[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02168223A - Optical system having image deflecting function - Google Patents

Optical system having image deflecting function

Info

Publication number
JPH02168223A
JPH02168223A JP63325557A JP32555788A JPH02168223A JP H02168223 A JPH02168223 A JP H02168223A JP 63325557 A JP63325557 A JP 63325557A JP 32555788 A JP32555788 A JP 32555788A JP H02168223 A JPH02168223 A JP H02168223A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
image
apex angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63325557A
Other languages
Japanese (ja)
Other versions
JP2547834B2 (en
Inventor
Nozomi Kitagishi
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63325557A priority Critical patent/JP2547834B2/en
Publication of JPH02168223A publication Critical patent/JPH02168223A/en
Priority to US07/701,326 priority patent/US5140462A/en
Application granted granted Critical
Publication of JP2547834B2 publication Critical patent/JP2547834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To correct small an eccentric distortion generated in an image deflection optical system by constituting the optical system so that distortion coefficients of a first lens group and a second lens group at the time when a focal distance of the whole system is normalized to '1' satisfy specific conditions. CONSTITUTION:The system is provided with a first lens group I which is fixed with regard to eccentricity, a variable apex angle prism 4 whose apex angle is variable, and a second lens group II which is fixed with regard to eccentricity, and provided with an image deflecting means for varying an apex angle of a variable apex angle prism P so that an image is deflected. In this state, when distortion coefficients of a first lens group I and a second lens group II at the time when a focal distance of the whole system is normalized to '1' are denoted as V1 and V2, respectively, such an aberration system as satisfies conditions of an expression I is taken. In such a way, an eccentric distortion of the optical system which is provided with the variable apex angle prism P on the inside of the lens and executes an image deflection can be corrected small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は画像偏向手段を有した撮影系に関し、特にレン
ズ系中にプリズム頂角を可変とする可変頂角プリズムを
設け、該可変頂角プリズムにより撮影画像を偏向させ振
動等による画像のブレを補正した写真用カメラやビデオ
カメラ等に好適な画像偏向手段を有した撮影系に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photographing system having an image deflecting means, and in particular, a variable apex prism having a variable apex angle is provided in a lens system, and the variable apex angle is The present invention relates to a photographing system having an image deflecting means suitable for a photographic camera, a video camera, etc., in which a photographed image is deflected by a prism to correct image blur caused by vibration or the like.

〔従来の技術〕 進行中の車上等から撮影すると撮影系に振動が伝わり、
撮影画像にブレが生じて(る。従来よりこのときの画像
のブレを光学系中に平行平面板や可変頂角プリズムを配
置して補正した画像偏向手段を有した撮影系が種々と提
案されている。
[Conventional technology] When photographing from above a moving vehicle, vibrations are transmitted to the photographing system.
A number of photographic systems have been proposed in the past that have image deflection means that compensate for the blurring of images by arranging parallel plane plates or variable apex angle prisms in the optical system. ing.

例えば、可変頂角プリズムを利用して画像のブレを補正
した撮影系が特公昭56−21133号公報で提案され
ている。同公報では2枚の平行平面ガラスの間に液体や
透明弾性体を封入し、2枚の平行平面板のなす角度を可
変として画像のブレを補正している。
For example, Japanese Patent Publication No. 56-21133 proposes an imaging system that uses a variable apex angle prism to correct image blur. In this publication, a liquid or a transparent elastic body is sealed between two parallel plane glasses, and the angle formed by the two plane parallel plates is made variable to correct image blur.

この他、同公報では曲率を有する平凸レンズと平凹レン
ズを球面間で摺動させることにより、相対する平面のな
す角度を可変にして画像のブレを補正した撮影系を提案
している。
In addition, the same publication proposes an imaging system in which image blur is corrected by varying the angle formed by opposing planes by sliding a plano-convex lens and a plano-concave lens having curvature between spherical surfaces.

同公報に開示されている従来例では、レンズ系の中に可
変頂角プリズムが設けられているので可変頂角プリズム
の径を一般的に小さ(できるという利点がある。
In the conventional example disclosed in this publication, since the variable apex angle prism is provided in the lens system, there is an advantage that the diameter of the variable apex angle prism can generally be made small.

〔発明が解決しようとしている問題点〕しかし、上記従
来例の様にレンズ系の内部に可変頂角プリズムを設ける
構成にすると像を偏向したとき、つまり頂角を変化させ
た時に生じる偏心歪曲収差が太き(なるという欠点があ
る。以下にその説明を行う。
[Problem to be solved by the invention] However, if a variable apex angle prism is provided inside the lens system as in the conventional example described above, eccentric distortion occurs when the image is deflected, that is, when the apex angle is changed. It has the disadvantage that it is thick (this will be explained below).

第6図及び第7図は可変頂角プリズムの偏心歪曲収差発
生の様子を示す図である。
FIGS. 6 and 7 are diagrams showing how eccentric distortion aberration occurs in a variable apex angle prism.

第6図(A)は可変頂角プリズムの2つの面が平行にな
っている基準状態を示し、光線0. a、 bはそれぞ
れ画面中心0′、軸外a/ 、 bl  に結像する光
束の主光線を夫々示す。第6図(B)及び第7図は可変
頂角プリズムにAの頂角が付いた時の主光線0. a、
 bの様子を示すものである。画角をθとし、第2面が
A傾いてAの頂角を有する可変頂角プリズムにθの角度
で入射する光線は、θ1 =sin” (sinθ/N
P)       (1)θ2=θ、 +A     
        (2)θp =Sjn−’ (N p
 ’ Sjnθ2)  A   (3)の式で表わされ
る様に屈折して光軸となす角がθpで可変頂角プリズム
を射出する。ここでθ1は可変頂角プリズムの第1面に
於ける屈折角、θ2は第2面の入射角、θ2 はその射
出角、θpは射出光線が光軸となす角度である。尚、N
Pはプリズムの屈折率を示す。そして光軸Oに対してθ
pの角度を持つ主光線はy  =f −tan /l?
 pで表わされる像高に結像することになる。
FIG. 6(A) shows a reference state in which the two surfaces of the variable apex angle prism are parallel, and the ray 0. a and b respectively indicate the chief rays of the light beams that form images at the screen center 0' and off-axis a/ and bl. 6(B) and 7 show the chief ray 0.0 when the variable apex angle prism has an apex angle of A. a,
This shows the state of b. The angle of view is θ, and a light ray that enters at an angle θ into a variable apex prism whose second surface is tilted A and has an apex angle of A is expressed as θ1 = sin” (sin θ/N
P) (1) θ2=θ, +A
(2) θp = Sjn-' (N p
'Sjnθ2) A As expressed by the equation (3), the beam is refracted and exits the variable apex prism at an angle of θp with the optical axis. Here, θ1 is the refraction angle at the first surface of the variable apex prism, θ2 is the incident angle at the second surface, θ2 is the exit angle, and θp is the angle that the exit light ray makes with the optical axis. Furthermore, N
P indicates the refractive index of the prism. And θ with respect to the optical axis O
The chief ray with angle p is y = f - tan /l?
The image will be formed at an image height represented by p.

従って、もし、可変頂角プリズムの第2面に於ける主光
線の偏向角δ(δ=θp−θ)が全て同一であれば像面
上で像は元の形を保ったまま偏向されるが、実際には可
変頂角プリズムへの入射角が異なると各主光線の偏向角
も異なり、第6図(B)の様に像面上の各点o/ 、 
a/ 、 bl  は夫々異なった動きをする。このこ
とを定量的に示すと第7図の可変頂角プリズムに於いて
基準状態から頂角が微小角dA変化した時の射出角の変
化fidθpとの比すなわち敏感度を可変頂角プリズム
への入射角θの関数で表わすと、 と示すことができる。この式は入射角θの絶対値が太き
(なる程敏感度dθP/dAは正の値で大きくなること
を示している。
Therefore, if the deflection angles δ (δ = θp - θ) of the principal rays on the second surface of the variable apex prism are all the same, the image will be deflected while maintaining its original shape on the image plane. However, in reality, when the angle of incidence on the variable apex prism differs, the deflection angle of each principal ray also differs, and as shown in FIG. 6(B), each point o/ on the image plane,
a/ and bl behave differently. To show this quantitatively, in the variable apex angle prism shown in Fig. 7, the ratio of the change in the exit angle fidθp when the apex angle changes by a small angle dA from the reference state, that is, the sensitivity to the variable apex angle prism, is When expressed as a function of the incident angle θ, it can be shown as follows. This equation shows that the absolute value of the incident angle θ is large (indeed, the sensitivity dθP/dA becomes large with a positive value).

そして第7図に示す通り、軸上光線Oはプリズム面への
入射角が小さいので、頂角A1つまりブリズム第2面へ
の入射角が角度Aに変化したときの偏向角δ(δ=θ2
−θ)は、頂角Aに比例した関係つまりδ# (NP−
1)Aで示される。
As shown in FIG. 7, since the angle of incidence of the axial ray O on the prism surface is small, the deflection angle δ (δ=θ2
-θ) is proportional to the apex angle A, that is, δ# (NP-
1) Indicated by A.

一方、軸外光線aのように第2面への入射角が比較的大
きい場合には頂角Aが同様に角度A変化しても偏向角は
旧式δ= (N、−1)Aで表わされる値より絶対値で
大きい値をとる。
On the other hand, when the angle of incidence on the second surface is relatively large, such as an off-axis ray a, even if the apex angle A changes by the same angle A, the deflection angle is expressed by the old formula δ = (N, -1)A. takes a value that is larger in absolute value than the value given.

例えばaの光線は頂角が第7図の方向にAになったとき
、可変頂角プリズムの第2面への入射角θ2は基準状態
より大きい方向に変化するので射出光の傾角θ2はθ+
δより大きくなる。従って、像面上では第6図(B)の
ad  に示す様にオーバー方向に歪む。
For example, when the apex angle of ray a becomes A in the direction shown in Fig. 7, the incident angle θ2 on the second surface of the variable apex prism changes to be larger than the reference state, so the inclination angle θ2 of the emitted light becomes θ+
becomes larger than δ. Therefore, on the image plane, it is distorted in the over direction as shown by ad in FIG. 6(B).

一方すの光線は頂角がAになったとき、可変頂角プリズ
ムの第2面への入射角θ2は基準状態より絶対値で小さ
い方向に変化するので射出光の傾角θ1は絶対値でθ十
δより小さくなる。従って像面上では第6図(B)のb
7I に示す様にやはりオーバ一方向に歪むことになる
On the other hand, when the apex angle of the ray of light becomes A, the angle of incidence θ2 on the second surface of the variable apex prism changes to be smaller in absolute value than the reference state, so the inclination angle θ1 of the emitted light is θ1 in absolute value. It becomes smaller than 10δ. Therefore, on the image plane, b in Fig. 6(B)
As shown in 7I, distortion occurs in one direction.

この様に偏心歪曲収差があるときは、第8図(A)に示
す様な被写体の像は(B)の実線で示す様な形に歪む。
When eccentric distortion aberration exists in this way, the image of the object shown in FIG. 8(A) is distorted into the shape shown by the solid line in FIG. 8(B).

尚、点線は歪曲収差のない場合の理想像である。Note that the dotted line is an ideal image without distortion.

従って手ブレで生ずる像ブレを、可変頂角プリズムで像
を逆方向に偏向して補正する防振光学系に於いては、上
述した通りの偏心歪曲収差があると、画面中心の点と軸
外の点で移動量が異なることになるので画面中心で像ブ
レを補正したとしても周辺では像の流れを生じてしまう
。第8図(C)は(A)の様な被写体を偏心歪曲収差の
ある防振光学系で像プレ補正した結果である。
Therefore, in an anti-vibration optical system that corrects image blur caused by camera shake by deflecting the image in the opposite direction using a variable apex prism, if there is eccentric distortion as described above, the center point of the screen and the axis Since the amount of movement differs at the outer points, even if image blur is corrected at the center of the screen, image drift will occur at the periphery. FIG. 8(C) shows the result of image pre-correction of an object like that in FIG. 8(A) using an anti-vibration optical system with eccentric distortion aberration.

可変頂角プリズムをレンズ系の内部に設ける構成とする
と上述した通り可変頂角プリズムの径を小さくできると
いう利点がある。しかし防振が望まれる望遠系の対物レ
ンズに於ては軸外光束の主光線の傾角は大きくなること
、そして、像面上で同じ偏向量を得るにもレンズ系の前
に設ける場合より大きく頂角を変化する必要があること
、この2つの要因で偏心歪曲収差がより大きく発生して
しまう傾向にある。
The configuration in which the variable apex angle prism is provided inside the lens system has the advantage that the diameter of the variable apex prism can be reduced as described above. However, in a telephoto objective lens where image stabilization is desired, the angle of inclination of the principal ray of the off-axis beam becomes large, and in order to obtain the same amount of deflection on the image plane, the angle of inclination of the principal ray of the off-axis beam becomes larger than when it is installed in front of the lens system. The need to change the apex angle tends to cause larger eccentric distortion due to these two factors.

本発明は、この問題点に鑑みて、光学系の小型化を図る
一方、光学的性能の高い特に歪曲収差の良好な像偏向機
能を有する光学系を提供することにある。
SUMMARY OF THE INVENTION In view of this problem, it is an object of the present invention to provide an optical system that has high optical performance, particularly an image deflection function with good distortion aberration, while reducing the size of the optical system.

〔問題点を解決するための手段(及び作用)〕本発明は
、物体側より順に、偏心に関して固定の第1レンズ群、
頂角が可変の可変頂角プリズム、そして偏心に関して固
定の第゛2レンズ群を有し、該可変頂角プリズムの頂角
を変化させることにより像を偏向させるようにした像偏
向手段を有した光学系に於いて、全系の焦点距離を1と
正規化したときの前記第1レンズ群と第2レンズ群の歪
曲収差係数を各々V、、V2とするとき、 v2〉0         (4) 1.3<V 、 /V 2< −0,7(5)なる条件
を満足する様な収差補正方式をとることにより、可変頂
角プリズムをレンズ内部に設は像偏向を行う光学系の偏
心歪曲収差を小さ(補正することにある。
[Means for solving the problem (and operation)] The present invention provides, in order from the object side, a first lens group that is fixed with respect to eccentricity;
It had a variable apex angle prism with a variable apex angle, a second lens group whose eccentricity was fixed, and an image deflecting means configured to deflect an image by changing the apex angle of the variable apex prism. In the optical system, when the focal length of the entire system is normalized to 1 and the distortion aberration coefficients of the first lens group and the second lens group are respectively V and V2, v2>0 (4) 1 By adopting an aberration correction method that satisfies the following conditions: .3<V, /V2<-0,7 (5), a variable apex prism can be installed inside the lens to reduce eccentric distortion of the optical system that deflects the image. The purpose is to reduce (correct) aberrations.

〔実施例〕〔Example〕

以下、本発明の詳細な説明していく。第5図は、本発明
に係る光学系の概略図を示す図である。■は歪曲収差を
オーバー傾向発生させている一方、可変頂角プリズムP
の前方に配置される第1レンズ群、■は歪曲収差をアン
ダー傾向に保つとともに可変頂角プリズムPの後方に配
置される第2レンズ群である。Fはフィルム面を示す。
The present invention will be explained in detail below. FIG. 5 is a diagram showing a schematic diagram of an optical system according to the present invention. ■ The variable apex prism P tends to cause excessive distortion, while the variable apex prism P
The first lens group is placed in front of the variable apex prism P, and the second lens group is placed behind the variable apex angle prism P. F indicates the film surface.

aは画角θ。の主光線を示す。a is the angle of view θ. shows the chief ray of

本実施例が示す光学系に於いては、第1レンズ群■と第
2レンズ群■がそれぞれ大きい歪曲収差を持っているが
、特にプリズムPの頂角を変化させる以前つまり基準状
態にあっては、第1レンズ群が発生しているオーバーの
歪曲収差を第2レンズ群が発生しているアンダーの歪曲
収差で打ち消し合い、全体の撮影系(I、  P、  
n)として第5図(A)に示す如く良好に収差補正を行
っている。
In the optical system shown in this example, the first lens group (■) and the second lens group (■) each have large distortion, but especially before the apex angle of the prism P is changed, that is, in the reference state. The over distortion generated by the first lens group is canceled out by the under distortion generated by the second lens group, and the entire imaging system (I, P,
n), the aberrations are well corrected as shown in FIG. 5(A).

即ち、基準状態に於いて第1レンズ群Iと第2レンズ群
■が発生する歪曲収差を夫々Dis (θo)InDi
s (θo)nとする時、 Dis  (θo)1 = −Dis  (θo)aと
いう関係を満足させている。
That is, the distortion generated by the first lens group I and the second lens group ① in the reference state are respectively Dis (θo)InDi
When s (θo)n, the following relationship is satisfied: Dis (θo)1 = -Dis (θo)a.

さて次に2つのレンズ群1.  IIがこの様に収差補
正されたうえで頂角を変化させて像偏向を行った状態を
第5図(B)に示す。初期状態と同じ画角θ。の主光線
は、当然のことながら第1レンズ群■で初期状態と全く
同じ値の歪曲収差を発生する。
Now, next are the two lens groups 1. FIG. 5(B) shows a state in which the aberrations of II are corrected in this way and the apex angle is changed to perform image deflection. The angle of view θ is the same as the initial state. Naturally, the chief ray causes distortion in the first lens group (2) with exactly the same value as in the initial state.

そして第1レンズ群Iをθの傾角で射出した主光線aは
Aの頂角のついた可変頂角プリズムPでΔだけ偏向され
るが、前に述べた様に、光軸付近の光線の偏向量δ# 
(NP−1)Aより大きく偏向されて偏向量が過剰とな
っている。
The principal ray a exiting the first lens group I at an inclination angle of θ is deflected by Δ by the variable apex angle prism P with an apex angle of A, but as mentioned earlier, the rays near the optical axis Deflection amount δ#
(NP-1) It is deflected more than A, and the amount of deflection is excessive.

従って可変頂角プリズムPを射出した主光線は(θ十Δ
)と基準状態よりΔだけ大きい傾角で第2レンズ群■に
入射することになる。この時、第2レンズ群■の傾角θ
の時の歪曲収差量より傾角(θ+Δ)の時の歪曲収差量
は、よりアンダ一方向で太き(なっているので可変頂角
プリズムで偏向された主光線の偏向過剰(すなわち可変
頂角プリズムの偏心歪曲収差になる)が補正され、像面
上での偏向量と光軸上を入射してくる光線Oの偏向量と
の差を小さ(補正することができる。すなわち偏心歪曲
収差を小さく補正することができる。この時の歪曲収差
の関係は、 Dis(θo)t+Dis(θ* A)P #  Di
s(θ+Δ)■と示すことができる。尚、Dis (θ
、A)PはAの頂角を有する可変頂角プリズムで生ずる
歪曲収差、Dis (θ+Δ)nは傾角(θ+Δ)の光
線の第2レンズ群の歪曲収差を表わす。
Therefore, the chief ray exiting the variable apex angle prism P is (θ + Δ
) and enters the second lens group (2) at an inclination angle that is Δ larger than the reference state. At this time, the inclination angle θ of the second lens group ■
The amount of distortion when the tilt angle is (θ + Δ) is thicker in one direction than the amount of distortion when the angle of inclination is (θ + Δ). The difference between the amount of deflection on the image plane and the amount of deflection of the ray O incident on the optical axis can be reduced (corrected. In other words, the eccentric distortion aberration can be reduced). The relationship of distortion aberration at this time is Dis(θo)t+Dis(θ*A)P#Di
It can be expressed as s(θ+Δ)■. Furthermore, Dis (θ
, A) P represents the distortion caused by the variable apex angle prism having the apex angle of A, and Dis (θ+Δ)n represents the distortion of the second lens group of the ray with the inclination angle (θ+Δ).

ここで第2レンズ群に入射する軸外光束の傾角が大きく
なるに従い歪曲収差が大きくなるという必要条件は第2
レンズ群の3次の歪曲収差係数をV2とするとき、 v 2>o               (4)とす
ることである。尚、この(4)式が意味することは歪曲
収差がアンダーであることを示す。
Here, the necessary condition that the distortion increases as the inclination angle of the off-axis beam incident on the second lens group increases is the second
When the third-order distortion aberration coefficient of the lens group is V2, v 2>o (4) is satisfied. Note that this equation (4) means that the distortion is under.

そして初期状態から像を偏向させる状態まで、全体にわ
たって良好に歪曲収差を良好に補正するためには、第1
レンズ群■の3次の歪曲収差係数をV、とした時、 1.3<V 、 /V 2< −0,7(5)なる条件
式を満足させるとよい。
In order to properly correct distortion aberration throughout the entire process from the initial state to the state where the image is deflected, the first
When the third-order distortion aberration coefficient of lens group (2) is V, it is preferable to satisfy the following conditional expressions: 1.3<V, /V2<-0,7 (5).

条件式(5)の上限値を越えると、第1レンズ群の歪曲
収差が過剰ぎみのオーバーになるとともに、撮影系全体
としてみたときにも初期状態あるいは偏向時にオーバー
傾向の歪曲収差が残存して好ましくない。一方下限値を
越えると、第2レンズ群Hの歪曲収差が過剰ぎみのアン
ダーになり、撮影系全体としても、基準あるいは偏向時
にアンダー傾向の歪曲収差が残存して好ましくない。
If the upper limit of conditional expression (5) is exceeded, the distortion of the first lens group becomes excessively excessive, and when the photographing system as a whole is viewed, distortion that tends to be excessive remains in the initial state or during deflection. Undesirable. On the other hand, if the lower limit is exceeded, the distortion of the second lens group H will be excessively under-distorted, and the distortion aberration that tends to be under-exposed will remain in the photographing system as a whole, which is not desirable.

次に本発明に関する技術の理論的裏付けを、偏心収差論
を用いて説明する。偏心収差と収差係数の関係式の導出
は種々試みられているが、ここでは第23回応用物理学
会講演会(1962年)に松属が発表した形式を使用す
る。それによると偏心後の収差(ΔY′)は三次収差の
領域では(6)式の様に偏心前の収差ΔYと偏心によっ
て発生する偏心収差ΔY(ε)の和で表わされ、ある面
がεだけ傾いたことによって新たに発生する収差ΔY(
ε)は(7)式の様に表わされる。
Next, the theoretical basis of the technology related to the present invention will be explained using decentering aberration theory. Various attempts have been made to derive the relational expression between decentering aberration and aberration coefficient, but here we will use the format presented by Matsugen at the 23rd Annual Conference of the Japan Society of Applied Physics (1962). According to this, the aberration after eccentricity (ΔY') in the third-order aberration region is expressed as the sum of the aberration before eccentricity ΔY and the eccentric aberration ΔY(ε) caused by eccentricity, as shown in equation (6), and when a certain surface Aberration ΔY (
ε) is expressed as in equation (7).

Δ′Y田ΔY+ΔY(ε) −(1−Np ) (h p DI 2−h P v2
 )(Vg2) = (1−−) a P + (1−
N、) h、p2p +3 (I  Np) h、v2(t−N、) hp(
3m 2 +P2)1この内偏心歪曲収差(V e l
)と偏心歪曲附加収差(Vε2)に関し、傾いた面が平
面として可変頂角プリズムに適用し近軸量と第2レンズ
群の収差係数で表現したものが(8)式及び(9)式で
ある。
Δ′Y field ΔY+ΔY(ε) −(1−Np) (h p DI 2−h P v2
)(Vg2) = (1--) a P + (1-
N,) h,p2p +3 (I Np) h,v2(t-N,) hp(
3m 2 +P2) 1 Eccentric distortion aberration (V e l
) and eccentric distortion aberration (Vε2), applied to the variable apex angle prism with the inclined surface as a flat surface, and expressed by the paraxial amount and the aberration coefficient of the second lens group, are expressed by equations (8) and (9). be.

メリジオナル断面でプリズム面の法線が傾(とじて偏心
収差と偏心附加収差をまとめてメリジオナル断面で書き
表わしたものが(lO)式である。
If the normal line of the prism surface is tilted in the meridional cross section, then the eccentric aberration and the decentered additional aberration are collectively expressed in the meridional cross section by the equation (lO).

本発明の様に可変頂角プリズムをレンズ中に設ける場合
、可変頂角プリズムの近軸主光線の高さhPは小さな値
となる。そして、中でも支配的な値は(10)式の括弧
の中の(11)式で示される2項である。(11)式の
第1項は正の値をとるので第2項が負の値、従ってV2
>Oとなれば偏心歪曲収差の減少に寄与することになる
。偏心歪曲収差を殆ど零にまで補正したいのであれば第
2レンズ群の歪曲収差係数v2が(12)式を満たす様
に発生させれば良い。この場合も全系の基準状態の歪曲
収差補正のためには第1レンズ群の歪曲収差係数vIは
(5)式を満足しなければならない。
When a variable apex angle prism is provided in a lens as in the present invention, the height hP of the paraxial chief ray of the variable apex angle prism becomes a small value. Among them, the dominant value is the two terms shown in equation (11) in the parentheses of equation (10). Since the first term of equation (11) takes a positive value, the second term takes a negative value, so V2
>O, this will contribute to reducing eccentric distortion aberration. If it is desired to correct decentering distortion to almost zero, it is sufficient to generate the distortion aberration coefficient v2 of the second lens group so as to satisfy equation (12). In this case as well, the distortion aberration coefficient vI of the first lens group must satisfy equation (5) in order to correct the distortion aberration of the entire system in its reference state.

従って、IPを全系の焦点距離を1に規格化し、レンズ
系に入射する時の傾角を(1=−1とした時の可変頂角
プリズムに入射する軸外主光線の傾角とする時、 を満足する様に第2レンズ群の3次の歪曲収差係数を決
めればさらに良い結果が得られる。
Therefore, when IP is normalized to the focal length of the entire system as 1, and the inclination angle when it enters the lens system is (the inclination angle of the off-axis principal ray entering the variable apex prism when 1 = -1), Even better results can be obtained if the third-order distortion coefficient of the second lens group is determined so as to satisfy the following.

更に、本実施例に於いて、第1レンズ群及び第2レンズ
群をそれぞれレンズ群中量も大きい空気間隔を隔てて第
1レンズ前群、第1レンズ後群、及び第2レンズ前群、
第2レンズ後群として分け、順に各々の焦点距離をfK
−+とfs−2及びfト+とfn−2とし、更に全系の
焦点距離をf□とするとき、0.4< f X−t/f
 、  <1.7     (14)0.05<f n
−z/f T <0.7      (15)の条件式
を満足する様な焦点距離を採用すると、可変頂角プリズ
ムから離れた位置に比較的強いパワーの正レンズ群が配
置されることになり、本発明に関する歪曲収差のみなら
ず他の収差補正をも無理なく行うことができる。つまり
条件式(14)及び条件式(15)の下限値を越えて焦
点距離が短いと各レンズ群の歪曲収差補正に対しては有
利であっても球面収差及び非点収差の補正に多(のレン
ズ枚数を要することになる。一方、条件式(14)。
Furthermore, in this embodiment, the first lens group and the second lens group are separated by a large air gap and have a large air gap, respectively, to form a first lens front group, a first lens rear group, and a second lens front group.
The second lens is divided into the rear group, and the focal length of each lens is set to fK in order.
-+ and fs-2 and f+ and fn-2, and when the focal length of the entire system is f□, 0.4< f X-t/f
, <1.7 (14)0.05<f n
-z/f T <0.7 If we adopt a focal length that satisfies the conditional expression (15), a positive lens group with relatively strong power will be placed at a position away from the variable apex prism. , it is possible to easily correct not only the distortion aberration related to the present invention but also other aberrations. In other words, if the focal length exceeds the lower limit of conditional expressions (14) and (15) and the focal length is short, even if it is advantageous for correcting distortion of each lens group, it will be difficult to correct spherical aberration and astigmatism. On the other hand, conditional expression (14).

(15)の上限を越えると、光学系及びプリズム自体が
大型化して(るので好ましくない。
Exceeding the upper limit of (15) is not preferable because the optical system and the prism themselves become larger.

さらに、第1レンズ前群と第1レンズ後群の主点間隔を
e!、第2レンズ前群と第2レンズ後群の主点間隔をe
aとするとき、 0.1< l fl−21/fT <0.7.  f 
I−2<O(16)0.1 < l fn−+ l/f
T <0.5.  f a−+<O(17)0.25 
< e !/ f r < 0.9        (
18)0.04<e a/fT <o、3(19)を満
足する様なパワー配置をとることにより、より少ないレ
ンズ構成でありながら、良好な光学性能を出すことがで
きる。条件式(16)及び条件式(17)の下限値を越
えて第1レンズ後群と第2レンズ前群のパワーが強くな
ると球面収差及びコマ収差の補正が困難となり、光学性
能を維持させようとすると多くのレンズを必要とする。
Furthermore, the distance between the principal points of the first lens front group and the first lens rear group is e! , the distance between the principal points of the second lens front group and the second lens rear group is e
When a, 0.1<l fl-21/fT<0.7. f
I-2<O(16)0.1<l fn-+ l/f
T<0.5. f a-+<O(17)0.25
<e! / f r < 0.9 (
18) By adopting a power arrangement that satisfies 0.04<e a/fT <o, 3 (19), good optical performance can be achieved with a smaller lens configuration. If the lower limits of conditional expressions (16) and (17) are exceeded and the powers of the first lens rear group and the second lens front group become strong, it becomes difficult to correct spherical aberration and coma aberration, so it is necessary to maintain optical performance. This requires many lenses.

上限値を越えると所望の歪曲収差を発生させるために多
くのレンズ枚数が必要になってくる。又、条件式(18
)及び条件式(19)の上限値を越えて主点間隔が長(
なるとレンズ全長が大きくなり過ぎることになる。
If the upper limit is exceeded, a large number of lenses will be required to generate the desired distortion. Also, conditional expression (18
) and the interval between principal points is long (
In this case, the total length of the lens becomes too large.

一方、第2レンズ群の歪曲収差をアンダーに補正する有
効な手段は、第2レンズ群の全長の1/2より像側の位
置に正の屈折力を有し、物体に凸面を向けたレンズを配
置することである。そしてその凸面の曲率半径RXは、 0 < l / Rx < 6 / f T     
    (20)とするのが望ましい。上限値を越えて
曲率がきつくなると非点収差及びコマ収差の補正が困難
となる。
On the other hand, an effective means of under-correcting the distortion aberration of the second lens group is to use a lens that has positive refractive power at a position closer to the image side than 1/2 of the total length of the second lens group and has a convex surface facing the object. It is to place. And the radius of curvature RX of the convex surface is 0 < l / Rx < 6 / f T
(20) is desirable. If the curvature becomes steeper than the upper limit, it becomes difficult to correct astigmatism and coma.

ところで本発明の(10)式に於いて可変頂角プリズム
に於ける軸外主光線の高さが絶対値で大きくなると第2
レンズ群の非点収差及びペッツバールの項の寄与が増加
してくる。本発明の様な歪曲収差補正をするレンズ系で
は(3■2+P2)は正の値をとるのでり、の値が正の
値で大きくなることは偏心歪曲収差補正上不利である。
By the way, in equation (10) of the present invention, if the height of the off-axis principal ray in the variable apex angle prism increases in absolute value, the second
The contributions of the astigmatism and Petzval terms of the lens group increase. In a lens system that corrects distortion aberration like the present invention, (3<2>+P2) takes a positive value, and therefore, it is disadvantageous for eccentric distortion aberration correction to have a large positive value.

五、は絞りから可変頂角プリズムまでの距離lに関係し
ているので、全系の焦点距離を1に規格化したとき、−
0,4< 1 <0.25 の条件を満足する様に可変頂角プリズムの位置を決める
と良い。下限値を越えて可変頂角プリズムが光学系の前
側に位置すると可変頂角プリズムの径が大きくなり、内
蔵する意味が少な(なってしまう。
5. is related to the distance l from the aperture to the variable apex prism, so when the focal length of the entire system is normalized to 1, -
It is preferable to determine the position of the variable apex angle prism so as to satisfy the following condition: 0.4<1<0.25. If the variable apex angle prism is located in front of the optical system beyond the lower limit, the diameter of the variable apex prism becomes large, and there is little point in incorporating it.

上限値を越えると、偏心歪曲収差補正のために第2レン
ズ群でより大きな歪曲収差の発生が必要となり多くのレ
ンズ枚数が必要となって(る。
If the upper limit is exceeded, larger distortion must be generated in the second lens group in order to correct decentering distortion, and a large number of lenses are required.

第1図は本発明の実施例であり、防振光学系として使用
されるものである。物体側より偏心駆動に関して不動の
第1レンズ群、可変頂角プリズム、さらに偏心駆動に関
して不動の第2レンズ群で構成され、図示されていない
加速度センサー等のプレ検知器の出力によりやはり図示
されていないアクチュエーターで可変頂角プリズムの頂
角を変化させ像ブレを逆補正する様に像を偏向するもの
である。可変頂角プリズムは2枚の平行平面板の間に透
明シリコンゴムを挟んだもので作られている。
FIG. 1 shows an embodiment of the present invention, which is used as an anti-vibration optical system. From the object side, it consists of a first lens group that does not move with respect to eccentric drive, a variable apex angle prism, and a second lens group that does not move with respect to eccentric drive. The apex angle of the variable apex prism is changed using an actuator to deflect the image so as to reversely correct image blur. The variable apex angle prism is made of transparent silicone rubber sandwiched between two parallel flat plates.

本実施例に於いて、第1レンズ群Iの3次の歪曲収差係
数V、は−9,03、第2レンズ群■の3次の歪曲収差
係数v2は7.8の値を持つ、つまり、第1レンズ群I
で歪曲収差をオーバ一方向に発生させ、又、第2レンズ
群■ではアンダ一方向に発生させて、しかも全系では歪
曲収差は像高21.63mmに於いて0.27%と小さ
な値に補正されている。この様に、第2レンズ群Hの3
次の歪曲収差v2がv2〉0であるので可変頂角プリズ
ムで像を1 m m偏向した時の偏心歪曲収差は像高1
8 m mで0.017mmと小さな値に補正される。
In this example, the third-order distortion aberration coefficient V of the first lens group I has a value of -9.03, and the third-order distortion aberration coefficient v2 of the second lens group II has a value of 7.8, that is, , first lens group I
Distortion is generated in one over direction in the second lens group (2), and in one under direction in the second lens group (2), and the distortion in the entire system is as small as 0.27% at an image height of 21.63 mm. It has been corrected. In this way, 3 of the second lens group H
The next distortion aberration v2 is v2>0, so when the image is deflected by 1 mm with the variable apex angle prism, the eccentric distortion aberration is the image height 1
8 mm is corrected to a small value of 0.017 mm.

ここで偏心歪曲収差は、軸外光束の主光線の偏向量と中
心に結像する光束の主光線の偏向量の差を意味する。ち
なみに同じパワー配置のレンズでも本発明の原理を導入
しない場合、つまり、最も前方に頂角可変プリズムを配
置したとき中心点は1mm偏向されるとき像高18mm
の点は1.064mm偏向され、従って、偏心歪曲収差
は0.064と大きな値になっている。
Here, decentering distortion means the difference between the amount of deflection of the principal ray of the off-axis beam and the amount of deflection of the principal ray of the beam focused on the center. By the way, even if the lens has the same power arrangement, if the principle of the present invention is not introduced, that is, when the variable apex prism is placed at the frontmost position, the center point is deflected by 1 mm, and the image height is 18 mm.
The point is deflected by 1.064 mm, and therefore the eccentric distortion aberration has a large value of 0.064.

第1実施例の第1レンズ群■は、Dllで物体側より第
1正レンズ前群1−1.第1負レンズ後群1−2に、そ
して第2レンズ群■は、D24で物体側より第2負レン
ズ前群n−1と第2正レンズ後群11−2に分けられ、
第1レンズ群Iと第2レンズ群■で歪曲収差が条件式(
4)及び(5)を容易に満足できるパワー配置としてい
る。
The first lens group (2) of the first embodiment includes the first positive lens front group 1-1. The first negative lens rear group 1-2 and the second lens group (2) are divided from the object side by D24 into a second negative lens front group n-1 and a second positive lens rear group 11-2,
Distortion aberration between the first lens group I and the second lens group ■ is expressed by the conditional expression (
The power arrangement is such that 4) and (5) can be easily satisfied.

尚、本発明に於いては、第3図に示す様に、向き合う球
面の曲率半径が路間−の値を有する平凹レンズP、と平
凸レンズP2を球面に沿って相対的に回転する方式の可
変頂角プリズムに対しても本発明の原理は有効に適用し
得るものである。
In addition, in the present invention, as shown in FIG. 3, a plano-concave lens P whose spherical surfaces facing each other have a radius of curvature of -1 and a plano-convex lens P2 are rotated relative to each other along the spherical surfaces. The principles of the present invention can also be effectively applied to variable apex angle prisms.

また、本発明は防振装置に限るものではなく、シフトレ
ンズやオートレベル等の光学機器にも適用することがで
きる。
Furthermore, the present invention is not limited to image stabilization devices, but can also be applied to optical devices such as shift lenses and autolevels.

本発明に於いて可変頂角プリズムの両側の面は全(の平
面でなくてもプリズム自体にレンズ作用を持たせてもさ
しつかえなく、その時、1.5f□くIRIの緩い曲率
が付いていても良い。
In the present invention, the surfaces on both sides of the variable apex angle prism do not have to be completely flat, but the prism itself may have a lens function, and in that case, it has a gentle curvature of 1.5 f Also good.

ところで、本発明に於いて固定とは、偏心に関して不動
という意味であり、フォーカシングあるいはズーミング
のために光軸に沿って移動することがあっても良い。
Incidentally, in the present invention, fixed means immobile with respect to eccentricity, and may be moved along the optical axis for focusing or zooming.

第4図にその例を示す。第1レンズ群Iは順にフォーカ
シングに際して光軸に沿って移動するフォーカシングレ
ンズF1ズーミングに際して光軸に沿って移動するバリ
エータ−レンズVとコンペンセーターレンズCで構成さ
れる。第2レンズ群■は結像作用を果すリレーレンズR
で構成される。
An example is shown in FIG. The first lens group I is composed of a focusing lens F which moves along the optical axis during focusing, a variator lens V and a compensator lens C which move along the optical axis during zooming. The second lens group ■ is a relay lens R that performs an imaging function.
Consists of.

そして第1レンズ群1の歪曲収差をオーバーに維持する
一方、第2レンズ群■の歪曲収差をアンダーに維持して
いる。
The distortion aberration of the first lens group 1 is maintained to be excessive, while the distortion aberration of the second lens group (2) is maintained to be under.

次に本発明の数値実施例を示す。数値実施例においてR
iは物体側より順に第i番目のレンズ面の曲率半径、D
iは物体側より第i番目のレンズ厚及び空気間隔、Ni
とνiは各々物体側より順に第i番目のレンズのガラス
の屈折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the radius of curvature of the i-th lens surface in order from the object side, D
i is the i-th lens thickness and air distance from the object side, Ni
and νi are the refractive index and Abbe number of the glass of the i-th lens, respectively, in order from the object side.

表1 数値実施例1 F=300 FNO= 1 : 2.8 2W=4.12゜ 1 = 1.43387 2= 1.49700 3 = 1.77250 4 = 1.56873 N  5= 1.80518 N  6=1.56873 N  7= 1.56732 N  8= 1.8740O N  9= 1.49700 1=95.1 2=81.6 3= 49.6 4=63.2 ν 5=25.4 ν 6= 63.2 ν 7=42.8 ν 8=35.3 ν 9= 81.6 N12= 1.51633 N13= 1.4970O N14= 1.69895 N15= 1.7620O N16= 1.8061O N17= 1.85026 シ12=64.1 ν13=81.6 シ14=30.1 ν15=40.1 シ16=40.9 ν17 = 32.3 絞り二第19面から像側へ2.5に位置する。Table 1 Numerical example 1 F=300 FNO=1:2.8 2W=4.12゜ 1 = 1.43387 2 = 1.49700 3 = 1.77250 4 = 1.56873 N 5 = 1.80518 N 6=1.56873 N 7 = 1.56732 N 8 = 1.8740O N 9 = 1.49700 1=95.1 2=81.6 3=49.6 4=63.2 ν 5=25.4 ν 6= 63.2 ν 7=42.8 ν 8=35.3 ν 9= 81.6 N12=1.51633 N13 = 1.4970O N14=1.69895 N15=1.7620O N16=1.8061O N17=1.85026 C12=64.1 ν13=81.6 C14=30.1 ν15=40.1 C16=40.9 ν17 = 32.3 It is located at 2.5 from the 19th surface of the second diaphragm toward the image side.

〔発明の効果〕〔Effect of the invention〕

可変頂角プリズムをレンズ系中に内蔵する構成の像偏向
光学系は可変頂角プリズム径を小さ(でき、従ってまわ
りの機構も含めた偏向光学系の大きさを小さ(できる他
に可変頂角プリズムの駆動力も小さくできる利点がある
が、本発明の原理によりその様な像偏向光学系で発生す
る偏心歪曲収差を小さく補正することができる。従って
像プレ補正を行ったとき第7図(C)の様な周辺の像の
流れを生ぜず、像プレ補正を行ったとき全画面に亙って
高品質の像が得られる。
An image deflection optical system that has a variable apex angle prism built into the lens system can reduce the diameter of the variable apex prism (this makes it possible to reduce the size of the deflection optical system, including the surrounding mechanisms). Although there is an advantage in that the driving force of the prism can be reduced, the principle of the present invention also makes it possible to correct decentering distortion generated in such an image deflection optical system to a small value.Therefore, when image pre-correction is performed, ), and a high-quality image can be obtained over the entire screen when image pre-correction is performed.

また、本発明は可変頂角プリズムを用いてビームを偏向
させる光学系にも有効に適用することができる。
Further, the present invention can be effectively applied to an optical system that uses a variable apex angle prism to deflect a beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関する数値実施例のレンズ断面図、第
2図(A)・はその初期状態の収差図、第2図(B)は
像面上で1 m m像偏向を行ったときの収差図、第3
図は本発明に関する第2の実施例のレンズ断面図、第4
図は本発明に関する第3の実施例のレンズ断面図、第5
図は本発明に関する光学作用の原理を示す概略図、第6
図及び第7図は偏心歪曲収差の発生原理の説明図、第8
図は偏心歪曲収差の画像への影響を説明する図である。 !・・・第1レンズ群    ■・・・第2レンズ群P
・・・頂角可変プリズム JjJII兄基 非点収1 全曲A又凰 猜率色収差 ■ n 工 P ■
Figure 1 is a cross-sectional view of a lens in a numerical example related to the present invention, Figure 2 (A) is an aberration diagram in its initial state, and Figure 2 (B) is when the image is deflected by 1 mm on the image plane. Aberration diagram, 3rd
The figure is a cross-sectional view of a lens according to a second embodiment of the present invention;
The figure is a sectional view of a lens of a third embodiment of the present invention, and a fifth embodiment of the present invention.
The figure is a schematic diagram showing the principle of optical action related to the present invention.
Figure 7 and Figure 7 are explanatory diagrams of the principle of generation of eccentric distortion aberration, and Figure 8.
The figure is a diagram illustrating the influence of eccentric distortion aberration on an image. ! ...First lens group ■...Second lens group P
...Variable vertex angle prism JjJII brother astigmatism 1 All songs A and chromatic aberration ■ n Engineering P ■

Claims (1)

【特許請求の範囲】 (1)物体側より順に、偏心に関して固定の第1レンズ
群、頂角が可変の可変頂角プリズム、そして偏心に関し
て固定の第2レンズ群を有し、該可変頂角プリズムの頂
角を変化させることにより像を偏向させるようにした像
偏向機能を有した光学系に於いて、全系の焦点距離を1
と正規化したときの前記第1レンズ群と第2レンズ群の
歪曲収差係数を各々V_1、V_2とするとき、V_2
>0 −1.3<V_1/V_2<−0.7 なる条件を満足することを特徴とする像偏向機能を有し
た光学系。 (2)前記第1レンズ群及び前記第2レンズ群中のそれ
ぞれ最も大きい空気間隔を隔てて、順に第1レンズ前群
、第1レンズ後群及び第2レンズ前群、第2レンズ後群
とし、各群の焦点距離を順にf_ I _−_1、f_ I
_−_2、f_II_−_1、f_II_−_2、そして
全系の焦点距離をf_Tとした時、 0.4<f_ I _−_1/f_T<1.7 0.05<f_II_−_2/f_T<0.7なる条件式
を満足することを特徴とする特許請求の範囲第1項記載
の像偏向機能を有した光学系。 (3)前記第1レンズ前群と前記第1レンズ後群との主
点間隔をe_ I 、前記第2レンズ前群と前記第2レン
ズ後群との主点間隔をe_IIとした時、0.1<|f_
I _−_2|/f_T<0.7、f_ I _−_2<0
0.1<|f_II_−_1|/f_T<0.5、f_I
I_−_1<00.25<e_ I /f_T<0.9 0.04<e_II/f_T<0.3 を満足することを特徴とする特許請求の範囲第2項記載
の光学系。 (4)上記第2レンズ群は、第2レンズ群の第1面から
最終面までの距離の1/2より像側に、正の屈折力を有
し、物体に凸面を向けたレンズを有することを特徴とす
る特許請求の範囲第1項記載の像偏向機能を有した光学
系。 (5)全系の焦点距離を1に規格し、光学系の絞りから
上記可変頂角プリズムまでの距離をlとするとき、 −0.4<l<0.25 を満足することを特徴とする特許請求の範囲第1項記載
の像偏向機能を有した光学系。
[Scope of Claims] (1) In order from the object side, there is a first lens group whose eccentricity is fixed, a variable apex angle prism whose apex angle is variable, and a second lens group whose apex angle is fixed, the variable apex angle being fixed. In an optical system with an image deflection function that deflects an image by changing the apex angle of the prism, the focal length of the entire system is set to 1.
When the distortion aberration coefficients of the first lens group and the second lens group when normalized are V_1 and V_2, respectively, V_2
An optical system having an image deflection function characterized by satisfying the following condition: >0 -1.3<V_1/V_2<-0.7. (2) The first lens group, the first rear lens group, the second front lens group, and the second rear lens group in order, separated by the largest air gap in each of the first lens group and the second lens group. , the focal length of each group is f_ I ____1, f_ I
_-_2, f_II_-_1, f_II_-_2, and when the focal length of the entire system is f_T, 0.4<f_ I ____1/f_T<1.7 0.05<f_II_-_2/f_T<0 An optical system having an image deflection function according to claim 1, wherein the optical system satisfies the conditional expression .7. (3) When the principal point distance between the first lens front group and the first lens rear group is e_I, and the principal point distance between the second lens front group and the second lens rear group is e_II, then 0 .1<|f_
I _−_2|/f_T<0.7, f_ I _−_2<0
0.1<|f_II_−_1|/f_T<0.5, f_I
The optical system according to claim 2, characterized in that it satisfies the following: I_-_1<00.25<e_I/f_T<0.9 0.04<e_II/f_T<0.3. (4) The second lens group has a lens having positive refractive power and having a convex surface facing the object, located closer to the image side than 1/2 of the distance from the first surface to the final surface of the second lens group. An optical system having an image deflection function according to claim 1. (5) When the focal length of the entire system is standardized to 1 and the distance from the aperture of the optical system to the variable apex prism is l, it is characterized by satisfying -0.4<l<0.25. An optical system having an image deflection function according to claim 1.
JP63325557A 1987-12-29 1988-12-22 Optical system with image deflection function Expired - Fee Related JP2547834B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325557A JP2547834B2 (en) 1988-12-22 1988-12-22 Optical system with image deflection function
US07/701,326 US5140462A (en) 1987-12-29 1991-05-07 Optical system having image deflecting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325557A JP2547834B2 (en) 1988-12-22 1988-12-22 Optical system with image deflection function

Publications (2)

Publication Number Publication Date
JPH02168223A true JPH02168223A (en) 1990-06-28
JP2547834B2 JP2547834B2 (en) 1996-10-23

Family

ID=18178226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325557A Expired - Fee Related JP2547834B2 (en) 1987-12-29 1988-12-22 Optical system with image deflection function

Country Status (1)

Country Link
JP (1) JP2547834B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742231B2 (en) 2006-06-15 2010-06-22 Sony Corporation Zoom lens and imaging apparatus
US8515272B2 (en) 2009-07-23 2013-08-20 Canon Kabushiki Kaisha Optical apparatus having optical anti-shake function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742231B2 (en) 2006-06-15 2010-06-22 Sony Corporation Zoom lens and imaging apparatus
US7911697B2 (en) 2006-06-15 2011-03-22 Sony Corporation Zoom lens and imaging apparatus
US8515272B2 (en) 2009-07-23 2013-08-20 Canon Kabushiki Kaisha Optical apparatus having optical anti-shake function

Also Published As

Publication number Publication date
JP2547834B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP2918115B2 (en) Variable power optical system with vibration proof function
JP3869895B2 (en) Optical system with anti-vibration function
JP3486532B2 (en) Zoom lens having vibration compensation function and camera having the same
JP3072815B2 (en) Variable power optical system
JPS61223819A (en) Vibration-proof optical system
JPH09230234A (en) Zoom lens provided with vibration-proof function
JP2560377B2 (en) Variable magnification optical system with anti-vibration function
JP2605326B2 (en) Variable power optical system with anti-vibration function
JP2535969B2 (en) Variable magnification optical system with anti-vibration function
JP2621280B2 (en) Variable power optical system with anti-vibration function
JP2001183584A (en) Zoom lens and photographic device
US20100246002A1 (en) Zoom lens system and image taking apparatus including the same
JPH05224160A (en) Variable power optical system with vibration proof function
JPH07140388A (en) Zoom lens
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP2621387B2 (en) Variable power optical system with anti-vibration function
JPH1130749A (en) Zoom lens
JPH09218346A (en) Optical system
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JPH11101941A (en) Rear focus type zoom lens
US7064903B2 (en) Lens device and shooting system
JP2000267005A (en) Zoom lens
JP3569965B2 (en) Image blur correction variable magnification optical system and camera using the same
JPH02168223A (en) Optical system having image deflecting function
JP3517630B2 (en) Anti-vibration zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees