[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0222844A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0222844A
JPH0222844A JP17321988A JP17321988A JPH0222844A JP H0222844 A JPH0222844 A JP H0222844A JP 17321988 A JP17321988 A JP 17321988A JP 17321988 A JP17321988 A JP 17321988A JP H0222844 A JPH0222844 A JP H0222844A
Authority
JP
Japan
Prior art keywords
film
layer
electrode wiring
thickness
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17321988A
Other languages
Japanese (ja)
Inventor
Michio Komatsu
小松 理夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17321988A priority Critical patent/JPH0222844A/en
Publication of JPH0222844A publication Critical patent/JPH0222844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a large-scale and highly integrated semiconductor integrated circuit by a method wherein a corner at the upper part of an electrode wiring part is removed to about a half of a film thickness and a taper is formed in order to enhance a covering property of an interlayer insulating film formed on it and an upper-layer wiring part. CONSTITUTION:When a two-layer wiring part is formed on 1 field oxide film 12 on a silicon substrate 11, a cross-sectional structure of a first-layer Al electrode wiring part 13 is shaped to be a shape that corners at the upper part of a rectangle have been removed. When a thickness of the first-layer Al electrode wiring part is about 0.6mum, it is good that a thickness (d) of the corners (tapered parts) at the upper part is set at about 0.3mum. An interlayer insulating film 14 is deposited on it, e.g., in about 1.2mum. Various materials such as a silicon nitride film, a silicon oxide film, an SiO2 film, a coating film, a composite film or the like can be utilized as the interlayer insulating film. A second-layer Al electrode wiring film 15 is formed on it. When a two-layer wiring structure is formed in this manner, ups and downs of the interlayer insulating film become comparatively gentle and a thickness of the second-layer aluminum film can be kept uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特に電極配線の形状に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and particularly to the shape of electrode wiring.

〔従来の技術〕[Conventional technology]

近年、MO3型半導体集積回路は大規模化、大集積化が
進み、増々高密度な配線が要求されるようになってきて
いる。それに伴い多層配線で高密度な配線が必要となっ
てきている。
In recent years, MO3 type semiconductor integrated circuits have become larger and more integrated, and increasingly high-density wiring is required. As a result, high-density wiring using multilayer wiring is becoming necessary.

従来の技術としては第4図に示すような配線構造がとら
れていた。同図は2層配線の例であるが、シリコン基板
41上のフィールド酸化膜42の上に一層目のke電極
配線43.を形成し、その上に眉間絶縁膜44を形成し
てから二層目のAf電極配線45を形成する。この2度
のAe電極配線の形成は基板全面にスパッタ法等で堆積
したアルミニウム膜上にフォトリソグラフィ技術を用い
てフォトレジストパターンを作り、それをマスクにして
アルミニウム膜をエツチングして行う。この際、設計配
線幅からのパターン変換誤差を極力小さくするためエツ
チングには異方性エツチングを利用する。したがって、
出来上がりのアルミパターンはほぼ基板に垂直なエツチ
ング面を持っている。
As a conventional technique, a wiring structure as shown in FIG. 4 has been used. Although the figure shows an example of two-layer wiring, a first layer of KE electrode wiring 43. A glabellar insulating film 44 is formed thereon, and then a second layer of Af electrode wiring 45 is formed. The Ae electrode wiring is formed twice by forming a photoresist pattern using photolithography on an aluminum film deposited over the entire surface of the substrate by sputtering or the like, and etching the aluminum film using the pattern as a mask. At this time, anisotropic etching is used for etching in order to minimize pattern conversion errors from the designed wiring width. therefore,
The finished aluminum pattern has an etched surface almost perpendicular to the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように基板に垂直にエツチングされた電極配線パ
ターン上に眉間絶縁膜を堆積させた場合、一般に段部の
段差はきつくなっている。したがって、第4図に示した
ように、−層目のkl電極配線の間隔りが狭い場合には
眉間絶縁膜に急斜面の溝ができ、二層目のke電極配線
がその溝を横切る場合には同図Aのようにかなり膜厚が
薄くなったり場合によっては配線が切れてしまうことに
なる。−例として一層目のA!!電極配線の厚さが0.
6μm、層間絶縁膜がプラズマCVD法によって成長さ
せた1、2μmの窒化膜、二層目のkl電極配線の厚さ
が1.1μmの場合、−層目のAff電極配線間隔が2
μm以下だと溝部の二層目の^l電極配線が薄くなり歩
留りが低下し始める。
When a glabellar insulating film is deposited on an electrode wiring pattern etched perpendicularly to a substrate as described above, the steps are generally steep. Therefore, as shown in FIG. 4, when the spacing between the kl electrode wirings in the - layer is narrow, a groove with a steep slope is formed in the glabella insulating film, and when the ke electrode wiring in the second layer crosses the groove, In this case, the film thickness becomes considerably thinner as shown in A in the same figure, and in some cases, the wiring may be cut. -For example, first layer A! ! The thickness of the electrode wiring is 0.
6 μm, the interlayer insulating film is a 1-2 μm nitride film grown by plasma CVD, and the thickness of the second layer kl electrode wiring is 1.1 μm, the −th layer Aff electrode wiring spacing is 2
If it is less than μm, the second layer of the electrode wiring in the groove becomes thin and the yield begins to decrease.

すなわち、従来の電極配線形状では層間膜の段差がきつ
くなるため配線パターンの高密度化ができないという欠
点があった。
That is, the conventional electrode wiring shape has the drawback that the interlayer film has a steep step difference, making it impossible to increase the density of the wiring pattern.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路は、所定幅の導電膜の上部の角
を斜めに除去したメサ状電極配線を有しているというも
のである。
The semiconductor integrated circuit of the present invention has a mesa-shaped electrode wiring formed by obliquely removing an upper corner of a conductive film having a predetermined width.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す半導体チップの断面図
である。同図ではシリコン基板11上のフィールド酸化
膜12の上に2層配線を形成した場合で第1層目のke
電極配線13の断面構造としては長方形の上部の角を落
とした形状になっている。第1層目のA!電極配線の厚
さが0.6μmぐらいとすると上部の角(テーパ一部)
の厚さdは0,3μmぐらいが良い、その上に眉間絶縁
膜を例えば1.2μm程度堆積させる。この眉間絶縁膜
としてはプラズマCVD法で成長させた窒化シリコン膜
、酸窒化シリコン膜(オキシニトリド膜)、スパッタ法
で成長させたS i02膜、塗布膜。
FIG. 1 is a sectional view of a semiconductor chip showing one embodiment of the present invention. The figure shows a case where a two-layer wiring is formed on a field oxide film 12 on a silicon substrate 11.
The cross-sectional structure of the electrode wiring 13 is a rectangular shape with the upper corner cut off. A on the first layer! If the thickness of the electrode wiring is about 0.6 μm, the upper corner (part of the taper)
The thickness d is preferably about 0.3 μm, and a glabellar insulating film of about 1.2 μm is deposited thereon. The glabellar insulating film includes a silicon nitride film grown by plasma CVD, a silicon oxynitride film (oxynitride film), an Si02 film grown by sputtering, and a coating film.

あるいは複合膜等種々の材料が利用できる。その上に第
2層目のAI!電極配線15を形成する。このような2
層配線構造とすると、眉間絶縁膜の起伏が比較的ゆるや
かになり、第2層アルミニウム膜厚均一性が保てる。
Alternatively, various materials such as composite membranes can be used. On top of that is a second layer of AI! Electrode wiring 15 is formed. 2 like this
With the layer wiring structure, the undulations of the glabellar insulating film become relatively gentle, and the uniformity of the second layer aluminum film thickness can be maintained.

第1図に示した第1層のAe電極配線のテーパー構造を
得るための製造方法の一例を第3図に示す。
FIG. 3 shows an example of a manufacturing method for obtaining the tapered structure of the first layer Ae electrode wiring shown in FIG.

まず、第3図(a>に示すように、フィールド酸化膜3
2上に全面にアルミニウム膜33を付着させた後、フォ
トリングラフィ技術を用いて所定のパターンのフォトレ
ジストマスク3,4を作る。
First, as shown in FIG. 3(a), the field oxide film 3
After depositing an aluminum film 33 on the entire surface of the aluminum film 2, photoresist masks 3 and 4 with a predetermined pattern are made using photolithography technology.

続いて、第3図(b)に示すように、フォトレジストマ
スクを用いてウェットエツチングにより第1層のアルミ
ニウム膜33を半分の膜厚まで除去する。ウェットエツ
チングは等方性であるからフォトレジストマスク34の
下側のアルミニウムも一部エッチングされる。さらに続
いて7オトレジストマスク34を用いて反応性イオンエ
ツチングを用いて残りのアルミニウムを除去する。これ
は異方性エッチであるため、フォトレジストマスクの幅
でアルミニウムがエツチングされ第3図(c)の様にな
る。この後、第3図(d)に示すように、フォトレジス
トマスクを除去して、眉間絶縁膜を成長させる。
Subsequently, as shown in FIG. 3(b), the first layer aluminum film 33 is removed to half its thickness by wet etching using a photoresist mask. Since wet etching is isotropic, a portion of the aluminum under the photoresist mask 34 is also etched. The remaining aluminum is then removed using reactive ion etching using a 7-photoresist mask 34. Since this is an anisotropic etch, the aluminum is etched to the width of the photoresist mask, resulting in a pattern as shown in FIG. 3(c). Thereafter, as shown in FIG. 3(d), the photoresist mask is removed and a glabellar insulating film is grown.

第2図は本発明の応用例を示す半導体チップの断面図で
ある。
FIG. 2 is a sectional view of a semiconductor chip showing an example of application of the present invention.

同図はM OS )ランジスタのゲート電極に利用した
もので、シリコン基板21上にドレイン24、ソース2
4′、ゲート23のMOSトランジスタが形成されてお
り、ゲート電極の上部の角を膜厚の半分程度のところま
で落とした形状とすることにより眉間絶縁膜25を堆積
させた後の段差が極めてゆるやかとなり、以後の配線工
程における配線層の被覆性を悪化させずに済む。
The figure shows an example used for the gate electrode of a MOS transistor, with a drain 24 and a source 2 on a silicon substrate 21.
4', a MOS transistor with a gate 23 is formed, and by making the upper corner of the gate electrode drop to about half the film thickness, the step after depositing the glabellar insulating film 25 is extremely gentle. Therefore, the coverage of the wiring layer in the subsequent wiring process is not deteriorated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電極配線の上部の角を膜
厚の半分程度まで落とし、テーパーをつけることにより
、その上に形成される眉間絶縁膜および上層配線の被覆
性が向上するため、より高密度な配線配置を行っても歩
留りが低下せず、大規模、高集積な半導体集積回路が実
現できるという効果がある。
As explained above, in the present invention, by tapering the upper corner of the electrode wiring to about half the film thickness, the coverage of the glabella insulating film and the upper layer wiring formed thereon is improved. This has the effect that even if wiring is arranged at a higher density, the yield does not decrease, and a large-scale, highly integrated semiconductor integrated circuit can be realized.

なお、上記の説明では二層配線系の一層目電極配線に本
発明を適用した例を取り上げたが、二層目電極配線にも
適用できる。また、多層配線系の全部の配線に対して適
用できることは言うまでもない。
In the above description, the present invention is applied to the first layer electrode wiring of a two-layer wiring system, but it can also be applied to the second layer electrode wiring. It goes without saying that the present invention can be applied to all wiring in a multilayer wiring system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す半導体チップの断面図
、第2図は本発明の応用例を示す半導体チップの断面図
、第3図(a)〜(d)は本発明の一実施例の製造方法
を説明するための工程順に配置した半導体チップの断面
図、第4図は従来例を示す半導体チップの断面図である
。 11.21,31.41・・・シリコン基板、12.3
2.42・・・フィールド酸化膜、22・・・ゲート酸
化膜、13,15.33,43.45・・・AI!電極
配線、14,25,35.44・・・層間絶縁膜、23
・・・ゲート、24.24’・・・ドレイン。 ソース、34・・・フォトレジストマスク。
FIG. 1 is a cross-sectional view of a semiconductor chip showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor chip showing an application example of the present invention, and FIGS. 3(a) to (d) are one example of the present invention. FIG. 4 is a cross-sectional view of a semiconductor chip arranged in the order of steps for explaining the manufacturing method of the embodiment, and FIG. 4 is a cross-sectional view of a semiconductor chip showing a conventional example. 11.21, 31.41... silicon substrate, 12.3
2.42...Field oxide film, 22...Gate oxide film, 13,15.33,43.45...AI! Electrode wiring, 14, 25, 35. 44... Interlayer insulating film, 23
...Gate, 24.24'...Drain. Source, 34...Photoresist mask.

Claims (1)

【特許請求の範囲】[Claims] 所定幅の導電膜の上部の角を斜めに除去したメサ状電極
配線を有していることを特徴とする半導体集積回路。
1. A semiconductor integrated circuit comprising a mesa-shaped electrode wiring formed by obliquely removing an upper corner of a conductive film having a predetermined width.
JP17321988A 1988-07-11 1988-07-11 Semiconductor integrated circuit Pending JPH0222844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17321988A JPH0222844A (en) 1988-07-11 1988-07-11 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17321988A JPH0222844A (en) 1988-07-11 1988-07-11 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0222844A true JPH0222844A (en) 1990-01-25

Family

ID=15956340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17321988A Pending JPH0222844A (en) 1988-07-11 1988-07-11 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0222844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981906A (en) * 1986-12-29 1991-01-01 Monsanto Kasei Company Heat and impact resistant thermoplastic resin composition
JP2013131569A (en) * 2011-12-20 2013-07-04 Toyota Motor Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981906A (en) * 1986-12-29 1991-01-01 Monsanto Kasei Company Heat and impact resistant thermoplastic resin composition
JP2013131569A (en) * 2011-12-20 2013-07-04 Toyota Motor Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5256564A (en) Method for manufacturing semiconductor device having a contact structure
JPH0222844A (en) Semiconductor integrated circuit
JPS5893270A (en) Manufacture of semiconductor device
JP2991388B2 (en) Method for manufacturing semiconductor device
JPH0856024A (en) Method of manufacturing integrated circuit
JP2758765B2 (en) Method for manufacturing semiconductor device
JP2699389B2 (en) Method for manufacturing semiconductor device
JPH01189939A (en) Semiconductor integrated circuit
JPH098007A (en) Method for flattening insulation film
JPH02111052A (en) Formation of multilayer interconnection
JPS61296722A (en) Manufacture of semiconductor device
JPH07106325A (en) Manufacture of semiconductor device
JPH0669169A (en) Manufacture of semiconductor device
JPS6120353A (en) Manufacture of semiconductor device
JPH0212827A (en) Manufacture of semiconductor device
JPS62245654A (en) Semiconductor device and manufacture thereof
JPS63111644A (en) Manufacture of semiconductor device
JPH04171815A (en) Formation of contact hole for semiconductor device
JPS61216344A (en) Manufacture of semiconductor device
JPS62200746A (en) Semiconductor device
JPS5818940A (en) Manufacture of semiconductor device
JPH05102299A (en) Semiconductor device and manufacture thereof
JPH04101447A (en) Manufacture of multilayer interconnection semiconductor integrated circuit
JPS5921043A (en) Manufacture of semiconductor device
JPS6184033A (en) Semiconductor device and manufacture thereof