[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0221098B2 - - Google Patents

Info

Publication number
JPH0221098B2
JPH0221098B2 JP57124757A JP12475782A JPH0221098B2 JP H0221098 B2 JPH0221098 B2 JP H0221098B2 JP 57124757 A JP57124757 A JP 57124757A JP 12475782 A JP12475782 A JP 12475782A JP H0221098 B2 JPH0221098 B2 JP H0221098B2
Authority
JP
Japan
Prior art keywords
aqueous solution
active material
alkaline aqueous
positive electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57124757A
Other languages
Japanese (ja)
Other versions
JPS5916271A (en
Inventor
Kazuhiro Nakamitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP57124757A priority Critical patent/JPS5916271A/en
Publication of JPS5916271A publication Critical patent/JPS5916271A/en
Publication of JPH0221098B2 publication Critical patent/JPH0221098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は水酸化ニツケル活性質の主成分とする
ペースト式正極板あるいはポケツト式正極板に用
いる活性質の製造法に関するもので、オキシ水酸
化ニツケルを含む水酸化ニツケル粉末とアルカリ
水溶液中で水酸化ニツケルよりも卑な酸化電位を
示す金属粉末との混合粉末をアルカリ水溶液と一
定時間接触させることにより製作した活物質粉末
を用いることにより放電性能がすぐれた正極板を
得ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an active substance used in a paste-type positive electrode plate or a pocket-type positive electrode plate, which contains nickel hydroxide active substance as a main component, and relates to a method for producing an active substance used in a paste-type positive electrode plate or a pocket-type positive electrode plate, which contains nickel hydroxide powder containing nickel oxyhydroxide. A positive electrode plate with excellent discharge performance is obtained by using an active material powder produced by contacting a mixed powder of nickel and a metal powder that exhibits a baser oxidation potential than nickel hydroxide with an alkaline aqueous solution for a certain period of time in an alkaline aqueous solution. The purpose is to

従来、アルカリ電池の正極板の基板としては、
ニツケル粉末の焼結体が用いられているが、その
多孔度は70〜80%程度であり、これ以上に多孔度
を上げると、その機械的強度が著しく減少し、し
たがつてその空〓内に正極活物質を充填した場合
に、基板の変形、亀裂や活物質の剥離等を招来す
る欠点があつた。また、活物質を充填する場合、
通常減圧含浸法とよばれる方法すなわち硝酸ニツ
ケルや硫酸ニツケル等のニツケル塩の水溶液を基
板に減圧含浸したのち、アルカリ水溶液で処理
し、さらに湯洗、乾燥するという操作を繰り返す
方法がとられている。しかしながら、一回の操作
によつて充填される量は少なく、しかも2回目か
ら充填される量は次第に減少してくるので通常4
〜10回の操作をくり返す必要がある。そのために
製造工程が複雑で経済的コストが高くなるという
欠点があつた。
Conventionally, the substrate for the positive electrode plate of alkaline batteries is
A sintered body of nickel powder is used, but its porosity is about 70 to 80%, and if the porosity is increased beyond this, its mechanical strength will be significantly reduced, and the porosity within the pores will decrease significantly. When a positive electrode active material is filled in a positive electrode active material, the substrate has the disadvantage of causing deformation, cracking, and peeling of the active material. In addition, when filling the active material,
Usually, a method called the vacuum impregnation method is used, in which the substrate is impregnated with an aqueous solution of nickel salts such as nickel nitrate or nickel sulfate under reduced pressure, then treated with an alkaline aqueous solution, and then washed with hot water and dried, which are repeated. . However, the amount to be filled in one operation is small, and the amount to be filled from the second operation gradually decreases, so usually 4
It is necessary to repeat the operation ~10 times. Therefore, the manufacturing process is complicated and the economic cost is high.

そこで近年、三次元的に連続した構造を有する
ニツケル金属よりなるスポンジ状多孔体に、ペー
スト状にした正極活物質を直接充填する方法が注
目されてきている。
Therefore, in recent years, attention has been paid to a method in which a sponge-like porous body made of nickel metal having a three-dimensionally continuous structure is directly filled with a positive electrode active material in the form of a paste.

三次元的に連続した構造を有するスポンジ状ニ
ツケル多孔体は、その多孔度が90〜98%と高く、
しかも機械的強度が大きい。そのうえ孔径が大き
いのでこの多孔体に活物質を充填すると正極板の
高容量化をはかることができるとともに充填方法
が極めて簡便になり連続工程が可能で経済的にも
有利となる。しかしながら、多孔体の孔径が大き
いため集電体であるニツケル多孔体と活物質粉末
との間および活物質粒子間の電気的な接触性が充
分に得られず、利用率が低いという欠点がある。
そのために、ニツケル粉末等の導電材や種々の添
加剤を加えることによつて利用率を向上する試み
がおこなわれている。この種の添加剤としてはニ
ツケル粉末の他に金属コバルトおよびコバルト酸
化物等の粉末が提案され、ニツケル粉末とともに
水酸化ニツケル粉末に添加混合して用いられてい
るが、その効果は不充分であり、その効果の機構
も不明である。
Sponge-like porous nickel material with a three-dimensional continuous structure has a high porosity of 90 to 98%.
Moreover, it has high mechanical strength. Moreover, since the pore diameter is large, filling this porous body with an active material can increase the capacity of the positive electrode plate, and the filling method is extremely simple, allowing a continuous process, which is economically advantageous. However, due to the large pore diameter of the porous body, sufficient electrical contact between the nickel porous body as a current collector and the active material powder and between the active material particles cannot be obtained, resulting in a low utilization rate. .
For this reason, attempts have been made to improve the utilization rate by adding conductive materials such as nickel powder and various additives. In addition to nickel powder, powders such as metal cobalt and cobalt oxide have been proposed as additives of this kind, and these are used by adding and mixing them with nickel powder and nickel hydroxide powder, but their effects are insufficient. However, the mechanism of this effect is also unknown.

本発明は、オキシ水酸化ニツケルを含んだ水酸
化ニツケル粉末とアルカリ水溶液中で水酸化ニツ
ケルよりも卑な酸化電位を示す金属粉末、例えば
コバルトあるいはマンガン等との混合粉末をアル
カリ水溶液と一定時間接触させるという処理をお
こなうとコバルト等の添加剤の効果が著しく向上
するという事実をみいだしたことに基づくもので
ある。
The present invention involves contacting a mixed powder of nickel hydroxide powder containing nickel oxyhydroxide and a metal powder, such as cobalt or manganese, which exhibits an oxidation potential lower than that of nickel hydroxide in an alkaline aqueous solution for a certain period of time with an alkaline aqueous solution. This is based on the discovery that the effects of additives such as cobalt can be significantly improved if the treatment is carried out.

以下、本発明の実施例ならびにその効果を詳述
する。
Examples of the present invention and its effects will be described in detail below.

本発明による正極板はつぎのように製作するこ
とができる。本発明に用いるオキシ水酸化ニツケ
ルは通常の方法で製作できる。一例をあげると、
まず70℃に加熱した14mol/水酸化カリウム水
溶液4と2mol/硫酸ニツケル水溶液1お
よび10%次亜塩素酸ナトリウム溶液とを反応させ
て、オキシ水酸化ニツケルを含んだ水酸化ニツケ
ルを沈澱析出させる。この沈澱を洗浄、乾燥した
後、粉砕する。このオキシ水酸化ニツケル含有量
は次亜塩素酸ナトリウム溶液の量を変えることに
よつて調節することができる。なお、このオキシ
水酸化ニツケルを含んだ水酸化ニツケルは、水酸
化ニツケルを電気化学的に一部分酸化することに
よつても得られる。
The positive electrode plate according to the present invention can be manufactured as follows. Nickel oxyhydroxide used in the present invention can be produced by a conventional method. For example,
First, a 14 mol/potassium hydroxide aqueous solution 4 heated to 70°C is reacted with a 2 mol/nickel sulfate aqueous solution 1 and a 10% sodium hypochlorite solution to precipitate nickel hydroxide containing nickel oxyhydroxide. This precipitate is washed, dried, and then ground. The nickel oxyhydroxide content can be adjusted by changing the amount of sodium hypochlorite solution. Note that nickel hydroxide containing nickel oxyhydroxide can also be obtained by electrochemically partially oxidizing nickel hydroxide.

つぎに、上記のオキシ水酸化ニツケル粉末を含
んだ水酸化ニツケル粉末と金属コバルトとを混合
したのち、この混合粉末をS.G.1.300(20℃)水酸
化カリウム水溶液で15分間混練してペースト化し
た。さらにこのペーストを湯洗、ろ過および乾燥
したのち粉砕して本発明による活物質粉末を得る
ことができる。この活物質粉末の活性度を評価す
るために正極板をつぎのようにして製作した。
Next, after mixing the nickel hydroxide powder containing the above-mentioned nickel oxyhydroxide powder and cobalt metal, this mixed powder was kneaded with an SG1.300 (20°C) potassium hydroxide aqueous solution for 15 minutes to form a paste. . Further, this paste is washed with hot water, filtered, dried, and then ground to obtain the active material powder according to the present invention. In order to evaluate the activity of this active material powder, a positive electrode plate was manufactured as follows.

まず、活物質粉末90部にニツケル粉末10部を加
えて0.6wt%カルボキシメチルセルロース水溶液
でペースト状にする。このペーストを平均孔径
0.3mm、多孔度96%、厚さ1.2mmのスポンジ状ニツ
ケル多孔体に充填し乾燥してから、フツ素樹脂の
分散液に浸漬して再び乾燥し、0.68mmの厚さに加
圧して本発明による正極板を得た。この正極板1
枚と従来から公知のペースト式カドミウム負極板
と電解液にS.G.1.250(20℃)水酸化カリウム水溶
液とを用いたフラツデツドタイプの電池を製作し
て、0.1CAで20時間充電したのち1.0CAで1.0Vま
で放電して活物質利用率を求めた。
First, 10 parts of nickel powder is added to 90 parts of active material powder, and the mixture is made into a paste with a 0.6 wt% carboxymethyl cellulose aqueous solution. This paste has an average pore size of
Filled into a sponge-like porous nickel material with a size of 0.3 mm, 96% porosity, and 1.2 mm thickness, dried, immersed in a fluororesin dispersion, dried again, and pressurized to a thickness of 0.68 mm. A positive electrode plate according to the invention was obtained. This positive electrode plate 1
A flat type battery was fabricated using a conventionally known paste-type cadmium negative electrode plate and an SG1.250 (20°C) potassium hydroxide aqueous solution as the electrolyte, and after being charged at 0.1 CA for 20 hours, the battery became 1.0 The active material utilization rate was determined by discharging to 1.0V with CA.

なお、正極板の種類としてはオキシ水酸化ニツ
ケルおよびコバルトの添加量を変えたものを製作
してこれらの添加量の影響を調べた。オキシ水酸
化ニツケルの含有量が5%、10%および20%の正
極板を用いたそれぞれの電池A,BおよびCの利
用率とコバルトの添加量との関係を第1図に示
す。図からオキシ水酸化ニツケルの含有量が多い
ほど、またコバルトの添加量が多いほど利用率が
よいことがわかる。またここでオキシ水酸化ニツ
ケルは10%以上、コバルトは2%以上であれば利
用率が90%を越え良好であることもわかる。な
お、コバルト量が多くなると水酸化ニツケルの量
が減少して絶対容量が減少するでコバルト量は10
%以下にするのが望ましいこともわかつた。
In addition, different types of positive electrode plates were manufactured with different amounts of nickel oxyhydroxide and cobalt added, and the effects of these amounts were investigated. FIG. 1 shows the relationship between the utilization rate and the amount of cobalt added for batteries A, B, and C using positive electrode plates containing 5%, 10%, and 20% of nickel oxyhydroxide. The figure shows that the greater the content of nickel oxyhydroxide and the greater the amount of cobalt added, the better the utilization rate. It can also be seen that if the nickel oxyhydroxide is 10% or more and the cobalt is 2% or more, the utilization rate is over 90%. In addition, as the amount of cobalt increases, the amount of nickel hydroxide decreases and the absolute capacity decreases, so the amount of cobalt is 10
It was also found that it is desirable to keep it below %.

つぎに、オキシ水酸化ニツケルの含有量を10%
コバルトの添加量を3%としたもので、混合粉末
をアルカリ水溶液でペースト化する時の温度およ
びその混練時間をかえて活物質を製作し、前記と
同様にしてフラツデツドタイプの電池を製作して
利用率を比較した結果を第2図に示す。こゝで電
池A,BおよびCは、混合粉末をアルカリ水溶液
でペースト化する時の温度をそれぞれ25℃、45℃
および60℃として製作した正極板を用いた電池で
ある。図から、温度が高いほど混練時間は短時間
でよいことがわかる。また、混合粉末をアルカリ
水溶液でペースト化するかわりに多孔性鋼板等で
作つた容器の中に混合粉末を入れてアルカリ水溶
液中に浸漬しても同様の効果があることを確認し
た。
Next, increase the content of nickel oxyhydroxide to 10%.
A flattened type battery was manufactured in the same manner as above by changing the temperature and kneading time when the mixed powder was made into a paste with an alkaline aqueous solution using an additive amount of cobalt of 3%. Figure 2 shows the results of comparing the utilization rates. Here, for batteries A, B, and C, the temperature at which the mixed powder was made into a paste with an alkaline aqueous solution was 25°C and 45°C, respectively.
This is a battery using a positive electrode plate manufactured at 60°C. The figure shows that the higher the temperature, the shorter the kneading time. Furthermore, instead of turning the mixed powder into a paste with an alkaline aqueous solution, it was confirmed that the same effect could be obtained by placing the mixed powder in a container made of a porous steel plate or the like and immersing it in the alkaline aqueous solution.

つぎにオキシ水酸化ニツケルの含有量を10%、
コバルトの添加量を3%として、アルカリ水溶液
で混練してペースト化する時の温度を60℃、時間
を5分として製作した正極板と従来のペースト式
カドミウム負極板とをナイロン不織布のセパレー
タを介して渦巻状に巻き、電解液にS.G.1.300(20
℃)水酸化カリウム水溶液を用いて公称容量が
2.5Ahの本発明による円筒形密閉ニツケル・カド
ミウム電池Aを製作した。また比較のために、水
酸化ニツケル粉末85部とニツケル粉末10部とコバ
ルト粉末5部との混合粉末を原料にして従来法に
より製作した正極板を用いた電池Bを製作した。
Next, increase the content of nickel oxyhydroxide to 10%,
A positive electrode plate made with 3% cobalt added and kneaded with an alkaline aqueous solution to form a paste at a temperature of 60°C for 5 minutes and a conventional paste-type cadmium negative electrode plate were placed through a nylon nonwoven fabric separator. SG1.300 (20
°C) The nominal capacity is determined using an aqueous potassium hydroxide solution.
A 2.5 Ah cylindrical sealed nickel-cadmium battery A according to the present invention was manufactured. For comparison, a battery B was manufactured using a positive electrode plate manufactured by a conventional method using a mixed powder of 85 parts of nickel hydroxide powder, 10 parts of nickel powder, and 5 parts of cobalt powder as raw materials.

これらの電池、それぞれ10個ずつを20℃、
0.1CAで16時間充電したのち、1.0CAで放電した
ときの平均的な放電電圧特性を第3図に示す。図
から本発明による電池Aが、従来法による電池B
よりも放電電圧特性がよく放電容量も大きいこと
がわかる。
10 of each of these batteries were heated to 20°C.
Figure 3 shows the average discharge voltage characteristics when the battery was charged at 0.1 CA for 16 hours and then discharged at 1.0 CA. From the figure, battery A according to the present invention is battery B according to the conventional method.
It can be seen that the discharge voltage characteristics are better and the discharge capacity is larger than that of the previous one.

何故、オキシ水酸化ニツケルを含む水酸化ニツ
ケルと金属コバルトとの混合粉末をアルカリ水溶
液と接触させて製作した活物質を用いると水酸化
ニツケルに金属コバルトを添加した場合よりも放
電性能が向上するのかは定かでないが、つぎのよ
うな効果によるものであると考えられる。すなわ
ち、オキシ水酸化ニツケルとコバルトとの混合粉
末をアルカリ水溶液に接触させると、つぎに示す
ような電気化学的な腐食反応がおこり、水酸化ニ
ツケルと水酸化コバルトが生成する。
Why does using an active material made by contacting a mixed powder of nickel hydroxide (including nickel oxyhydroxide) with cobalt metal with an alkaline aqueous solution improve the discharge performance compared to when cobalt metal is added to nickel hydroxide? Although it is not certain, it is thought that this is due to the following effects. That is, when a mixed powder of nickel oxyhydroxide and cobalt is brought into contact with an aqueous alkaline solution, the following electrochemical corrosion reaction occurs, producing nickel hydroxide and cobalt hydroxide.

Co+2NiOOH+2H2O →Co(OH)2+2Ni(OH)2 その際に水酸化ニツケルと水酸化コバルトとの
一部が固溶体を形成する。そのために正極板とし
たときの充放電が円滑にしかも均一におこなわれ
活物質の脱落も少ない。一方、ただ単に水酸化ニ
ツケルに金属コバルトを添加した従来の正極板
は、電池にしたのち最初の充電で金属コバルトが
酸化をうけ水酸化コバルトが生成し、さらに水酸
化コバルトがオキシ水酸化コバルトになつてから
活物質である水酸化ニツケルが酸化をうけ、オキ
シ水酸化ニツケルとなるというように段階的に、
しかも別々のサイトで反応が進行する。この金属
コバルトは充電によつてほゝ完全に水酸化コバル
トに変化し、未酸化の金属コバルトが後で生成す
るオキシ水酸化コバルトやオキシ水酸化ニツケル
と前述のような電気化学的な腐食反応で水酸化コ
バルトに変化することは極めて少ないものと思わ
れる。このことは水酸化コバルトと水酸化ニツケ
ルとの固溶体を形成させる機会が極めて少なく、
その量が少なく、しかも不均一になつているもの
と推定され、充放電反応がおこなわれず活物質の
脱落も多いと考えられる。
Co+2NiOOH+2H 2 O →Co(OH) 2 +2Ni(OH) 2 At that time, a portion of nickel hydroxide and cobalt hydroxide form a solid solution. Therefore, when used as a positive electrode plate, charging and discharging are performed smoothly and uniformly, and less active material falls off. On the other hand, in a conventional positive electrode plate in which metallic cobalt is simply added to nickel hydroxide, the metallic cobalt is oxidized to produce cobalt hydroxide during the first charge after being made into a battery, and the cobalt hydroxide then changes to cobalt oxyhydroxide. Step by step, the active material nickel hydroxide undergoes oxidation and becomes nickel oxyhydroxide.
Moreover, the reactions proceed at different sites. This metallic cobalt almost completely changes to cobalt hydroxide upon charging, and the unoxidized metallic cobalt then reacts with the generated cobalt oxyhydroxide and nickel oxyhydroxide through the electrochemical corrosion reaction described above. It is thought that conversion to cobalt hydroxide is extremely rare. This means that there is very little chance of forming a solid solution between cobalt hydroxide and nickel hydroxide.
It is presumed that the amount is small and non-uniform, and that the charge/discharge reaction does not take place and many active materials fall off.

以上述べたように本発明は、オキシ水酸化ニツ
ケルを含んだ水酸化ニツケル粉末とコバルト粉末
との混合粉末をアルカリ水溶液と接触させて製作
した活物質を用いることによつて放電性能がすぐ
れた正極板を提供することができる。なお、本発
明はアルカリ水溶液中で水酸化ニツケルよりも卑
な酸化電位を示す他の金属、例えばマンガン等に
おいても同様の効果を得ることができることを確
認した。また、本発明による活物質をポケント式
正極板に用いた場合にも同様の効果を得ることが
できることも確認した。
As described above, the present invention provides a positive electrode with excellent discharge performance by using an active material produced by contacting a mixed powder of nickel hydroxide powder containing nickel oxyhydroxide and cobalt powder with an alkaline aqueous solution. Boards can be provided. The present invention has confirmed that similar effects can be obtained with other metals, such as manganese, which exhibit an oxidation potential lower than that of nickel hydroxide in an alkaline aqueous solution. It was also confirmed that similar effects can be obtained when the active material according to the present invention is used in a Pockent type positive electrode plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオキシ水酸化ニツケルの含有量および
コバルトの添加量をかえた場合の活物質利用率の
変化を示す。第2図は混合粉末をアルカリ水溶液
で混練しペースト化する場合の温度および時間を
かえた場合の活物質利用率の変化を示す。第3図
は本発明によるニツケルカドミウム電池と従来法
による電池との1CA放電特性の比較図である。
FIG. 1 shows changes in active material utilization when the content of nickel oxyhydroxide and the amount of cobalt added were changed. FIG. 2 shows the change in the active material utilization rate when the temperature and time are changed when the mixed powder is kneaded with an alkaline aqueous solution to form a paste. FIG. 3 is a comparison diagram of 1CA discharge characteristics between a nickel cadmium battery according to the present invention and a battery according to the conventional method.

Claims (1)

【特許請求の範囲】 1 オキシ水酸化ニツケルを含む水酸化ニツケル
粉末とアルカリ水溶液中で水酸化ニツケルよりも
卑な酸化電位を示す金属粉末、例えばコバルトあ
るいはマンガン等との混合粉末をアルカリ水溶液
と一定時間接触させた後、洗浄、乾燥および粉砕
をおこなうことを特徴とするアルカリ電池用正極
活物質の製造法。 2 前記オキシ水酸化ニツケルを含む水酸化ニツ
ケル粉末が、水酸化ニツケルを化学的あるいは電
気化学的に一部分酸化して得たものである特許請
求の範囲第1項記載のアルカリ電池用正極活物質
の製造法。 3 前記アルカリ水溶液中で水酸化ニツケルより
も卑な酸化電位を示す金属粉末の含有量が2〜
10wt%である特許請求の範囲第1項記載のアル
カリ電池用正極活物質の製造法。 4 前記混合粉末をアルカリ水溶液中と一定時間
接触させる手段が、混合粉末をアルカリ水溶液で
ペースト化することによりなる特許請求の範囲第
1項記載のアルカリ電池用正極活物質の製造法。 5 前記混合粉末をアルカリ水溶液と一定時間接
触させる手段が、混合粉末を多孔性網板等よりな
る容器中にいれてアルカリ水溶液中に浸漬するも
のである特許請求の範囲第1項記載のアルカリ電
池用正極活物質の製造法。 6 前記混合粉末をアルカリ水溶液と一定時間接
触させる手段においてアルカリ水溶液および雰囲
気の温度を45℃以上にすることを特徴とする特許
請求の範囲第1項記載のアルカリ電池用正極活物
質の製造法。
[Claims] 1. A mixed powder of nickel hydroxide powder containing nickel oxyhydroxide and a metal powder, such as cobalt or manganese, which exhibits an oxidation potential lower than that of nickel hydroxide in an alkaline aqueous solution to a certain level in an alkaline aqueous solution. A method for producing a positive electrode active material for alkaline batteries, which comprises contacting for a period of time, followed by washing, drying, and pulverization. 2. The positive electrode active material for an alkaline battery according to claim 1, wherein the nickel hydroxide powder containing nickel oxyhydroxide is obtained by partially oxidizing nickel hydroxide chemically or electrochemically. Manufacturing method. 3 The content of the metal powder exhibiting an oxidation potential lower than that of nickel hydroxide in the alkaline aqueous solution is 2 to 2.
10 wt% of the method for producing a positive electrode active material for an alkaline battery according to claim 1. 4. The method for producing a positive electrode active material for an alkaline battery according to claim 1, wherein the means for bringing the mixed powder into contact with an alkaline aqueous solution for a certain period of time is made by pasting the mixed powder with an alkaline aqueous solution. 5. The alkaline battery according to claim 1, wherein the means for bringing the mixed powder into contact with the alkaline aqueous solution for a certain period of time is to place the mixed powder in a container made of a porous mesh plate or the like and immerse it in the alkaline aqueous solution. Method for producing cathode active material for use. 6. The method for producing a positive electrode active material for an alkaline battery according to claim 1, characterized in that in the means for bringing the mixed powder into contact with the alkaline aqueous solution for a certain period of time, the temperature of the alkaline aqueous solution and the atmosphere is set to 45° C. or higher.
JP57124757A 1982-07-16 1982-07-16 Manufacture of positive active material for alkaline battery Granted JPS5916271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124757A JPS5916271A (en) 1982-07-16 1982-07-16 Manufacture of positive active material for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124757A JPS5916271A (en) 1982-07-16 1982-07-16 Manufacture of positive active material for alkaline battery

Publications (2)

Publication Number Publication Date
JPS5916271A JPS5916271A (en) 1984-01-27
JPH0221098B2 true JPH0221098B2 (en) 1990-05-11

Family

ID=14893358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124757A Granted JPS5916271A (en) 1982-07-16 1982-07-16 Manufacture of positive active material for alkaline battery

Country Status (1)

Country Link
JP (1) JPS5916271A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615538B2 (en) * 1984-05-31 1997-05-28 松下電器産業株式会社 Nickel positive electrode for alkaline storage batteries
JPS61104565A (en) * 1984-10-25 1986-05-22 Matsushita Electric Ind Co Ltd Preparation of powdered active material for nickel positive electrode of cell
JPS61133563A (en) * 1984-12-04 1986-06-20 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
JPS63257789A (en) * 1987-04-15 1988-10-25 東芝テック株式会社 Dot printer
US6566008B2 (en) 1997-01-30 2003-05-20 Sanyo Electric Co., Ltd. Sealed alkaline storage battery
US6235428B1 (en) 1997-01-30 2001-05-22 Sanyo Electric Co., Ltd. Enclosed alkali storage battery
JP4599659B2 (en) * 2000-05-17 2010-12-15 ソニー株式会社 Nickel zinc battery
US20130136991A1 (en) 2011-11-30 2013-05-30 Lawrence Livermore National Security, Llc High energy/power density nickel oxide/hydroxide materials and nickel cobalt oxide/hydroxide materials and production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982942A (en) * 1972-11-20 1974-08-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982942A (en) * 1972-11-20 1974-08-09

Also Published As

Publication number Publication date
JPS5916271A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JPH0221098B2 (en)
JPH0247824B2 (en)
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JPH02234356A (en) Sealed-type alkali battery
JP4370746B2 (en) Method for producing nickel electrode active material and method for producing active material paste for nickel electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH08227711A (en) Alkaline storage battery and manufacture of its positive electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH1012233A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH02262244A (en) Sealed alkaline battery
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH04344B2 (en)
JPH10172551A (en) Nickel electrode for alkaline storage battery
JPH09330711A (en) Manufacture of hydrogen storage alloy electrode
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery
JP2000106179A (en) Manufacture for non-sintered nickel positive electrode