[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004197159A - Thin film deposition method, and cvd system - Google Patents

Thin film deposition method, and cvd system Download PDF

Info

Publication number
JP2004197159A
JP2004197159A JP2002366924A JP2002366924A JP2004197159A JP 2004197159 A JP2004197159 A JP 2004197159A JP 2002366924 A JP2002366924 A JP 2002366924A JP 2002366924 A JP2002366924 A JP 2002366924A JP 2004197159 A JP2004197159 A JP 2004197159A
Authority
JP
Japan
Prior art keywords
substrate
raw material
processed
thin film
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002366924A
Other languages
Japanese (ja)
Inventor
Junichi Nishino
純一 西野
Yoshio Nosaka
芳雄 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2002366924A priority Critical patent/JP2004197159A/en
Publication of JP2004197159A publication Critical patent/JP2004197159A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a thin film of oxide can be deposited on the substrate to be treated without using a vacuum, and also, at a temperature lower than that in the conventional method, and to provide a CVD (Chemical Vapor Deposition) system therefor. <P>SOLUTION: The CVD system is, e.g., composed of a reaction chamber 10 capable of atmospheric control, a raw material vaporization tank 7 arranged therein with a raw material for thermal deposition reaction stored therein, a susceptor 2 holding a substrate 6 as the object for treatment to the upper direction of the raw material vaporization tank 7 so as to be close thereto, and a heater 3 controlling the temperature of the substrate 6. The substrate 6 as the object for treatment is heated, and the raw material is heated and vaporized by radiation heat from the substrate 6 to cause thermal decomposition reaction on the substrate 6, by which a thin film consisting of a product by the thermal decomposition reaction is deposited on the substrate 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、CVD法に基づく薄膜形成方法に係り、特に、金属の酸化物の薄膜を100℃以上の比較的低温で被処理基板上に堆積させるための薄膜形成方法に係る。
【0002】
【従来の技術】
近年のディスプレイ技術や半導体技術の発展は目覚しく、その中で、真空を用いないCVDプロセスの低温化及び低コスト化が求められている。
【0003】
従来、酸化物の薄膜をCVD法を用いて形成する際、原料となる反応ガスは原料気化器や輸送用配管の中で酸化反応が進行しないように、キャリヤーガス(アルゴンまたは窒素などの不活性ガス)で希釈された状態で、被処理基板の近傍まで輸送されていた。しかし、このような従来の方法では、キャリヤーガス、キャリヤーガスの配管及び制御系等が必要となり、CVDプロセスのためのランニングコスト及びそれに使用される装置の製作コストを上昇させる要因となっていた。
【0004】
また、原料気化器から被処理基板までの距離が長いため、低温で活性な一部の原料分子及びそのフラグメントが、被処理基板に到達する前に失活してしまうという問題もあった。また、従来の方法では、原料輸送用の配管の中での反応ガスの分解反応による配管の閉塞を避けるため、原料ガスの気化温度を分解温度まで上げることは不可能であった。
【0005】
更に、キャリヤーガスで原料分子が取り囲まれているので、これが反応の妨げとなっていた。例えば、β−ジケトン金属錯体を原料としてZnO(酸化亜鉛)の薄膜を形成する場合、反応ガスとして水蒸気を用いた二重管構造のノズルを持つ装置を用いななければ、低温で薄膜を形成することは困難であり、低温でC軸に高配向したZnOを得ることは不可能であった(特許文献1、2、3、非特許文献1参照)。
【0006】
【特許文献1】
特開2002−2002−309373号公報(請求項1)
【0007】
【特許文献2】
特開2002−2002−069639号公報(請求項5)
【0008】
【特許文献3】
特開2002−2002−069641号公報(請求項1)
【0009】
【非特許文献1】
鎌田,松本:窯業協会誌,89(1981)p.337
【0010】
【発明が解決しようとする課題】
本発明は、以上のような従来のCVD法を用いた酸化物薄膜の形成方法についての問題点に鑑み成されたもので、本発明の目的は、酸化物の薄膜を、真空を用いずに且つ従来よりも低温で、被処理基板上に形成することができる方法及びそのための装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明の薄膜形成方法は、
熱分解反応の原料を原料気化槽の中に収容し、
この原料気化槽の上方に、原料気化槽に近接させて被処理基板を保持し、
前記被処理基板を加熱し、前記被処理基板からの放射熱により前記原料を加熱し気化させて、前記被処理基板上で熱分解反応を生じさせ、
これによって、熱分解反応による生成物からなる薄膜を前記被処理基板上に堆積させることを特徴とする。
【0012】
本発明の方法によれば、大気圧下で、キャリヤーガスを使用することなく、比較的低温で、反応生成物からなる薄膜を被処理基板上に堆積させることができる。従って、本発明の方法によれば、CVDプロセスのためのランニングコスト及びそれに使用される装置の製作コストを引き下げることができる。
【0013】
なお、上記方法において、雰囲気ガス、被処理基板の温度、被処理基板の表面と原料の表面の間の距離、及び原料気化槽の熱伝導度、熱容量などを変化させることによって、得られる薄膜の物性及び形態を制御することができる。
【0014】
更に、本発明の方法によれば、原料気化器及び原料ガスの輸送用配管が不要になり、原料気化槽を交換するだけで(即ち、原料気化器や配管内部等を洗浄することなく)、その前に行われたプロセスにおいて使用された金属イオン等の不純物を含まない状態で、多種類の薄膜を被処理基板上に堆積させることができる。
【0015】
なお、前記原料として金属のβ−ジケトン錯体を使用すれば、キャリヤーガスを用いることなく、熱分解反応により金属酸化物の薄膜を前記被処理基板上に堆積させることができる。
【0016】
例えば、前記錯体として亜鉛のβ−ジケトン錯体を使用すれば、キャリヤーガスを用いることなく、熱分解反応によりZnOの薄膜を前記被処理基板上に堆積させることができる。
【0017】
また、本発明の薄膜形成装置は、
雰囲気調整が可能な反応室と、
この反応室内に配置され、熱分解反応の原料が収容される原料気化槽と、
被処理基板を前記原料気化槽の上方に前記原料気化槽に近接させて保持する基板保持機構と、
前記被処理基板を加熱してその温度を制御する温度制御機構とを備え、
前記被処理基板を加熱し、前記被処理基板からの放射熱によって前記原料を加熱し気化させて、前記被処理基板上で熱分解反応を生じさせ、これによって、前記被処理基板上に熱分解反応による生成物からなる薄膜を堆積させることを特徴とする。
【0018】
好ましくは、本発明の薄膜形成装置は、前記原料気化槽と前記被処理基板との間の距離を調整可能にするため、前記原料気化槽または前記被処理基板の高さを調整する昇降機構を更に備える。
【0019】
【発明の実施の形態】
図1に、本発明の方法に基づいて薄膜を形成する際に使用されるCVD装置の概略構成を示す。図中、2はサセプタ(基板保持機構)、3はヒータ(温度制御機構)、6は基板(被処理基板)、7は原料気化槽、9はジャッキ(昇降機構)、10は反応室を表す。
【0020】
基板6及び原料気化槽7は、雰囲気調整が可能な反応室10の中に収容される。反応室10の底面にはジャッキ9が設置され、その上にセラミックス製の台座8を介してセラミックス製の原料気化槽7が支持されている。反応室10の天井部にはマイクロメータ付きステージ1が下向きに設置され、その下面にサセプタ2が取り付けられている。サセプタ2の下面には、平板状のヒータ3を介して基板6が保持される。ヒータ3には温度センサ5が取り付けられている。基板6の温度は、温度センサ5の出力に基づいて、温度調節器4によって制御される。
【0021】
基板6の表面への薄膜の堆積は、このCVD装置を用いて次の様に行われる。原料気化槽7の中に熱分解反応の原料となる錯体を収容する。原料気化槽7の直上に原料気化槽7に近接させて基板6を保持する。基板6を加熱し、基板6からの放射熱によって原料気化槽7内の原料を加熱し、気化させて、基板6の表面で熱分解反応を生じさせる。これによって、基板6の表面に熱分解反応生成物からなる薄膜を堆積させることができる。
【0022】
なお、基板6の温度、基板6と原料気化槽7の間の距離、あるいは、原料気化槽7及びそれを支持している台座8の熱伝導率や熱容量などを調整することにより、適切なプロセス条件を選び出す。
【0023】
次に、図1に示したCVD装置を用いて、基板6上にZnO薄膜を形成した例について説明する。
【0024】
この例では、熱分解反応の原料となる錯体として、アセチルアセトナート亜鉛[bis(2,4-pentanedionato)zinc,Zn(C]を使用した。処理対象の基板6として、Si単結晶及び溶融石英ガラスを使用した。また、原料気化槽7にはセラミックス(釉薬付き陶器製、直径25mm、深さ4.5mm)を用い、台座8にはセラミックス多孔質板(陶器製、厚さ12mm)を用いた。大気開放下で原料気化槽7の直上に原料気化槽7に近接させて基板6を保持し、ヒータ3で基板6を加熱し、その放射熱によって原料の錯体を気化させ、基板6上にZnO薄膜を堆積させた。
【0025】
主に、基板温度(Ts)及び基板と原料気化槽の間の距離(D)をパラメータに取り、各種の条件でZnO薄膜の形成を行った。得られたZnO薄膜の評価は、XRDによる結晶配向、結晶粒子径の評価、AFM観察、エリプソメーターによる屈折率測定、紫外可視透過率測定などによって行った。
【0026】
図2に、基板と原料表面の間の距離を5.0mmに設定して、溶融石英ガラス基板上にZnO薄膜を堆積したときの、基板温度対堆積速度及び屈折率の関係を示す。
【0027】
図2に示すように、薄膜の堆積速度は、基板温度(Ts)の上昇に伴い指数関数的に増加する。これは、基板の放射熱で原料を気化させているので、原料の気化量が温度に対して指数関数的に増加することに対応していると考えられる。エリプソメーターを用いて測定された屈折率は、基板温度(Ts)が500℃程度になるまでは温度とともに増加したが、温度(Ts)が600℃を超えると減少に転じた。
【0028】
図3に、基板と原料表面の間の距離を5.0mmに設定して、基板温度(Ts)300℃で、溶融石英ガラス基板上にZnOを堆積したときのZnO薄膜のX線回折パターンを示す。この条件を用いて形成されたZnO薄膜は、c軸方向に非常に高い優先配向成長していることが分かる。
【0029】
図4に、基板と原料表面の間の距離を5.0mmに設定して、基板温度150℃から600℃までの範囲で、石英ガラス基板上にZnOを堆積させたときのZnO薄膜のX線回折パターンを示す。
【0030】
全ての基板温度で、c軸配向のZnO薄膜が形成されていることが分かる。また、基板温度300℃と150℃ではZnOの002面と004面に相当する回折ピークのみが観察されており、c軸に完全配向していることが分かる。この図で22度付近のX線強度の盛り上がりは、基板の石英ガラスからのハローである。
【0031】
なお、基板温度が300℃以上の場合には基板と原料表面の間の距離を10mmと長くしても薄膜が形成されたが、150℃では12時間の堆積時間ではZnO薄膜が形成されなかった。
【0032】
図5に、基板と原料表面の間の距離2.5mm、基板温度100℃及び150℃、堆積時間24時間で、石英ガラス基板上にZnOを堆積させたときのZnO薄膜のX線回折パターンを示す。
【0033】
基板温度150℃では、ZnOの002面と004面に相当する回折ピークのみが観察されており、c軸に完全配向していることが分かる。100℃では、堆積速度が低いために膜が薄く、ZnOの002面に相当するピークのみが観察されている。
【0034】
なお、基板温度100℃では、基板と原料表面の間の距離5.0mmの場合にはZnO薄膜は形成されなかった。また、基板温度70℃でも、基板と原料表面の間の距離が2.5mmの場合には基板上にZnO薄膜が形成された。しかし、基板表面に対する付着力が非常に弱く、手で擦っただけで簡単に剥離してしまう程度であった。
【0035】
以上のような各種の条件を用いた実験の結果、基板温度が100℃以上300℃以下、基板と原料表面の間の距離が2mm以上5mm以下の場合に、基板上にc軸に高配向したZnO薄膜が堆積することが分かった。なお、上記の条件内では、c軸:a軸の配向性の比を100:1以上にすることができた。
【0036】
また、被処理基板の温度が高い場合には、原料の気化温度を分解温度まで高めることが可能であり、高い堆積速度が得られることが確認された。
【0037】
【発明の効果】
本発明の薄膜形成方法によれば、大気圧下で、キャリヤーガスを使用することなく、比較的低温において、配向性の高い薄膜を形成することができる。
【0038】
特に、本発明の薄膜形成方法によれば、キャリヤーガスを使用しないので、キャリヤーガス関係の設備及び制御系が不要になり、CVDプロセスのためのランニングコスト及びそれに使用される装置の製作コストを引き下げることができる。更に、原料気化器及び気化器から被処理基板までの配管が不要になるので、原料気化温度を高くすることが可能であり、原料蒸気圧の増大に伴い分解生成物の堆積速度が増加する効果も得られる。
【0039】
また、本発明の薄膜形成方法では、原料気化槽の直上に被処理基板が配置されるので、大面積の被処理基板の表面に均一に薄膜を形成することができる。
【0040】
また、本発明の薄膜形成方法は、比較的低温で実施することができるので、現在広く用いられるPET等のプラスチックフィルム上に酸化亜鉛薄膜を形成することが可能である。従って、プラスチック帯電防止膜やフレキシブルな色素増感型太陽電池への適用、及び、表面弾性波素子、光導波路、レーザー発振素子、LED、FED用電極等の製造コストの引き下げなどに効果がある。
【図面の簡単な説明】
【図1】本発明の方法において使用されるCVD装置の概略構成を示す図。
【図2】基板と原料表面の間の距離5.0mmで、ZnO薄膜を堆積させたときの、基板温度対堆積速度及び屈折率の関係を示す図。
【図3】基板と原料表面の間の距離5.0mm、基板温度300℃で形成されたZnO薄膜のX線回折パターン。
【図4】基板と原料表面の間の距離5.0mm、基板温度150℃から600℃までの範囲で形成されたZnO薄膜のX線回折パターン。
【図5】基板と原料表面の間の距離2.5mm、基板温度100℃及び150℃で形成されたZnO薄膜のX線回折パターン。
【符号の説明】
1…マイクロメータ付きステージ、2…サセプタ(基板保持機構)、3…ヒータ(温度制御機構)、4…温度調節器、5…温度センサ、6…基板(被処理基板)、7…原料気化槽、8…台座、9…ジャッキ、10…反応室。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of forming a thin film based on a CVD method, and more particularly to a method of forming a thin film of a metal oxide on a substrate to be processed at a relatively low temperature of 100 ° C. or more.
[0002]
[Prior art]
In recent years, the development of display technology and semiconductor technology has been remarkable, and in such a situation, there is a demand for a low-temperature and low-cost CVD process without using a vacuum.
[0003]
Conventionally, when an oxide thin film is formed by a CVD method, a reactive gas as a raw material is a carrier gas (an inert gas such as argon or nitrogen) so that an oxidation reaction does not proceed in a raw material vaporizer or a transport pipe. Gas) and transported to the vicinity of the substrate to be processed. However, such a conventional method requires a carrier gas, a carrier gas piping, a control system, and the like, which has been a factor of increasing the running cost for the CVD process and the manufacturing cost of the equipment used for the CVD process.
[0004]
Further, since the distance from the raw material vaporizer to the substrate to be processed is long, there is also a problem that some raw material molecules active at low temperature and fragments thereof are deactivated before reaching the substrate to be processed. Further, in the conventional method, it is impossible to raise the vaporization temperature of the raw material gas to the decomposition temperature in order to avoid blockage of the piping due to the decomposition reaction of the reaction gas in the raw material transporting pipe.
[0005]
Furthermore, the carrier gas surrounds the raw material molecules, which hinders the reaction. For example, when a thin film of ZnO (zinc oxide) is formed using a β-diketone metal complex as a raw material, the thin film is formed at a low temperature unless an apparatus having a double-tube nozzle using steam as a reaction gas is used. It is difficult to obtain ZnO highly oriented along the C axis at a low temperature (see Patent Literatures 1, 2, and 3 and Non-Patent Literature 1).
[0006]
[Patent Document 1]
JP 2002-309373 A (Claim 1)
[0007]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-2002696939 (Claim 5)
[0008]
[Patent Document 3]
Japanese Patent Application Laid-Open Publication No. 2002-2002-069641 (Claim 1)
[0009]
[Non-patent document 1]
Kamada, Matsumoto: Journal of the Ceramic Association, 89 (1981) p. 337
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems with the conventional method of forming an oxide thin film using a CVD method, and an object of the present invention is to form an oxide thin film without using a vacuum. It is another object of the present invention to provide a method and an apparatus therefor which can be formed on a substrate to be processed at a lower temperature than before.
[0011]
[Means for Solving the Problems]
The method of forming a thin film of the present invention comprises:
The raw material for the pyrolysis reaction is stored in a raw material vaporization tank,
Above this raw material vaporization tank, the substrate to be processed is held close to the raw material vaporization tank,
Heating the substrate to be processed, heating and vaporizing the raw material by radiant heat from the substrate to be processed, causing a thermal decomposition reaction on the substrate to be processed,
Thus, a thin film made of a product of the thermal decomposition reaction is deposited on the substrate to be processed.
[0012]
According to the method of the present invention, a thin film composed of a reaction product can be deposited on a substrate to be processed at a relatively low temperature at atmospheric pressure without using a carrier gas. Therefore, according to the method of the present invention, the running cost for the CVD process and the manufacturing cost of the equipment used for it can be reduced.
[0013]
In the above method, by changing the atmosphere gas, the temperature of the substrate to be processed, the distance between the surface of the substrate to be processed and the surface of the raw material, and the thermal conductivity and heat capacity of the raw material vaporization tank, the obtained thin film can be obtained. Physical properties and morphology can be controlled.
[0014]
Further, according to the method of the present invention, a raw material vaporizer and a piping for transporting the raw material gas are not required, and only by replacing the raw material vaporization tank (that is, without cleaning the raw material vaporizer and the inside of the piping), Many types of thin films can be deposited on a substrate to be processed without containing impurities such as metal ions used in a process performed before that.
[0015]
If a metal β-diketone complex is used as the raw material, a metal oxide thin film can be deposited on the substrate by a thermal decomposition reaction without using a carrier gas.
[0016]
For example, when a β-diketone complex of zinc is used as the complex, a ZnO thin film can be deposited on the substrate by a thermal decomposition reaction without using a carrier gas.
[0017]
Further, the thin film forming apparatus of the present invention,
A reaction chamber with adjustable atmosphere,
A raw material vaporization tank that is disposed in the reaction chamber and contains a raw material for the pyrolysis reaction;
A substrate holding mechanism for holding a substrate to be processed in close proximity to the raw material vaporizing tank above the raw material vaporizing tank,
A temperature control mechanism that heats the substrate to be processed and controls the temperature thereof,
The substrate to be processed is heated, and the raw material is heated and vaporized by radiant heat from the substrate to be processed, thereby causing a thermal decomposition reaction on the substrate to be processed. The method is characterized in that a thin film composed of a product of the reaction is deposited.
[0018]
Preferably, the thin film forming apparatus of the present invention includes an elevating mechanism for adjusting a height of the raw material vaporization tank or the substrate to be processed, so that a distance between the raw material vaporization tank and the substrate to be processed can be adjusted. Further provision.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a schematic configuration of a CVD apparatus used for forming a thin film based on the method of the present invention. In the figure, 2 is a susceptor (substrate holding mechanism), 3 is a heater (temperature control mechanism), 6 is a substrate (substrate to be processed), 7 is a raw material vaporization tank, 9 is a jack (elevating mechanism), and 10 is a reaction chamber. .
[0020]
The substrate 6 and the raw material vaporization tank 7 are accommodated in a reaction chamber 10 in which the atmosphere can be adjusted. A jack 9 is provided on the bottom surface of the reaction chamber 10, and a ceramic raw material vaporization tank 7 is supported thereon via a ceramic base 8. A stage 1 with a micrometer is installed downward on the ceiling of the reaction chamber 10, and a susceptor 2 is attached to the lower surface thereof. A substrate 6 is held on the lower surface of the susceptor 2 via a flat heater 3. A temperature sensor 5 is attached to the heater 3. The temperature of the substrate 6 is controlled by the temperature controller 4 based on the output of the temperature sensor 5.
[0021]
The deposition of the thin film on the surface of the substrate 6 is performed as follows using this CVD apparatus. In the raw material vaporization tank 7, a complex to be a raw material for a thermal decomposition reaction is accommodated. The substrate 6 is held just above the raw material vaporizing tank 7 and close to the raw material vaporizing tank 7. The substrate 6 is heated, and the radiant heat from the substrate 6 heats and vaporizes the raw material in the raw material vaporization tank 7 to cause a thermal decomposition reaction on the surface of the substrate 6. As a result, a thin film made of a thermal decomposition reaction product can be deposited on the surface of the substrate 6.
[0022]
By adjusting the temperature of the substrate 6, the distance between the substrate 6 and the raw material vaporizing tank 7, or the thermal conductivity and heat capacity of the raw material vaporizing tank 7 and the pedestal 8 supporting the same, an appropriate process can be performed. Select conditions.
[0023]
Next, an example in which a ZnO thin film is formed on the substrate 6 by using the CVD apparatus shown in FIG. 1 will be described.
[0024]
In this example, zinc acetylacetonate [bis (2,4-pentanedionato) zinc, Zn (C 5 H 7 O 2 ) 2 ] was used as a complex as a raw material for the thermal decomposition reaction. As the substrate 6 to be processed, a Si single crystal and a fused quartz glass were used. Further, ceramics (made of ceramic with glaze, diameter 25 mm, depth 4.5 mm) was used for the raw material vaporization tank 7, and a porous ceramic plate (made of ceramic, thickness 12 mm) was used for the base 8. The substrate 6 is held in close proximity to the raw material vaporizing tank 7 immediately above the raw material vaporizing tank 7 under the open to the atmosphere, the substrate 6 is heated by the heater 3, and the radiant heat evaporates the raw material complex. A thin film was deposited.
[0025]
The ZnO thin film was formed under various conditions mainly using the substrate temperature (Ts) and the distance (D) between the substrate and the raw material vaporization tank as parameters. Evaluation of the obtained ZnO thin film was performed by evaluation of crystal orientation and crystal particle diameter by XRD, AFM observation, refractive index measurement by ellipsometer, UV-visible transmittance measurement, and the like.
[0026]
FIG. 2 shows the relationship between substrate temperature, deposition rate, and refractive index when a ZnO thin film is deposited on a fused silica glass substrate with the distance between the substrate and the raw material surface set to 5.0 mm.
[0027]
As shown in FIG. 2, the deposition rate of the thin film increases exponentially as the substrate temperature (Ts) increases. This is considered to correspond to the fact that the raw material is vaporized by the radiant heat of the substrate, so that the amount of vaporized raw material increases exponentially with temperature. The refractive index measured using an ellipsometer increased with the temperature until the substrate temperature (Ts) reached about 500 ° C., but turned to decrease when the temperature (Ts) exceeded 600 ° C.
[0028]
FIG. 3 shows an X-ray diffraction pattern of a ZnO thin film when ZnO was deposited on a fused silica glass substrate at a substrate temperature (Ts) of 300 ° C. with the distance between the substrate and the raw material surface set to 5.0 mm. Show. It can be seen that the ZnO thin film formed under these conditions grows with very high preferential orientation in the c-axis direction.
[0029]
FIG. 4 shows an X-ray of a ZnO thin film when ZnO is deposited on a quartz glass substrate at a substrate temperature of 150 ° C. to 600 ° C. with the distance between the substrate and the raw material surface set to 5.0 mm. 3 shows a diffraction pattern.
[0030]
It can be seen that a c-axis oriented ZnO thin film is formed at all substrate temperatures. At substrate temperatures of 300 ° C. and 150 ° C., only diffraction peaks corresponding to the 002 plane and the 004 plane of ZnO were observed, indicating that the substrate was completely oriented along the c-axis. In this figure, the peak of the X-ray intensity near 22 degrees is a halo from the quartz glass of the substrate.
[0031]
When the substrate temperature was 300 ° C. or higher, a thin film was formed even when the distance between the substrate and the material surface was increased to 10 mm, but a ZnO thin film was not formed at a deposition time of 12 hours at 150 ° C. .
[0032]
FIG. 5 shows an X-ray diffraction pattern of a ZnO thin film when ZnO was deposited on a quartz glass substrate at a distance of 2.5 mm between the substrate and the raw material surface, substrate temperatures of 100 ° C. and 150 ° C., and a deposition time of 24 hours. Show.
[0033]
At a substrate temperature of 150 ° C., only diffraction peaks corresponding to the 002 plane and the 004 plane of ZnO are observed, and it can be seen that they are completely oriented along the c-axis. At 100 ° C., the film was thin because the deposition rate was low, and only a peak corresponding to the 002 plane of ZnO was observed.
[0034]
At a substrate temperature of 100 ° C., no ZnO thin film was formed when the distance between the substrate and the material surface was 5.0 mm. Even when the substrate temperature was 70 ° C., when the distance between the substrate and the raw material surface was 2.5 mm, a ZnO thin film was formed on the substrate. However, the adhesive force to the substrate surface was very weak, and it was such that it was easily peeled off only by rubbing by hand.
[0035]
As a result of experiments using various conditions as described above, when the substrate temperature was 100 ° C. or more and 300 ° C. or less, and the distance between the substrate and the material surface was 2 mm or more and 5 mm or less, the film was highly oriented along the c-axis on the substrate. It was found that a ZnO thin film was deposited. Under the above conditions, the ratio of the c-axis: a-axis orientation could be 100: 1 or more.
[0036]
Further, it was confirmed that when the temperature of the substrate to be processed was high, the vaporization temperature of the raw material could be increased to the decomposition temperature, and a high deposition rate was obtained.
[0037]
【The invention's effect】
According to the thin film forming method of the present invention, a thin film having a high orientation can be formed at a relatively low temperature at atmospheric pressure without using a carrier gas.
[0038]
In particular, according to the thin film forming method of the present invention, since no carrier gas is used, equipment and a control system related to the carrier gas are not required, and the running cost for the CVD process and the manufacturing cost of the equipment used for the CVD process are reduced. be able to. Furthermore, since a raw material vaporizer and piping from the vaporizer to the substrate to be processed are not required, the raw material vaporization temperature can be increased, and the deposition rate of decomposition products increases as the raw material vapor pressure increases. Is also obtained.
[0039]
Further, in the method of forming a thin film of the present invention, since the substrate to be processed is disposed immediately above the raw material vaporization tank, a thin film can be uniformly formed on the surface of the substrate to be processed having a large area.
[0040]
Further, since the thin film forming method of the present invention can be performed at a relatively low temperature, it is possible to form a zinc oxide thin film on a plastic film such as PET which is widely used at present. Therefore, the present invention is effective for application to a plastic antistatic film or a flexible dye-sensitized solar cell, and reduction in manufacturing costs of surface acoustic wave devices, optical waveguides, laser oscillation devices, LEDs, electrodes for FED, and the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a CVD apparatus used in a method of the present invention.
FIG. 2 is a diagram showing a relationship between a substrate temperature, a deposition rate, and a refractive index when a ZnO thin film is deposited at a distance of 5.0 mm between a substrate and a raw material surface.
FIG. 3 is an X-ray diffraction pattern of a ZnO thin film formed at a distance of 5.0 mm between a substrate and a raw material surface and a substrate temperature of 300 ° C.
FIG. 4 is an X-ray diffraction pattern of a ZnO thin film formed at a distance between a substrate and a raw material surface of 5.0 mm and a substrate temperature of 150 ° C. to 600 ° C.
FIG. 5 is an X-ray diffraction pattern of a ZnO thin film formed at a distance of 2.5 mm between the substrate and the raw material surface and at a substrate temperature of 100 ° C. and 150 ° C.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stage with a micrometer, 2 ... Susceptor (substrate holding mechanism), 3 ... Heater (temperature control mechanism), 4 ... Temperature controller, 5 ... Temperature sensor, 6 ... Substrate (substrate to be processed), 7 ... Material vaporization tank , 8 pedestal, 9 jack, 10 reaction chamber.

Claims (7)

熱分解反応の原料を原料気化槽の中に収容し、
この原料気化槽の上方に、原料気化槽に近接させて被処理基板を保持し、
前記被処理基板を加熱し、前記被処理基板からの放射熱により前記原料を加熱し気化させて、前記被処理基板上で熱分解反応を生じさせ、
これによって、熱分解反応による生成物からなる薄膜を前記被処理基板上に堆積させることを特徴とする薄膜形成方法。
The raw material for the pyrolysis reaction is stored in a raw material vaporization tank,
Above this raw material vaporization tank, the substrate to be processed is held close to the raw material vaporization tank,
Heating the substrate to be processed, heating and vaporizing the raw material by radiant heat from the substrate to be processed, causing a thermal decomposition reaction on the substrate to be processed,
Thus, a thin film forming method comprising depositing a thin film made of a product of a thermal decomposition reaction on the substrate to be processed.
前記原料は金属のβ−ジケトン錯体であって、前記熱分解反応による生成物は金属酸化物であることを特徴とする請求項1に記載の薄膜形成方法。The method according to claim 1, wherein the raw material is a metal β-diketone complex, and a product of the thermal decomposition reaction is a metal oxide. 前記原料は亜鉛のβ−ジケトン錯体であって、前記熱分解反応による生成物はZnOであることを特徴とする請求項1に記載の薄膜形成方法。The method according to claim 1, wherein the raw material is a β-diketone complex of zinc, and a product of the thermal decomposition reaction is ZnO. 雰囲気調整が可能な反応室と、
この反応室内に配置され、熱分解反応の原料が収容される原料気化槽と、
被処理基板を前記原料気化槽の上方に前記原料気化槽に近接させて保持する基板保持機構と、
前記被処理基板を加熱してその温度を制御する温度制御機構とを備え、
前記被処理基板を加熱し、前記被処理基板からの放射熱により前記原料を加熱し気化させて、前記被処理基板上で熱分解反応を生じさせ、これによって、前記被処理基板上に熱分解反応による生成物からなる薄膜を堆積させることを特徴とするCVD装置。
A reaction chamber with adjustable atmosphere,
A raw material vaporization tank that is disposed in the reaction chamber and contains a raw material for the pyrolysis reaction;
A substrate holding mechanism for holding a substrate to be processed in close proximity to the raw material vaporizing tank above the raw material vaporizing tank,
A temperature control mechanism that heats the substrate to be processed and controls the temperature thereof,
The substrate to be processed is heated, and the raw material is heated and vaporized by radiant heat from the substrate to be processed, thereby causing a thermal decomposition reaction on the substrate to be processed. A CVD apparatus for depositing a thin film made of a product of a reaction.
前記原料気化槽と前記被処理基板との間の距離を調整可能にするため、前記原料気化槽または前記被処理基板の高さを調整する昇降機構を更に備えたことを特徴とする請求項4に記載のCVD装置。5. The apparatus according to claim 4, further comprising an elevating mechanism for adjusting a height of the raw material vaporizing tank or the substrate to be processed so that a distance between the raw material vaporizing tank and the substrate to be processed can be adjusted. 3. The CVD apparatus according to 1. 前記原料は金属のβ−ジケトン錯体であって、前記熱分解反応による生成物は金属酸化物であることを特徴とする請求項4に記載のCVD装置。The CVD apparatus according to claim 4, wherein the raw material is a metal β-diketone complex, and a product of the thermal decomposition reaction is a metal oxide. 前記原料は亜鉛のβ−ジケトン錯体であって、前記熱分解反応による生成物はZnOであることを特徴とする請求項4に記載のCVD装置。The CVD apparatus according to claim 4, wherein the raw material is a β-diketone complex of zinc, and a product of the thermal decomposition reaction is ZnO.
JP2002366924A 2002-12-18 2002-12-18 Thin film deposition method, and cvd system Pending JP2004197159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366924A JP2004197159A (en) 2002-12-18 2002-12-18 Thin film deposition method, and cvd system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366924A JP2004197159A (en) 2002-12-18 2002-12-18 Thin film deposition method, and cvd system

Publications (1)

Publication Number Publication Date
JP2004197159A true JP2004197159A (en) 2004-07-15

Family

ID=32763983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366924A Pending JP2004197159A (en) 2002-12-18 2002-12-18 Thin film deposition method, and cvd system

Country Status (1)

Country Link
JP (1) JP2004197159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213104A (en) * 2013-05-31 2014-12-17 理想晶延半导体设备(上海)有限公司 Control method of substrate temperature in chemical vapor deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248358A (en) * 1999-03-01 2000-09-12 Casio Comput Co Ltd Vapor deposition device and vapor deposition method
JP2001168035A (en) * 1999-12-09 2001-06-22 Tohoku Ricoh Co Ltd Photoconductive member, method of manufacturing it, electrophotographic photosensitive body, and optical sensor
JP2002275629A (en) * 2000-12-28 2002-09-25 Seiko Epson Corp Method for forming thin film and electronic appliance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248358A (en) * 1999-03-01 2000-09-12 Casio Comput Co Ltd Vapor deposition device and vapor deposition method
JP2001168035A (en) * 1999-12-09 2001-06-22 Tohoku Ricoh Co Ltd Photoconductive member, method of manufacturing it, electrophotographic photosensitive body, and optical sensor
JP2002275629A (en) * 2000-12-28 2002-09-25 Seiko Epson Corp Method for forming thin film and electronic appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213104A (en) * 2013-05-31 2014-12-17 理想晶延半导体设备(上海)有限公司 Control method of substrate temperature in chemical vapor deposition

Similar Documents

Publication Publication Date Title
TWI554641B (en) A substrate processing apparatus, a manufacturing method of a semiconductor device, and a recording medium
KR100803445B1 (en) Process for controlling thin film uniformity and products produced thereby
CN108083339B (en) Method for preparing single-layer two-dimensional transition metal sulfide material
WO2008024566A2 (en) Overall defect reduction for pecvd films
JP6353986B2 (en) Apparatus and method for producing free-standing CVD polycrystalline diamond film
JP3984820B2 (en) Vertical vacuum CVD equipment
JP2004197159A (en) Thin film deposition method, and cvd system
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
Teshima et al. Room-temperature deposition of high-purity silicon oxide films by RF plasma-enhanced CVD
JP2002093790A (en) Method and device for manufacturing semiconductor device
EP2484804B1 (en) Catalytic cvd device, method for formation of film, process for production of solar cell, and substrate holder
JP2891383B2 (en) CVD equipment
JP4451508B2 (en) Vapor growth method
RU2789692C1 (en) Method for synthesising nanocrystalline silicon carbide films on a silicon substrate
WO2001081660A1 (en) Diamond synthesizing method and device
KR100503425B1 (en) Apparatus and method using cold wall type low vacuum organic vapor transport deposition for organic thin film and organic devices
KR100995252B1 (en) Method of preparing molybdenum trioxide thin film using molybdenum trioxide powder
JP3532397B2 (en) Pyrolytic boron nitride conical cylinder and method for producing the same
JPH08274033A (en) Vapor growth method and device
JP2003218046A (en) Heating element cvd apparatus and heating element cvd method using the same
JPS60131969A (en) Chemical vapor growth deposition device
JP2005109098A (en) Thin film forming device and method
KR100712391B1 (en) Multicoating heater using ceramic thermal spray coating for processing wafer
JP2022037504A (en) Method of depositing molybdenum oxide film and equipment for the same
WO2005077525A1 (en) Crystalline thin film and method for producing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509