JPH02199822A - High-frequency cvd - Google Patents
High-frequency cvdInfo
- Publication number
- JPH02199822A JPH02199822A JP1913389A JP1913389A JPH02199822A JP H02199822 A JPH02199822 A JP H02199822A JP 1913389 A JP1913389 A JP 1913389A JP 1913389 A JP1913389 A JP 1913389A JP H02199822 A JPH02199822 A JP H02199822A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- insulating substrate
- substrate
- film
- radio waves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 30
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000000969 carrier Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 16
- 239000010408 film Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、薄膜トランジスタ等を製造する際に用いられ
る各種の膜の化学気相成長方法(Che−mical
Vapour Deposition )に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for chemical vapor deposition of various films used in manufacturing thin film transistors, etc.
Vapor Deposition).
薄膜トランジスタ等の製造の際には、5i02やシリコ
ン層などを堆積させて加工する工程が必須である。その
場合、CVD法が多用される。従来のCVD法は、生成
膜の原料となる反応ガスを電気炉などで熱分解したり(
熱分解CVD法)、低い気圧の反応ガス中に高周波電力
を印加してプラズマを生成する事により反応を起こさせ
基板上に膜を生成している(プラズマCVD法)。When manufacturing thin film transistors and the like, a step of depositing and processing 5i02, a silicon layer, etc. is essential. In that case, CVD method is often used. The conventional CVD method involves thermally decomposing the reaction gas, which is the raw material for the produced film, in an electric furnace (
Thermal decomposition CVD method), high-frequency power is applied to a reaction gas at low pressure to generate plasma to cause a reaction and produce a film on the substrate (plasma CVD method).
しかしながら、良質の生成膜を熱分解CVD法により堆
積させようとすると、1000度程度0高温まで基板全
体を加熱することが必要である。However, in order to deposit a high-quality product film by the pyrolytic CVD method, it is necessary to heat the entire substrate to a high temperature of about 1000 degrees.
そのために、低耐熱性のガラスなどを基板としなS O
I (5ilicon On In5ulator)な
どには良質の膜を堆積させることができない、プラズマ
CVD法を用いると、比較的低温で良質の膜を堆積でき
るが、基板がプラズマに晒されるなめに、その表面が損
傷を受ける。For this reason, it is necessary to use a substrate such as glass with low heat resistance.
It is not possible to deposit a high-quality film on a substrate such as I (5ilicon on in5ulator). Plasma CVD allows a high-quality film to be deposited at a relatively low temperature, but since the substrate is exposed to plasma, the surface is receive damage.
本発明は、以上述べた従来のCVD法の問題点を解決し
、低耐熱性絶縁基板の半導体層上に、選択的に熱分解に
より生成した膜を、損傷を与えずに堆積させることが可
能な高周波CVD法を提供することを課題とする。The present invention solves the problems of the conventional CVD method described above, and makes it possible to selectively deposit a film produced by thermal decomposition on a semiconductor layer of a low heat-resistant insulating substrate without causing damage. The objective is to provide a high-frequency CVD method.
上記した問題点を解決するなめ、本発明では、絶縁性基
板上に半導体層を設け、熱反応性ガス中に該基板を設置
し、該絶縁性基板の耐熱温度以下の温度に加熱し、さら
に、高周波数の電波を照射して該半導体層を選択的に加
熱する事により、該熱反応性ガスを該半導体層の表面上
で選択的に熱化学反応させ、堆積膜を生成する。In order to solve the above-mentioned problems, the present invention provides a semiconductor layer on an insulating substrate, places the substrate in a thermally reactive gas, and heats it to a temperature below the heat resistance temperature of the insulating substrate. By selectively heating the semiconductor layer by irradiating high-frequency radio waves, the thermally reactive gas is selectively subjected to a thermochemical reaction on the surface of the semiconductor layer, thereby producing a deposited film.
第1図は本発明の主構成要素による原理を説明した模式
図で、1は絶縁性基板、2は半導体層、3は加熱部、4
は高周波電波、5は熱反応性ガスである0本発明は、半
導体のキャリア濃度が温度に対して指数間数的に増加す
る性質、及び、高周波電波が選択的に低抵抗層中に吸収
される性質を利用する。まず、半導体層2を堆積させた
絶縁性基板1を加熱部3により絶縁性基板の耐熱温度以
下で加熱し、半導体のキャリア濃度が温度に対して指数
関数的に増加する性質を利用して、半導体層2中に充分
なキャリアが存在する状態にする。FIG. 1 is a schematic diagram explaining the principle of the main components of the present invention, in which 1 is an insulating substrate, 2 is a semiconductor layer, 3 is a heating section, and 4 is a schematic diagram explaining the principle of the main components of the present invention.
is a high frequency radio wave, and 5 is a thermally reactive gas. Take advantage of the properties that First, the insulating substrate 1 on which the semiconductor layer 2 has been deposited is heated by the heating unit 3 to a temperature below the allowable temperature limit of the insulating substrate, and by utilizing the property that the carrier concentration of the semiconductor increases exponentially with temperature, A state is created in which sufficient carriers exist in the semiconductor layer 2.
この場合、もしも半導体層中に室温で充分な量のキャリ
アが存在している場合には加熱の必要さえもない、この
状態で、熱反応性ガス5を導入して、高周波電波4を照
射する。絶縁性基板1と半導体層2とでは高周波電波の
吸収係数に大きな差があるから、電波はほとんど半導体
NA3中で吸収され、半導体層2のみが選択的に加熱さ
れる。半導体のキャリア濃度は温度に対して指数関数的
に増加するから、正帰還がかかって、さらに電波の吸収
係数が増加し、加熱される。その結果、半導体12と接
触している熱反応性ガスが半導体層2の表面のみで熱分
解するから、そこだけに生成膜を堆積させることができ
る。In this case, if a sufficient amount of carriers exist in the semiconductor layer at room temperature, heating is not even necessary. In this state, the thermally reactive gas 5 is introduced and the high frequency radio waves 4 are irradiated. . Since there is a large difference in the absorption coefficient of high-frequency radio waves between the insulating substrate 1 and the semiconductor layer 2, most of the radio waves are absorbed in the semiconductor NA3, and only the semiconductor layer 2 is selectively heated. Since the carrier concentration of a semiconductor increases exponentially with temperature, positive feedback occurs, which further increases the radio wave absorption coefficient and heats the semiconductor. As a result, the thermally reactive gas in contact with the semiconductor 12 is thermally decomposed only on the surface of the semiconductor layer 2, so that the produced film can be deposited only there.
本発明の構成は、高周波電源を用いたプラズマCVD法
と類似している部分がある。しかしながら、プラズマC
VD法は低気圧のガスプラズマ中でしか反応を起こさせ
ることはできないのに対し、本発明によるCVD法は熱
反応性ガスの気圧に関して何の制限もない点が大きく異
なっている。そのため、プラズマによる損傷無しに良質
の膜を堆積することが可能である。The configuration of the present invention has some similarities to a plasma CVD method using a high frequency power source. However, plasma C
The VD method is capable of causing a reaction only in a low-pressure gas plasma, whereas the CVD method according to the present invention differs greatly in that there is no restriction on the pressure of the thermally reactive gas. Therefore, it is possible to deposit a high quality film without being damaged by plasma.
第2図は、本発明の具体的な実施例を示した断面図で、
石英ガラス等でできた反応容器11の外側に、加熱部3
、および、高周波コイル9を設け、その高周波コイル9
に高周波電源1oをつなぐ、反応容器11には、ガス導
入口12とガス排出口13を設ける。さらに、低耐熱性
ガラス基板6の上にCVD 5i02層7とシリコン
層8を堆積させた基体を設置する。加熱部3によって、
低耐熱性ガラス基板6の耐熱温度まで基体を加熱する。FIG. 2 is a sectional view showing a specific embodiment of the present invention.
A heating section 3 is installed on the outside of the reaction vessel 11 made of quartz glass or the like.
, and a high frequency coil 9 is provided, and the high frequency coil 9
A reaction vessel 11 to which a high frequency power source 1o is connected is provided with a gas inlet 12 and a gas outlet 13. Further, a base body on which a CVD 5i02 layer 7 and a silicon layer 8 are deposited is placed on a low heat-resistant glass substrate 6. By the heating section 3,
The substrate is heated to the allowable temperature limit of the low heat resistant glass substrate 6.
その状態で熱反応性ガス5を反応容器11内に導入し、
さらに、高周波電源1oによって高周波コイル9の内部
に高周波電波を発生させ、基板上の全シリコン層が加熱
され、その全面に生成膜が堆積するように基板を走査す
る。In this state, the thermally reactive gas 5 is introduced into the reaction vessel 11,
Furthermore, a high frequency radio wave is generated inside the high frequency coil 9 by the high frequency power source 1o, and the substrate is scanned so that the entire silicon layer on the substrate is heated and a generated film is deposited on the entire surface.
第3図は、本発明の別の実I11gIIIを示した断面
図である。インピーダンス整合器15を有する空j1M
共振器14内に、石英ガラス等でできた反応容器11を
設ける。反応容器11には、ガス導入口12とガス排出
口13を設ける。さらに、導波路16と高周波電源10
をつなぎ、第2図で説明した基体をその上に設置した状
態で反応容器11の内部で走査することが可能な加熱部
3を設置する。低耐熱性ガラス基板5の上にCVD5i
O□層7とシリコン層8を堆積させた基体を加熱部3上
に設置する。以下、前述の実施例と同様に、加熱部3に
よって、低耐熱性ガラス基板6の耐熱温度まで基体を加
熱する。その状態で熱反応性ガス5を反応容器11に導
入し、さらに、高周波電源10によって空胴共振器14
の内部に高周波電波を発生させ、基板上の全シリコン層
が加熱され、その全面に生成膜が堆積するように基板を
走査する。FIG. 3 is a sectional view showing another example I11gIII of the present invention. Empty j1M with impedance matching device 15
A reaction vessel 11 made of quartz glass or the like is provided within the resonator 14 . The reaction vessel 11 is provided with a gas inlet 12 and a gas outlet 13. Furthermore, a waveguide 16 and a high frequency power source 10
A heating unit 3 that can be scanned inside the reaction vessel 11 is installed with the substrate described in FIG. 2 placed thereon. CVD5i on low heat resistant glass substrate 5
A substrate on which an O□ layer 7 and a silicon layer 8 are deposited is placed on the heating section 3. Thereafter, the heating unit 3 heats the substrate up to the allowable temperature limit of the low heat-resistant glass substrate 6, as in the above-described embodiment. In this state, the thermally reactive gas 5 is introduced into the reaction vessel 11, and then the high frequency power source 10 is used to generate the cavity resonator 14.
A high-frequency radio wave is generated inside the substrate, and the substrate is scanned so that the entire silicon layer on the substrate is heated and a generated film is deposited on the entire surface.
本発明によれば、低価格で入手できる低耐熱性ガラス基
板を用いたS OI (5ilicon On In5
u−lat、or )上に高品質のCVD膜を堆積でき
るから、高性能・大面積のSO■デバイスを低価格で製
造することが可能となる。According to the present invention, S OI (5ilicon On In5
Since a high-quality CVD film can be deposited on the substrate (U-lat, or), it becomes possible to manufacture high-performance, large-area SO2 devices at low cost.
第1図は本発明の詳細な説明する模式図、第2図と第3
図は本発明の実施例を示す断面図である。
1・・・絶縁性基板、2・・・半導体層、3・・・加熱
部、4・・・高周波電波、5・・・熱反応性ガス、6・
・・低耐熱性ガラス基板、7・・・CVD S i0
2膜、8・・・シリコン層、9・・・高周波コイル、1
0・・・高周波電源、11・・・反応容器、12・・・
ガス導入口、13・・・ガス排出口、14・・・空胴共
振器、15・・・インピーダンス整合器、16・・・導
波路。Figure 1 is a schematic diagram explaining the invention in detail, Figures 2 and 3 are
The figure is a sectional view showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Semiconductor layer, 3... Heating part, 4... High frequency radio wave, 5... Heat-reactive gas, 6...
・・Low heat resistant glass substrate, 7...CVD S i0
2 film, 8... silicon layer, 9... high frequency coil, 1
0... High frequency power supply, 11... Reaction container, 12...
Gas inlet, 13... Gas outlet, 14... Cavity resonator, 15... Impedance matching device, 16... Waveguide.
Claims (1)
板を設置し、該絶縁性基板の耐熱温度以下の温度に加熱
し、さらに、高周波数の電波を照射して該半導体層を選
択的に加熱する事により、該熱反応性ガスを該半導体層
の表面上で選択的に熱化学反応させ、堆積膜を生成する
ことを特徴とする高周波CVD法。A semiconductor layer is provided on an insulating substrate, the substrate is placed in a thermally reactive gas, heated to a temperature below the heat resistance temperature of the insulating substrate, and then high-frequency radio waves are irradiated to remove the semiconductor layer. A high frequency CVD method characterized by selectively heating the thermally reactive gas to selectively cause a thermochemical reaction on the surface of the semiconductor layer to generate a deposited film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1019133A JPH0821549B2 (en) | 1989-01-27 | 1989-01-27 | High frequency CVD method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1019133A JPH0821549B2 (en) | 1989-01-27 | 1989-01-27 | High frequency CVD method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199822A true JPH02199822A (en) | 1990-08-08 |
JPH0821549B2 JPH0821549B2 (en) | 1996-03-04 |
Family
ID=11990967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1019133A Expired - Lifetime JPH0821549B2 (en) | 1989-01-27 | 1989-01-27 | High frequency CVD method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0821549B2 (en) |
-
1989
- 1989-01-27 JP JP1019133A patent/JPH0821549B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0821549B2 (en) | 1996-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04123257U (en) | Bias ECR plasma CVD equipment | |
WO1999024637A1 (en) | Method for annealing an amorphous film using microwave energy | |
JPH0377655B2 (en) | ||
JPH02199822A (en) | High-frequency cvd | |
JP2000150136A (en) | Microwave heating method and its device | |
JPH07114188B2 (en) | Heat treatment method for semiconductor substrate and heat treatment apparatus used therefor | |
JP4554097B2 (en) | Inductively coupled plasma processing equipment | |
JP2606318B2 (en) | Method of forming insulating film | |
JPH01167211A (en) | Diamond-like carbon film and production thereof | |
JP2686498B2 (en) | Semiconductor manufacturing equipment | |
JPH09148308A (en) | Semiconductor manufacturing apparatus | |
JPS6024377A (en) | Method and device for producing deposited film | |
US12129550B1 (en) | Thermal reactor for generating reactive species for chemical vapor deposition of thin films | |
JP3648777B2 (en) | Microwave plasma CVD equipment | |
JPH0429217B2 (en) | ||
JPH03115194A (en) | Production of thin film of polycrystalline diamond | |
JPH02206119A (en) | High-frequency oxidation | |
JPH0616922Y2 (en) | CVD equipment | |
JPH0459603A (en) | Production of high-quality oxide superconductor thin film and apparatus therefor | |
JP2004197159A (en) | Thin film deposition method, and cvd system | |
JPS62256433A (en) | Plasma treatment apparatus | |
JP3933734B2 (en) | Deposition equipment | |
JPH0245914A (en) | Preheating device for semiconductor substrate | |
JP3554032B2 (en) | Film formation method from low-temperature condensed phase | |
JPH04329883A (en) | Deposited film forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080304 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090304 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |