO with an atomic ratio of Y/Ba/Cu of 1/2/3
It is mixed and formed so that
The sample of Example 1 was obtained by maintaining the temperature at 00° C. for 1 hour and slowly cooling it in oxygen plasma for 1 hour.
温度維持時の酸素プラズマ条件としては、02ガス流量
が11005CC、RFパワーが500W 、反応圧力
が100Torr、磁場強度が600ガウスであり、基
板温度は外部加熱により 900℃とした。ラジカル滴
定法により測定した酸素ラジカル密度は1014Ca+
−’であり、イオンエネルギーアナライザーにより測定
した平均イオンエネルギーは50eV以下であった。The oxygen plasma conditions during temperature maintenance were as follows: 02 gas flow rate was 11005 cc, RF power was 500 W, reaction pressure was 100 Torr, magnetic field strength was 600 Gauss, and the substrate temperature was 900° C. by external heating. The oxygen radical density measured by radical titration method is 1014Ca+
-', and the average ion energy measured by an ion energy analyzer was 50 eV or less.
徐冷中の酸素プラズマ条件は、RPパワーをアニール終
了時にオフとし、基板温度をアニール終了時に400℃
となるように徐々に下げた以外は、前記温度維持時と同
様であった。The oxygen plasma conditions during slow cooling are as follows: RP power is turned off at the end of annealing, and the substrate temperature is set at 400°C at the end of annealing.
It was the same as when the temperature was maintained, except that the temperature was gradually lowered so that the temperature was maintained.
酸素プラズマを用いたアニールを行なわず950℃、酸
素雰囲気中で5時間焼結反応を行ない、酸素雰囲気中で
5時間かけて常温にまで徐冷した以外は実施例1と同様
にして比較例1のサンプルをえた。Comparative Example 1 was carried out in the same manner as in Example 1, except that the sintering reaction was carried out at 950° C. in an oxygen atmosphere for 5 hours without annealing using oxygen plasma, and then slowly cooled to room temperature over 5 hours in an oxygen atmosphere. I got a sample of
実施例1および比較例1の抵抗率の温度依存性を第1図
に示す。第1図において曲線Aは実施例1、曲線Bは比
較例1の特性を示す。FIG. 1 shows the temperature dependence of resistivity in Example 1 and Comparative Example 1. In FIG. 1, curve A shows the characteristics of Example 1, and curve B shows the characteristics of Comparative Example 1.
第1図より、実施例1のサンプルは比較例1のものに比
べ電流値の立ち上がりが急峻になり臨界温度が高くなっ
ていることがわかる。From FIG. 1, it can be seen that the sample of Example 1 has a steeper rise in current value and a higher critical temperature than that of Comparative Example 1.
また定電流源の電流値を変化させることにより測定した
80Kにおける臨界電流密度(Jc)は、実施例1では
約10’ A/CI@%比較例1では約102A/cj
であり、2桁の向上がみられた。In addition, the critical current density (Jc) at 80K measured by changing the current value of the constant current source was approximately 10' A/CI@% in Example 1 and approximately 102 A/cj in Comparative Example 1.
, a two-digit improvement was seen.
さらに、温度維持工程のみに酸素プラズマを用い、徐冷
工程は酸素雰囲気中で3時間かけてアニールした以外は
実施例1と同様にして実施例2のサンプル、徐冷工程の
みに酸素プラズマを用い温度維持工程は酸素雰囲気中9
00℃で1時間かけてアニールした以外は実施例1と同
様にして実施例3のサンプルをえた。Furthermore, the sample of Example 2 was prepared in the same manner as in Example 1, except that oxygen plasma was used only in the temperature maintenance process, and the slow cooling process was annealed in an oxygen atmosphere for 3 hours, and oxygen plasma was used only in the slow cooling process. Temperature maintenance process is in oxygen atmosphere9
A sample of Example 3 was obtained in the same manner as Example 1 except that the sample was annealed at 00° C. for 1 hour.
室温における電気抵抗率は、実施例2では約40 mΩ
Cff1.実施例3では約50 mΩ備であった。The electrical resistivity at room temperature is approximately 40 mΩ in Example 2.
Cff1. In Example 3, it was approximately 50 mΩ.
電気抵抗率が0になる温度(Tc)は、実施例2では約
85に1実施例3でも約85にであった。The temperature (Tc) at which the electrical resistivity becomes 0 was about 85 in Example 2, and about 85 in Example 3.
また、80Kにおける臨界電流密度(Jc)は、実施例
2では5 X 103A/cd、実施例3では、103
A/cdであった。In addition, the critical current density (Jc) at 80K is 5 x 103 A/cd in Example 2, and 103 A/cd in Example 3.
It was A/cd.
実施例4〜8および比較例2〜4
焼結法により、Y2O3、BaCO3およびCuOをY
/Ba/Cuの原子比が115/9となるように混合・
成形したものをターゲットとしてスパッタリング法にて
5rTIOi基板上、M2O3基板上および単結晶81
基板上にそれぞれ酸化物膜を蒸着した。スパッタリング
条件はRFパワー500ν、磁場強度400Gauss
、基板温度300℃、圧力1 mTorr %02/A
r比0.2であった。Examples 4 to 8 and Comparative Examples 2 to 4 Y2O3, BaCO3, and CuO were converted to Y by sintering method.
/Ba/Cu so that the atomic ratio is 115/9.
Using the molded product as a target, sputtering was performed on a 5rTIOi substrate, an M2O3 substrate, and a single crystal 81.
An oxide film was deposited on each substrate. Sputtering conditions are RF power 500ν, magnetic field strength 400 Gauss.
, substrate temperature 300°C, pressure 1 mTorr %02/A
The r ratio was 0.2.
5rT103基板上、M2O3基板上および単結晶31
基板上に形成された酸化物膜を第3図に示す装置を用い
て酸素プラズマ中で600℃で30分間温度維持し、1
0分かけて徐冷することによりアニールを行ない、それ
ぞれ実施例4、実施例5および実施例6のサンプルをえ
た。On 5rT103 substrate, on M2O3 substrate and single crystal 31
The oxide film formed on the substrate was maintained at 600°C for 30 minutes in oxygen plasma using the apparatus shown in Figure 3.
Annealing was performed by slow cooling for 0 minutes to obtain samples of Example 4, Example 5, and Example 6, respectively.
温度維持時の酸素プラズマ条件としては、02ガス流量
が11005CC、マイクロ波パワーが500貰、圧力
が100Torrであり、基板温度は外部加熱により
800℃とした。ラジカル滴定法により測定した酸素ラ
ジカル密度は10’C11−’であり、イオンエネルギ
ーアナライザーにより測定した平均イオンエネルギーは
30ev以下であった。The oxygen plasma conditions during temperature maintenance are as follows: 02 gas flow rate is 11005 CC, microwave power is 500 CC, pressure is 100 Torr, and the substrate temperature is maintained by external heating.
The temperature was 800°C. The oxygen radical density measured by radical titration was 10'C11-', and the average ion energy measured by an ion energy analyzer was 30 ev or less.
徐冷中の酸素プラズマ条件は、マイクロ波パワーをアニ
ール終了時にオフとし、基板温度をアニール終了時に4
00℃となるように徐々に下げた以外は、前記温度維持
時と同様であった酸素プラズマを用いたアニールを行な
わず、酸素濃度20vo1%の酸素雰囲気中で、900
℃で1時間温度維持し、2時間かけて徐冷してアニール
した以外は、実施例4、実施例5および実施例6と同様
にして、それぞれ比較例2、比較例3および比較例4の
サンプルをえた。The oxygen plasma conditions during slow cooling are such that the microwave power is turned off at the end of annealing, and the substrate temperature is set to 4.
The temperature was maintained at 900 °C in an oxygen atmosphere with an oxygen concentration of 20 VO 1%, except that the temperature was gradually lowered to 00 °C.
Comparative Example 2, Comparative Example 3, and Comparative Example 4 were prepared in the same manner as in Example 4, Example 5, and Example 6, except that the temperature was maintained at ℃ for 1 hour and annealed by slow cooling over 2 hours. I got a sample.
室温における電気抵抗率は、実施例4゛では約15Il
ΩCff1、実施例5では約20 taQ備、実施例6
では約401000口、比較例2では約20+oQam
であり、比較例3.および比較例4ではいずれも100
備以上であった。The electrical resistivity at room temperature is approximately 15Il in Example 4.
ΩCff1, about 20 taQ in Example 5, Example 6
In this case, it is about 401,000 units, and in Comparative Example 2, it is about 20+oQam.
Comparative example 3. and Comparative Example 4, both 100
It was more than prepared.
電気抵抗率が0になる温度(Tc)は、実施例4では9
5に5実施例5では70に1実施例6では50に、比較
例2では92にであり、比較例3および比較例4ではい
ずれも温度を下げても電気抵抗率は0にならなかった。The temperature (Tc) at which the electrical resistivity becomes 0 is 9 in Example 4.
5 to 5 In Example 5, it was 70 to 1. In Example 6, it was 50. In Comparative Example 2, it was 92. In both Comparative Example 3 and Comparative Example 4, the electrical resistivity did not become 0 even when the temperature was lowered. .
また、40Kにおける臨界電流密度(Jc)は、実施例
4では105〜106Alcシ、実施例5では、約10
5A / c+1、実施例6では約105A/cd、比
較例2では105〜156A/cjであった。In addition, the critical current density (Jc) at 40K is 105 to 106Alc in Example 4, and approximately 10 to 106Alc in Example 5.
5 A/c+1, about 105 A/cd in Example 6, and 105 to 156 A/cj in Comparative Example 2.
さらに、温度維持工程のみに酸素プラズマを用い、徐冷
工程は比較例1と同様にしてアニールした以外は実施例
4と同様にして実施例7のサンプル、徐冷工程のみに酸
素プラズマを用い、温度維持工程は比較例2と同様にし
てアニールした以外は実施例4と同様にして実施例8の
サンプルをえた。Further, the sample of Example 7 was prepared in the same manner as in Example 4, except that oxygen plasma was used only in the temperature maintenance step, and annealing was performed in the slow cooling step in the same manner as in Comparative Example 1. Oxygen plasma was used only in the slow cooling step. A sample of Example 8 was obtained in the same manner as in Example 4, except that the temperature maintenance step was the same as in Comparative Example 2, and annealing was performed.
室温における電気抵抗率は、実施例7では約1511I
Qca、実施例8では約20 mΩCHIであった。The electrical resistivity at room temperature is approximately 1511I in Example 7.
Qca was approximately 20 mΩCHI in Example 8.
電気抵抗率がOになる温度(Tc)は、実施例7では9
3に1実施例8では90にであった。The temperature (Tc) at which the electrical resistivity becomes O is 9 in Example 7.
In Example 8, it was 90.
また、40Kにおける臨界電流密度(」C)は、実施例
7では105〜106A / cj、実施例8では、約
to5A/c−であった。Further, the critical current density ('C) at 40K was 105 to 106 A/cj in Example 7, and about to5A/c- in Example 8.
このように酸素プラズマを用いてアニールすることで酸
化物系超電導材料を製造することができる。An oxide-based superconducting material can be manufactured by annealing using oxygen plasma in this manner.
また、本発明の方法によって低温でアニール可能となっ
たことで、M2O3基板上や81基板上にも酸化物系超
電導材料を形成することができる。Furthermore, since the method of the present invention enables annealing at low temperatures, oxide-based superconducting materials can also be formed on M2O3 substrates and 81 substrates.
[発明の効果]
酸素プラズマ中でアニールする本発明の方法により、緻
密でストイキオメトリ−のすぐれた酸化物系超電導材料
かえられるため、短時間のアニールで単一の結晶構造の
酸化物系超電導材料かえられ、臨界温度(Tc)近傍で
の抵抗率の温度依存性が急峻になり、臨界温度(Tc)
が上昇し、臨界電流密度(Je)が増大する。さらに低
温でのアニールを可、能にするので、薄膜状超電導材料
作成の際に使用可能な基板の種類が広がる。[Effects of the Invention] The method of the present invention, which involves annealing in oxygen plasma, changes the oxide-based superconducting material which is dense and has excellent stoichiometry. As the material is changed, the temperature dependence of resistivity near the critical temperature (Tc) becomes steeper, and the critical temperature (Tc)
increases, and the critical current density (Je) increases. Furthermore, since it enables annealing at low temperatures, the types of substrates that can be used when producing thin film superconducting materials are expanded.
第1図は本発明の実施例1および比較例1でえられた酸
化物系超電導材料の抵抗率の温度依存性を示すグラフ、
第2図は本発明に用いる酸素プラズマ発生装置の一例を
示す説明図、第3図は本発明に用いる酸素プラズマ発生
装置の別の例を示す説明図である。FIG. 1 is a graph showing the temperature dependence of the resistivity of the oxide-based superconducting materials obtained in Example 1 of the present invention and Comparative Example 1;
FIG. 2 is an explanatory diagram showing one example of the oxygen plasma generating device used in the present invention, and FIG. 3 is an explanatory diagram showing another example of the oxygen plasma generating device used in the present invention.
(図面の符号) (21)、(31):試料 +221.マグネット (23:高周波発生部 (32) :石英管 (33) :マイクロ波発生部 特許出願人 鐘淵化学工業株式会社 第1 回(Drawing code) (21), (31): Sample +221. magnet (23: High frequency generation section (32): Quartz tube (33): Microwave generator Patent applicant Kanebuchi Chemical Industry Co., Ltd. 1st time
Claims (1)
ニドの1種以上の元素と、Cu、Al、Feの1種以上
の元素と、O、ハロゲン、Hの1種以上の元素とを含む
ものを酸素プラズマを温度維持工程および(または)徐
冷工程に用いてアニールする酸化物系超電導材料の製造
方法。 2 酸素プラズマの酸素ラジカル密度が10^1^0c
m^−^3以上である特許請求の範囲第1項記載の方法
。 3 酸素プラズマ中の平均イオンエネルギーが100e
V以下である特許請求の範囲第1項記載の方法。[Scope of Claims] 1 One or more elements of Ca, Sr, and Ba, one or more elements of Y and lanthanides, one or more elements of Cu, Al, and Fe, and one or more of O, halogen, and H. A method for producing an oxide-based superconducting material, which comprises annealing a material containing one or more types of elements using oxygen plasma in a temperature maintenance step and/or slow cooling step. 2 The oxygen radical density of oxygen plasma is 10^1^0c
2. The method according to claim 1, wherein the particle size is m^-^3 or more. 3 The average ion energy in oxygen plasma is 100e
2. The method according to claim 1, wherein V or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62250954A JPH0193483A (en) | 1987-10-05 | 1987-10-05 | Production of superconductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62250954A JPH0193483A (en) | 1987-10-05 | 1987-10-05 | Production of superconductive material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0193483A true JPH0193483A (en) | 1989-04-12 |
Family
ID=17215479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62250954A Pending JPH0193483A (en) | 1987-10-05 | 1987-10-05 | Production of superconductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0193483A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452686A (en) * | 1987-08-24 | 1989-02-28 | Mitsubishi Electric Corp | Aftertreatment of oxide-based superconducting material |
JPS6457684A (en) * | 1987-08-28 | 1989-03-03 | Hitachi Ltd | Formation of superconducting thin film |
JPS6465004A (en) * | 1987-05-18 | 1989-03-10 | Sumitomo Electric Industries | Method for modifying superconductive material |
JPS6472981A (en) * | 1987-09-12 | 1989-03-17 | Toshiba Corp | Production of oxide superconductor |
JPS6472958A (en) * | 1987-09-16 | 1989-03-17 | Nat Inst Res Inorganic Mat | Formation of thick superconductive ceramic film |
JPH01133971A (en) * | 1987-08-07 | 1989-05-26 | Hitachi Ltd | Production of superconducting material |
-
1987
- 1987-10-05 JP JP62250954A patent/JPH0193483A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465004A (en) * | 1987-05-18 | 1989-03-10 | Sumitomo Electric Industries | Method for modifying superconductive material |
JPH01133971A (en) * | 1987-08-07 | 1989-05-26 | Hitachi Ltd | Production of superconducting material |
JPS6452686A (en) * | 1987-08-24 | 1989-02-28 | Mitsubishi Electric Corp | Aftertreatment of oxide-based superconducting material |
JPS6457684A (en) * | 1987-08-28 | 1989-03-03 | Hitachi Ltd | Formation of superconducting thin film |
JPS6472981A (en) * | 1987-09-12 | 1989-03-17 | Toshiba Corp | Production of oxide superconductor |
JPS6472958A (en) * | 1987-09-16 | 1989-03-17 | Nat Inst Res Inorganic Mat | Formation of thick superconductive ceramic film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2671916B2 (en) | Method for manufacturing superconductor and method for manufacturing superconducting circuit | |
JPH0825742B2 (en) | How to make superconducting material | |
JPS63310515A (en) | Manufacture of superconductor membrane | |
JPH0193483A (en) | Production of superconductive material | |
EP0349341A2 (en) | Method of improving and/or producing oxide superconductor | |
JP2713343B2 (en) | Superconducting circuit fabrication method | |
US5716909A (en) | Process for increasing the pinning force of superconducting Bi-Sr-Ca-Cu-O ceramic moldings | |
JP2603688B2 (en) | Superconducting material reforming method | |
US5270292A (en) | Method for the formation of high temperature semiconductors | |
JPS63301424A (en) | Manufacture of oxide superconductor membrane | |
JPH02221125A (en) | Oxide superconductor and its production | |
JPH0193484A (en) | Production of superconductive material | |
JP2514685B2 (en) | Superconducting material and manufacturing method thereof | |
JPH01208360A (en) | Production of superconductor | |
JPH0764678B2 (en) | Method for producing superconducting thin film | |
JPH01203258A (en) | Production of oxide superconducting sintered body | |
JPH02102123A (en) | Production of superconductor | |
JP2525852B2 (en) | Preparation method of superconducting thin film | |
JPH01201008A (en) | Production of thin film of oxide superconductor | |
JPH02258665A (en) | Production of superconductive material | |
JPS63274620A (en) | Preparation of superconductive material | |
JPH01133971A (en) | Production of superconducting material | |
JPH01239004A (en) | Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor | |
JPS63257127A (en) | Manufacture of thin film superconductor | |
JPH06287100A (en) | Formation of thin oxide superconducting film containing rare earth element |