[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2621280B2 - Variable power optical system with anti-vibration function - Google Patents

Variable power optical system with anti-vibration function

Info

Publication number
JP2621280B2
JP2621280B2 JP63015411A JP1541188A JP2621280B2 JP 2621280 B2 JP2621280 B2 JP 2621280B2 JP 63015411 A JP63015411 A JP 63015411A JP 1541188 A JP1541188 A JP 1541188A JP 2621280 B2 JP2621280 B2 JP 2621280B2
Authority
JP
Japan
Prior art keywords
image
lens group
optical system
lens
variable power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63015411A
Other languages
Japanese (ja)
Other versions
JPH01189621A (en
Inventor
浩二 大泉
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63015411A priority Critical patent/JP2621280B2/en
Priority to US07/261,231 priority patent/US5270857A/en
Publication of JPH01189621A publication Critical patent/JPH01189621A/en
Application granted granted Critical
Publication of JP2621280B2 publication Critical patent/JP2621280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は振動による撮影画像のブレを補正する機能、
所謂防振機能を有した変倍光学系に関し、特に防振用の
可動レンズ群を、例えば光軸と直交する方向に移動させ
て防振効果を発揮させたときの光学性能の低下の防止を
図った防振機能を有した変倍光学系に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a function of correcting blurring of a captured image due to vibration,
Regarding a variable power optical system having a so-called anti-vibration function, particularly, a movable lens group for anti-vibration, for example, is moved in a direction perpendicular to the optical axis to prevent a decrease in optical performance when exerting an anti-vibration effect. The present invention relates to a variable power optical system having an anti-vibration function.

(従来の技術) 進行中の車や航空機等移動物体上から撮影をしようと
すると撮影系に振動が伝わり撮影画像にブレが生じる。
(Prior Art) When an image is taken from a moving object such as a car or an aircraft in progress, vibration is transmitted to an image taking system, and a blurred image occurs.

従来より撮影画像のブレを防止する機能を有した防振
光学系が、例えば特開昭50−80147号公報や特公昭56−2
1133号公報、特開昭61−223819号公報等で提案されてい
る。
Conventionally, an image stabilizing optical system having a function of preventing blurring of a photographed image has been disclosed in Japanese Patent Application Laid-Open No. 50-80147 and Japanese Patent Publication No. 56-2
No. 1133, Japanese Patent Application Laid-Open No. Sho 61-223819, and the like.

特開昭50−80147号公報では2つのアフォーカルの変
倍系を有するズームレンズにおいて第1の変倍系の角倍
率をM1、第2の変倍系の角倍率をM2としたときM1=1−
1/M2なる関係を有するように各変倍系で変倍を行うと共
に、第2の変倍系を空間的に固定して画像のブレを補正
して画像の安定化を図っている。
Japanese Patent Application Laid-Open No. 50-80147 discloses a zoom lens having two afocal variable power systems in which the first variable power system has an angular magnification of M 1 and the second variable power system has an angular magnification of M 2. M 1 = 1−
In each zooming system, zooming is performed so as to have a relationship of 1 / M 2 , and the second zooming system is spatially fixed to correct image blur and stabilize the image.

特公昭56−21133号公報では光学装置の振動状態を検
知する検知手段からの出力信号に応じて、一部の光学部
材を振動による画像の振動的変位を相殺する方向に移動
させることにより画像の安定化を図っている。
In Japanese Patent Publication No. 56-21133, according to an output signal from a detecting means for detecting a vibration state of an optical device, some optical members are moved in a direction to cancel the vibrational displacement of the image due to vibration. We are stabilizing.

特開昭61−223819号公報では最も被写体側に屈折型可
変頂角プリズムを配置した撮影系において、撮影系の振
動に対応させて該屈折型可変頂角プリズムの頂角を変化
させて画像を偏向させて画像の安定化を図っている。
Japanese Patent Application Laid-Open No. 61-223819 discloses a photographing system in which a refraction type variable apex angle prism is disposed closest to the subject, and an image is formed by changing the apex angle of the refraction type apex angle prism in accordance with the vibration of the imaging system. The image is stabilized by deflection.

この他、特公昭56−34847号公報、特公昭57−7414号
公報等では撮影系の一部に振動に対して空間的に固定の
光学部材を配置し、この光学部材の振動に対して生ずる
プリズム作用を利用することにより撮影画像を偏向させ
結像面上で静止画像を得ている。
In addition, JP-B-56-34847 and JP-B-57-7414 dispose a spatially fixed optical member with respect to vibration in a part of the photographing system, and generate the optical member with respect to the vibration of the optical member. The still image is obtained on the imaging plane by deflecting the captured image by utilizing the prism action.

又、加速度センサーを利用して撮影系の振動を検出
し、このとき得られる信号に応じ、撮影系の一部のレン
ズ群を光軸と直交する方向に振動させることにより静止
画像を得る方法も行なわれている。
Also, a method of detecting a vibration of a photographing system using an acceleration sensor and obtaining a still image by vibrating a part of a lens group of the photographing system in a direction orthogonal to an optical axis according to a signal obtained at this time is also available. Is being done.

一般に撮影系の一部のレンズ群を振動させて撮影画像
のブレをなくし、静止画像を得る機構には画像のブレの
補正量と可動レンズの移動量との関係を単純化し、変換
の為の演算時間の短縮化を図った簡易な構成の撮影系が
要求されている。
In general, a mechanism for obtaining a still image by vibrating a part of the lens group of the photographing system to reduce the blur of the photographed image simplifies the relationship between the amount of correction of the image blur and the amount of movement of the movable lens, and provides a mechanism for conversion. There is a demand for a photographing system having a simple configuration for shortening the calculation time.

又、可動レンズ群を偏心させたとき偏心コマ、偏心非
点収差、そして偏心像面弯曲等が多く発生すると画像の
ブレを補正したとき偏心収差の為、画像がボケてくる。
例えば、偏心歪曲収差が多く発生すると光軸上の画像の
移動量と周辺部の画像の移動量が異ってくる。この為、
光軸上の画像を対象に画像のブレを補正しようと可動レ
ンズ群を偏心させると、周辺部では画像のブレと同様な
現象が発生してきて光学特性を著るしく低下させる原因
となってくる。
Also, when the movable lens group is decentered, if the eccentric coma, the eccentric astigmatism, and the eccentric curvature of field occur frequently, the image is blurred due to the eccentric aberration when the image blur is corrected.
For example, if a large amount of eccentric distortion occurs, the amount of movement of the image on the optical axis and the amount of movement of the peripheral image differ. Because of this,
If the movable lens group is decentered in order to correct the image blur on the image on the optical axis, a phenomenon similar to the image blur occurs in the peripheral portion, which causes a remarkable decrease in optical characteristics. .

このように防振用の撮影系、特に変倍光学系において
は可動レンズ群を光軸と直交する方向に移動させ偏心状
態にしたとき、偏心収差発生量が少なく光学性能の低下
の少ないこと及び簡易な機構であることが要求されてい
る。
As described above, when the movable lens group is moved in a direction perpendicular to the optical axis to be in an eccentric state, the amount of eccentric aberration is small, the optical performance is not reduced, and the imaging system for image stabilization, especially in the variable power optical system, A simple mechanism is required.

しかしながら、以上の諸条件を全て満足させた撮影系
を得るのは一般に大変困難で、特に撮影系の一部の屈折
力を有したレンズ群を偏心させると光学性能が大きく低
下し、良好なる画像が得られない欠点があった。
However, it is generally very difficult to obtain an imaging system that satisfies all of the above conditions. In particular, decentering a lens group having a part of refractive power of the imaging system greatly reduces the optical performance, resulting in a good image. There was a drawback that was not obtained.

(発明が解決しようとする問題点) 本発明は変倍光学系の一部のレンズ群を光軸と直交す
る方向に移動させて画像のブレを補正する際、可動レン
ズ群の機構上の簡素化を図ると共に、例えば可動レンズ
群を移動させて平行偏心させたときの前述の各種の偏心
収差の発生量が少なく良好なる光学性能が得られる防振
機能を有した変倍光学系の提供を目的とする。
(Problems to be Solved by the Invention) In the present invention, when a part of the lens units of the variable power optical system is moved in a direction perpendicular to the optical axis to correct image blurring, the mechanism of the movable lens group is simplified. For example, the present invention provides a variable power optical system having an image stabilizing function that can obtain good optical performance with a small amount of the above-described various eccentric aberrations when the movable lens group is moved and parallel decentered, for example. Aim.

(問題点を解決する為の手段) 複数のレンズ群を有し、このうち物体側から数えた第
1レンズ群と第2レンズ群との間隔が少なくとも変倍の
際、若しくはフォーカスの際に変化する構成の変倍光学
系であって、該第1レンズ群の焦点距離をf1、望遠端に
おける全系の焦点距離をfTとしたとき 0.2<|f1/fT|<5 ……(A1) なる条件を満足し、該変倍光学系が全体として角度を傾
いたときの該傾きにより生ずる撮影画像のブレをブレ検
出手段により検出し、該ブレ検出手段からの出力信号に
応じて駆動手段により前記第1レンズ群を|f1・ε|程
度平行偏心させたとき、該撮影画像のブレが補正される
ように前記複数のレンズ群の光学的諸定数を設定したこ
とである。
(Means for solving the problem) A plurality of lens groups, of which the distance between the first lens group and the second lens group counted from the object side changes at least when zooming or focusing. Where the focal length of the first lens group is f1 and the focal length of the entire system at the telephoto end is fT, 0.2 <| f1 / fT | <5 (A1) The condition is satisfied, and the blur of the captured image caused by the tilt when the zoom optical system is tilted as a whole is detected by the blur detecting means, and the driving means responds to the output signal from the blur detecting means to detect the blur. The optical constants of the plurality of lens groups are set such that blurring of the photographed image is corrected when the first lens group is decentered in parallel by about | f1 · ε |.

(実施例) 第1〜第3図は本発明に係る変倍光学系において、例
えば振動により画像がブレたときの該画像のブレを補正
する方法を示す模式図である。同図に示す変倍光学系は
物体側より順に正の屈折力の第1レンズ群1と負の屈折
力の第2レンズ群2の2つのレンズ群を有し、両レンズ
群の間隔を変えて変倍を行い、又、第1レンズ群1を光
軸上移動させてフォーカスを行う、所謂2群ズームレン
ズを示している。尚、5は結像面3上の点Aに結像する
光束、4は変倍光学系の光軸である。図中(A)は広角
端、(B)は望遠端の光学配置を示している。
(Embodiment) FIGS. 1 to 3 are schematic diagrams showing a method of correcting a blur of an image when the image blurs due to, for example, vibration in a variable power optical system according to the present invention. The variable power optical system shown in FIG. 1 has two lens groups, a first lens group 1 having a positive refractive power and a second lens group 2 having a negative refractive power, in order from the object side. FIG. 1 shows a so-called two-unit zoom lens that performs zooming and performs focusing by moving the first lens unit 1 on the optical axis. Reference numeral 5 denotes a light flux that forms an image at a point A on the image forming surface 3, and reference numeral 4 denotes an optical axis of the variable power optical system. In the figure, (A) shows the optical arrangement at the wide-angle end, and (B) shows the optical arrangement at the telephoto end.

第1図は振動がなく画像のブレがないときの光学系の
模式図である。図中、光束5は振動がなく画像のブレが
ない為、広角端及び望遠端において結像面3上の一点A
に結像している。
FIG. 1 is a schematic diagram of an optical system when there is no vibration and there is no image blurring. In the figure, since the light beam 5 has no vibration and no image blur, one point A on the image plane 3 at the wide-angle end and the telephoto end.
Image.

第2図は振動が変倍光学系に伝わり画像がブレたとき
の光学系の模式図である。同図においては簡単の為に広
角側及び望遠側において、点Aを中心として変倍光学系
全体が角度εだけ前倒れとなり画像のブレを起こしたと
きの光束のブレによる結像状態を示している。
FIG. 2 is a schematic diagram of the optical system when vibration is transmitted to the variable power optical system and an image is blurred. In the same figure, on the wide-angle side and the telephoto side, for the sake of simplicity, the image forming state due to the blurring of the light beam when the entire zoom optical system is tilted forward by the angle ε around the point A and the image blurs is shown. I have.

即ち、本来なら点Aに結像すべき光束5が広角側では
結像面3上の点Bに、又、望遠側では結像面3上の点C
に各々結像している。
That is, the light beam 5 to be focused on the point A is point B on the image plane 3 on the wide-angle side, and point C on the image plane 3 on the telephoto side.
Are imaged.

今、フィルム露光中であって第2図(A)に示す状態
から第2図(B)に示す状態へ単調に変倍光学系が傾き
画像のブレが生じた場合、ブレが無ければ点Aに点像と
して結像すべき像は広角側では線分AB、望遠側では線分
ACのボケた線像となって結像する。
Now, during film exposure, if the variable-magnification optical system tilts monotonously from the state shown in FIG. 2A to the state shown in FIG. The image to be formed as a point image at the wide angle side is line segment AB, and at the telephoto side is line segment
It is formed as a blurred line image of AC.

第3図は第2図の画像のブレに対して補正を行ったと
きの模式図である。同図においては第1レンズ群1をブ
レ補正用の可動レンズ群とし、光軸4に対して直交方向
に平行偏心させて画像のブレを補正している。図中、4a
は第1レンズ群の光軸であり、ブレ補正前の共軸であっ
た第1レンズ群と第2レンズ群の光軸4とは平行になっ
ている。
FIG. 3 is a schematic diagram when a correction is made to the blur of the image of FIG. In FIG. 1, the first lens group 1 is a movable lens group for blur correction, and is decentered parallel to the optical axis 4 in a direction orthogonal to the optical axis 4 to correct image blur. In the figure, 4a
Is the optical axis of the first lens group, and the optical axis 4 of the first lens group and the optical axis 4 of the second lens group, which were coaxial before blur correction, are parallel.

同図に示すように変倍光学系全体の前倒れによる画像
のブレに対して第1レンズ群を所定量だけ平行偏心させ
ることにより、第2図に示すように広角端で点B、望遠
端で点Cに結像してしまう光束を本来の結像点である点
Aに結像させることができる。
As shown in FIG. 2, the first lens group is decentered in parallel by a predetermined amount with respect to the image blur caused by the forward tilt of the entire variable power optical system, so that the point B at the wide angle end and the telephoto end as shown in FIG. Thus, the light beam which forms an image at the point C can be formed at the point A which is an original image forming point.

このように第1レンズ群を平行偏心させることにより
画像の安定化を図っている。
The image stabilization is achieved by decentering the first lens group in parallel as described above.

本実施例において第1レンズ群であるブレ補正用の可
動レンズ群の平行偏心量Eは画像のブレ量をδy、可動
レンズ群の偏心敏感度をSとしたとき E=−δy/S ……(1) となる。ここで画像のブレ量δyは例えば第2図におい
て、広角側では線分ABの長さ、望遠側では線分ACの長さ
にマイナス符号を付したものである。
In this embodiment, the parallel eccentricity E of the movable lens group for shake correction, which is the first lens group, is E = -δy / S where δy is the image blur amount and S is the eccentric sensitivity of the movable lens group. (1) Here, the image blurring amount δy is obtained, for example, by adding a minus sign to the length of the line segment AB on the wide angle side and the length of the line segment AC on the telephoto side in FIG.

これはE,δyの符号を光軸に対して上方にプラス、下
方にマイナスとしている為である。
This is because the signs of E and δy are plus above the optical axis and minus below.

偏心敏感度Sは可動レンズ群の平行偏心量に対する結
像面上での像点の移動量の比である。
The eccentric sensitivity S is a ratio of the amount of movement of the image point on the image plane to the amount of parallel eccentricity of the movable lens group.

本実施例では画像のブレ量δyをカメラ内部のブレ検
出手段により検知し、変倍光学系に固有の可動レンズ群
の偏心敏感度Sを基にして、画像のブレ補正の為の可動
レンズ群の平行偏心量Eを(1)式より得ている。そし
て駆動手段により可動レンズ群を所定量偏心させて画像
のブレを補正している。
In this embodiment, the blur amount δy of the image is detected by the blur detecting means inside the camera, and the movable lens group for image blur correction is based on the eccentric sensitivity S of the movable lens group unique to the variable power optical system. Is obtained from equation (1). The drive unit decenters the movable lens group by a predetermined amount to correct image blur.

尚、本発明は第1図〜第3図に示す2群ズームレンズ
に限らず複数のレンズ群を有し、そのうち第1レンズ群
と第2レンズ群とのレンズ群間隔を変化させて変倍若し
くはフォーカスを行う変倍光学系であれば、どのような
変倍光学系にも適用することができる。
Note that the present invention is not limited to the two-unit zoom lens shown in FIGS. 1 to 3, and has a plurality of lens units, of which the magnification is changed by changing the distance between the first and second lens units. Alternatively, the present invention can be applied to any zoom optical system as long as it is a zoom optical system that performs focusing.

例えば第1図〜第3図に示す正の屈折力のレンズ群が
先行する2群ズームレンズに対して、第1レンズ群が負
の屈折力、第2レンズ群が正の屈折力より成り、両レン
ズ群の間隔を変えて変倍を行うと共に第1レンズ群によ
りフォオーカスを行う2群ズームレンズや、物体側より
順に負、正、そして負の屈折力若しくは正、負、そして
正の屈折力の第1,第2,第3レンズ群の3つのレンズ群を
有し、これらのレンズ群のうちの少なくとも2つのレン
ズ群を移動させて変倍を行う3群ズームレンズや物体側
より順に正、負、負、そして正の屈折力、若しくは正、
負、正、そして正の屈折力、若しくは正、負、正、そし
て負の屈折力の第1,第2,第3,第4レンズ群の4つレンズ
群を有し、これらのレンズ群のうち第1,第2レンズ群間
隔が変化するように少なくとも2つのレンズ群を移動さ
せて変倍を行う4群ズームレンズ等に本発明を適用する
ことができる。
For example, as compared to a two-unit zoom lens in which a positive refractive power lens group shown in FIGS. 1 to 3 precedes, the first lens group has a negative refractive power, the second lens group has a positive refractive power, A two-unit zoom lens that performs zooming by changing the distance between both lens units and performs focusing by the first lens unit, or negative, positive, and negative refractive power or positive, negative, and positive refractive power in order from the object side The first, second, and third lens groups have three lens groups. At least two of these lens groups are moved to perform zooming. , Negative, negative, and positive refractive power, or positive,
It has four lens groups, negative, positive, and positive refractive power, or positive, negative, positive, and negative refractive power. The present invention can be applied to a four-unit zoom lens or the like that performs zooming by moving at least two lens units so that the distance between the first and second lens units changes.

次に一般の変倍光学系において、画像のブレ量と該ブ
レ量を補正する為の補正用の可動レンズ群の移動量との
関係を示す。ブレ量は各種のブレ検知手段により種々の
形で検知されるが、以下簡単の為に全てブレ量|δy|に
換算して説明する。
Next, the relationship between the blur amount of an image and the movement amount of a movable lens group for correction for correcting the blur amount in a general zoom optical system will be described. The shake amount is detected in various forms by various shake detection means, but for the sake of simplicity, all the shake amounts will be described in terms of | δy |.

今、変倍光学系全体が第2図に示すように角度εだけ
傾いたとき像面上での画像のブレ量δyは変倍光学系全
体の焦点距離をfとしたとき δy=f・ε ……(2) となる。このとき第1レンズ群の焦点距離をf1とすると
第1レンズ群の偏心敏感度S1は S1=f/f1 ……(3) となる。(1)式のSと(3)式のS1は同じものとして
取り扱うことができるからS=S1とおいて(2),
(3)式より(1)式は E=−f1・ε ……(4) となる。
Now, when the entire variable power optical system is tilted by an angle ε as shown in FIG. 2, the blur amount δy of the image on the image plane is given by: δy = f · ε where the focal length of the entire variable power optical system is f. ... (2) At this time, assuming that the focal length of the first lens group is f1, the eccentric sensitivity S1 of the first lens group is S1 = f / f1 (3). Since S in equation (1) and S1 in equation (3) can be treated as the same, S = S1 and (2),
From equation (3), equation (1) becomes E = −f1 · ε (4).

(4)式によれば変倍光学系における第1レンズ群を
平行偏心させて画像のブレを補正する場合の該第1レン
ズ群の平行偏心量Eは変倍光学系の変倍位置に無関係と
なる。即ち、角度εだけ傾いたとき|f1・ε|だけ平行
偏心させれば画像のブレを補正することができる。この
ように本実施例では第1レンズ群の焦点距離f1と傾き角
度εより平行偏心量Eを求めることができる。
According to equation (4), the amount of parallel eccentricity E of the first lens group when correcting the image blur by parallel eccentricity of the first lens group in the variable power optical system is independent of the variable power position of the variable power optical system. Becomes In other words, when the camera is tilted by the angle ε and parallel eccentric by | f1 · ε |, the blur of the image can be corrected. As described above, in this embodiment, the parallel eccentricity E can be obtained from the focal length f1 of the first lens group and the tilt angle ε.

ただし、実際的には種々の物体距離や種々の収差発生
状態により画像安定化を図る必要がある。従って(4)
式は近似的に取り扱うのが画像の安定化を効果的に行う
場合に好ましい。
However, in practice, it is necessary to stabilize an image by various object distances and various aberration occurrence states. Therefore (4)
It is preferable to treat the expression approximately when effective stabilization of the image is performed.

本実施例では前記変倍光学系が全体として角度ε傾い
て撮影画像のブレが生じたとき前記第1レンズ群を|f1
・ε|程度平行偏心させたとき、該撮影画像のブレが補
正されるように前記複数のレンズ群の光学的諸定数を設
定していることを特徴としている。
In this embodiment, when the variable power optical system as a whole is tilted by an angle ε and the captured image is blurred, the first lens group is set to | f1
The optical constants of the plurality of lens groups are set so that blurring of the photographed image is corrected when the eccentricity is approximately ε |.

又、本実施例では第1レンズ群の屈折力を前述の条件
式(A1)の如く設定して第1レンズ群により画像のブレ
を補正すると共に、第1レンズ群を平行偏心させたとき
の光学性能の低下を防止している。
Further, in this embodiment, the refractive power of the first lens group is set as in the above-described conditional expression (A1) to correct image blurring by the first lens group, and the first lens group is decentered in parallel. The optical performance is prevented from deteriorating.

条件式(A1)の下限値を越えて第1レンズ群の屈折力
が強くなってくると偏心敏感度が大きくなり画像のブレ
を補正する為の光軸と直交する方向への移動量を小さく
することができる。しかしながら、それに伴い偏心精度
が厳しくなり、特に光軸上の変倍に対するピント移動量
が極めて大きくなり、非常に高精度なレンズ保持機構が
必要となり、更に各種の収差補正の為に第1レンズ群の
レンズ枚数を多くして構成しなくてはならず好ましくな
い。
When the refractive power of the first lens unit is increased beyond the lower limit of conditional expression (A1), the eccentric sensitivity increases, and the amount of movement in the direction orthogonal to the optical axis for correcting image blur is reduced. can do. However, the eccentricity precision becomes severe accompanying this, and the amount of focus movement particularly for zooming on the optical axis becomes extremely large, and a very high-precision lens holding mechanism is required. Further, the first lens group is used for various aberration corrections. It is necessary to increase the number of lenses, and it is not preferable.

又、条件式(A1)の上限値を越えて第1レンズ群の屈
折力に弱くなってくると画像のブレを補正する為に第1
レンズ群を光軸と直交する方向へ多く移動させねばなら
ず、第1レンズ群の有効径が増大し大型化してくるので
良くない。
If the refractive power of the first lens unit is weakened by exceeding the upper limit of conditional expression (A1), the first
The lens group must be moved a lot in the direction perpendicular to the optical axis, which is not good because the effective diameter of the first lens group increases and the size increases.

一般に光学系の一部のレンズ群を平行偏心させて画像
のブレを補正しようとすると偏心収差の発生により結像
性能が低下してくる。
Generally, when an attempt is made to correct image blurring by decentering some lens groups of the optical system in parallel, the imaging performance is reduced due to the occurrence of eccentric aberration.

そこで、次に任意の屈折力配置において可動レンズ群
を光軸と直交する方向に移動させて画像のブレを補正す
るときの偏心収差の発生について収差論的な立場より、
第23回応用物理学講演会(1962年)に松居より示された
方法に基づいて説明する。
Then, from the viewpoint of aberration theory, the occurrence of eccentric aberration when the movable lens group is moved in a direction perpendicular to the optical axis in an arbitrary refractive power arrangement to correct image blurring,
Explained based on the method presented by Matsui at the 23rd Lecture on Applied Physics (1962).

変倍光学系の第1レンズ群をEだけ平行偏心させたと
きの全系の収差量ΔY1は(a)式の如く偏心前の収差量
ΔYと偏心によって発生した偏心収差量ΔY(E)との
和になる。ここで収差量ΔYは球面収差(I)、コマ収
差(II)、非点収差(III)、ペッツバール和(P)、
歪曲収差(Y)で表わされる。
When the first lens group of the variable power optical system is decentered in parallel by E, the aberration amount ΔY1 of the whole system is equal to the aberration amount ΔY before decentering and the eccentric aberration amount ΔY (E) generated by eccentricity as shown in equation (a). The sum of Here, the aberration amount ΔY includes spherical aberration (I), coma aberration (II), astigmatism (III), Petzval sum (P),
It is represented by distortion (Y).

又、偏心収差ΔY(E)は(C)式に示す様に1次の
偏心コマ収差(II E)、1次の偏心非点収差(III
E)、1次の偏心像面弯曲(PE)、1次の偏心歪曲収差
(VE1)、1次の偏心歪曲附加収差(VE2)、そして1次
の原点移動(ΔE)で表わされる。
The eccentric aberration ΔY (E) is expressed by the first-order eccentric coma (II E) and the first-order eccentric astigmatism (III) as shown in the equation (C).
E) First-order eccentric field curvature (PE), first-order eccentric distortion (VE1), first-order eccentricity additive aberration (VE2), and first-order origin movement (ΔE).

又、(d)式から(i)式の(ΔE)〜(VE2)まで
の収差は第1レンズ群を平行偏心させる変倍光学系にお
いて第1レンズ群への光線の入射角をαp,としたと
きに第1レンズ群の収差係数Ip,IIp,IIIp,Pp,Vpと、
又、同様に第1レンズ群より像面側に配置したレンズ群
を全体として1つの第qレンズ群としたときの収差係数
をIq,IIq,IIIq,Pq,Vqを用いて表わされる。
Further, the aberrations from (ΔE) to (VE2) in the equations (d) to (i) are caused by setting the incident angle of the light beam to the first lens group to α p , in a variable power optical system for decentering the first lens group in parallel. where p is the aberration coefficient of the first lens group, I p , II p , III p , P p , and V p ;
Similarly, when the lens units arranged on the image plane side of the first lens unit as a whole are the q-th lens unit, the aberration coefficients are calculated using I q , II q , III q , P q , and V q. Is represented.

ΔY1=ΔY+ΔY(E) (a) (ΔE)=−2(α′−α)=−2hpφ (d) (II E)=α′pIIq−α(IIp+IIq) −′pIq(Ip+Iq) =hpφpIIq−αpIIp −(φpIqpIp (e) (III E)=α′pIIIq−α(IIIp+IIIq) −′pIIq(IIp+IIq) =hpφpIIIq−αpIIIp −(φpIIqpIIp (f) (PE)=α′pPq−α(Pp+Pq) =hpφpPq−αpPp (g) (VE1)=α′pVq−α(Vp+Vq) −′pIIIq(IIIp+IIIq) =hpφpVq−αpVp −(φpIIIqpIIIp (h) (VE2)=′pPq(Pp+Pq) =φpPqpPp (i) 以上の式から偏心収差の発生を小さくする為には第1
レンズ群の諸収差係数Ip,IIp,IIIp,Pp,Vpを小さな値と
するか、若しくは(a)式〜(i)式に示すように諸収
差係数を互いに打ち消し合うようにバランス良く設定す
ることが必要となってくる。そして第1レンズ群におい
ては球面収差、コマ収差、ペッツバール和の他に非点収
差、歪曲収差を良好に補正することが必要となってく
る。
ΔY1 = ΔY + ΔY (E) (a) (ΔE) = − 2 (α ′ p −α p ) = − 2 h p φ p (d) (II E) = α ′ p II q −α p (II p + II q ) − ′ p I q + p ( I p + I q ) = h p φ p II q −α p II p − ( p φ p I q −p I p (e) (III E) = α ′ p III q −α p (III p + III q ) -'P II q + p (II p + II q ) = h p φ p III q- α p III p- ( p φ p II q - p II p (f) (PE) = α' p P q- α p (P p + P q) = h p φ p P q -α p P p (g) (VE1) = α 'p V q -α p (V p + V q) -' p III q + p (III p + III q ) = h p φ p V q −α p V p − ( p φ p III qp III p (h) (VE2) = ′ p P q −p (P p + P q ) = p φ p P qp P p (i) From the above equation, to reduce the occurrence of eccentric aberration, the first
The various aberration coefficients I p , II p , III p , P p , and V p of the lens group are set to small values, or the various aberration coefficients are canceled out as shown in the equations (a) to (i). It is necessary to set the balance well. In the first lens group, it is necessary to satisfactorily correct astigmatism and distortion in addition to spherical aberration, coma and Petzval sum.

一般に第1レンズ群における軸上収差と共に軸外収差
をバランス良く補正するには、第1レンズ群中における
軸上光線の高さhと軸外光線の主光線の高さとが互い
に異った値をとるようにレンズ系を構成することが必要
となってくる。
In general, to correct off-axis aberrations as well as on-axis aberrations in the first lens group in a well-balanced manner, the height h of the on-axis rays and the height of the principal ray of the off-axis rays in the first lens group are different from each other. It is necessary to configure the lens system so that

この為、本実施例では第1レンズ群を後述する数値実
施例で示すように複数のレンズより構成すると共に、変
倍光学系中における第1レンズ群を前述の如く設定する
ことにより第1レンズ群を偏心させたときの偏心収差の
発生量を少なくしている。
For this reason, in the present embodiment, the first lens group is composed of a plurality of lenses as shown in numerical examples to be described later, and the first lens group in the variable power optical system is set as described above. The amount of eccentric aberration generated when the group is decentered is reduced.

一般に変倍光学系においては変倍、又はフォーカスに
際して移動させるレンズ群、又は該レンズ群に隣接する
レンズ群はレンズ群内で比較的良好に収差が補正されて
いるか、若しくはその近傍に収差をバランス良く補正す
るレンズ群が存在している場合が多い。又、該レンズ群
と隣接したレンズ群との合成系を考えた場合にも、各収
差が良好に補正されている場合が多い。
In general, in a variable power optical system, a lens group to be moved at the time of zooming or focusing, or a lens group adjacent to the lens group has a relatively good aberration correction in the lens group, or balances the aberration in the vicinity thereof. In many cases, there is a lens group that performs good correction. Also, when considering a combination system of the lens group and an adjacent lens group, each aberration is often well corrected.

この為、本実施では前述の如く変倍に際して若しくは
フォーカスの際、移動させる第1レンズ群を画像のブレ
補正用の可動レンズ群とし光軸と直交する方向に移動さ
せることにより、偏心収差の発生量を少なくしつつ画像
のブレを良好に補正している。
For this reason, in the present embodiment, as described above, the first lens group to be moved is used as a movable lens group for image blur correction and is moved in a direction perpendicular to the optical axis at the time of zooming or focusing, thereby causing eccentric aberration. The image blur is satisfactorily corrected while reducing the amount.

これにより前述の(e)式〜(i)式の各偏心収差係
数の増大を防止し、所定の画像のブレを補正しつつ、光
学性能の低下を防止した変倍光学系を達成している。
This achieves a variable power optical system that prevents an increase in the eccentric aberration coefficients of the above-described equations (e) to (i), corrects blurring of a predetermined image, and prevents a decrease in optical performance. .

特に後述する数値実施例においては第1レンズ群を光
軸と直交する方向に一体的に移動させ、画像のブレを良
好に補正すると共に偏心収差の発生が極めて少ない変倍
光学系を達成している。
In particular, in the numerical examples to be described later, the first lens group is integrally moved in a direction orthogonal to the optical axis to achieve a variable power optical system that satisfactorily corrects image blurring and generates very little eccentric aberration. I have.

第4図は本発明の数値実施例の変倍光学系のレンズ断
面図である。同図において(A)は広角端、(B)は望
遠端である。Iは負の屈折力の第1レンズ群、IIは正の
屈折力の第2レンズ群、IIIは負の屈折力の第3レンズ
群である。第2,第3レンズ群、II,IIIを矢印の如く移動
させて広角端から望遠端への変倍を行っている。
FIG. 4 is a lens sectional view of a zoom optical system according to a numerical example of the present invention. In the figure, (A) is the wide-angle end, and (B) is the telephoto end. I is a first lens group having a negative refractive power, II is a second lens group having a positive refractive power, and III is a third lens group having a negative refractive power. The second and third lens units II and III are moved as indicated by arrows to change the magnification from the wide-angle end to the telephoto end.

本実施例では第1レンズ群Iを平行偏心させて画像の
ブレを補正している。
In this embodiment, the first lens group I is decentered in parallel to correct image blur.

第5図(A),(B)は数値実施例の広角端と望遠端
の横収差図である。同図においてy0は物体高、y1は像高
である。
FIGS. 5A and 5B are lateral aberration diagrams of the numerical example at the wide-angle end and the telephoto end. Y 0 is the object height in the figure, y 1 denotes the image height.

次に数値実施例において、レンズ系全体をフィルム面
を中心に例として9分前倒れさせ(ε=−0.002617)こ
のときの画像のブレを補正する為の第1レンズ群を表−
1に示す値だけ平行偏心させたときの横収差図を参考例
として第6図に示す。図中(A)は広角端、(B)は望
遠端である。
Next, in a numerical example, the entire lens system is tilted forward by 9 minutes with the film surface as an example (ε = −0.002617).
FIG. 6 shows, as a reference example, a lateral aberration diagram when the parallel decentering is performed by the value shown in FIG. In the figure, (A) is the wide-angle end, and (B) is the telephoto end.

又、表−2に第1レンズ群で画像のブレを補正したと
きの偏心歪曲収差の補正状態を示す為に各物体高におけ
るフィルム面上での主光線の結像位置を示す。
Table 2 shows the image formation position of the principal ray on the film surface at each object height in order to show the correction state of the eccentric distortion when the image blur is corrected by the first lens group.

第6図及び表−2に示すように本実施例によれば、第
1レンズ群の平行偏心により偏心収差の発生量を少なく
しつつ偏心歪曲を良好に補正し、かつ所定の画像のブレ
を補正した高い光学性能を有した変倍光学系を達成して
いる。
According to the present embodiment, as shown in FIG. 6 and Table 2, the eccentric distortion can be satisfactorily corrected while the amount of eccentric aberration is reduced by the parallel eccentricity of the first lens group, and the blur of a predetermined image can be reduced. A variable power optical system having a corrected high optical performance is achieved.

尚、以上の実施例においては第1レンズ群を平行偏心
させて画像のブレを補正した場合について示したが回転
偏心させて行っても、又、双方を同時に行っても同様に
本発明の目的を達成することができる。
In the above embodiment, the case where the image blur is corrected by decentering the first lens group in parallel has been described. However, the object of the present invention can be similarly performed even when the rotation is decentered, or when both are performed simultaneously. Can be achieved.

変倍光学系の振動等によるブレはフィルム中心に限ら
ず、どの点を中心にブレていても本発明は良好に適用す
ることができる。
The blur caused by the vibration of the variable magnification optical system is not limited to the center of the film, and the present invention can be suitably applied to any point of blur.

画像のブレの補正は全変倍範囲にわたり一様に行う代
わりにブレの発生しやすい望遠側においてのみ行うよう
にしても良い。
The image blur correction may be performed only on the telephoto side where blur is likely to occur, instead of performing the correction uniformly over the entire zoom range.

又、近距離物体等の所定の物体距離においてのみ画像
のブレを補正するようにしても良い。
Further, the image blur may be corrected only at a predetermined object distance such as a short-distance object.

次に本発明の数値実施例を示す。数値実施例において
Riは物体側より順に第i番目のレンズ面の曲率半径、Di
は物体側より第i番目のレンズ厚及び空気間隔、Niとν
iは各々物体側より順に第i番目のレンズのガラスの屈
折率とアッベ数である。
Next, numerical examples of the present invention will be described. In numerical examples
Ri is the radius of curvature of the i-th lens surface in order from the object side,
Is the i-th lens thickness and air gap from the object side, Ni and ν
i is the refractive index and Abbe number of the glass of the i-th lens in order from the object side.

非球面形状は光軸方向にX軸、光軸と垂直方向にH
軸、光の進行方向を正としRを近軸曲率半径、A,B,C,D,
Eを各々非球面係数としたとき なる式で表わしている。
The aspheric surface has an X-axis in the optical axis direction and H in the direction perpendicular to the optical axis.
R and paraxial radius of curvature, A, B, C, D,
When E is each aspheric coefficient It is represented by the following equation.

(発明の効果) 本発明によれば変倍光学系を構成するレンズ群のう
ち、前述の条件を満す第1レンズ群を偏心させることに
より画像のブレを補正すると共に、偏心に伴う偏心収差
の発生量を極力押さえた高い光学性能を維持することの
できる防振機能を有した変倍光学系を達成することがで
きる。
(Effects of the Invention) According to the present invention, among the lens groups constituting the variable power optical system, the first lens group that satisfies the above-mentioned condition is decentered to correct image blurring and to perform eccentric aberration accompanying eccentricity. And a variable power optical system having an anti-vibration function capable of maintaining high optical performance while minimizing the amount of generation of light.

【図面の簡単な説明】 第1〜第3図は本発明の変倍光学系において画像のブレ
を補正する方法の一実施例の模式図、第4図は本発明の
変倍光学系の数値実施例のレンズ断面図、第5図
(A),(B)は本発明の数値実施例の収差図、第6図
(A),(B)は本発明の数値実施例において第1レン
ズ群を偏心させたときの収差図である。 図中、I,II,IIIは各々第1,第2,第3レンズ群、y0は物体
高、y1は像高である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are schematic views of an embodiment of a method for correcting image blurring in a variable power optical system according to the present invention, and FIG. 4 is numerical values of the variable power optical system according to the present invention. FIGS. 5A and 5B are aberration diagrams of a numerical example of the present invention, and FIGS. 6A and 6B are first lens groups of the numerical examples of the present invention. FIG. 9 is an aberration diagram when is decentered. In the figure, I, II, III each first, second, third lens group, y 0 is the object height, y 1 denotes the image height.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数のレンズ群を有し、このうち物体側か
ら数えた第1レンズ群と第2レンズ群との間隔が少なく
とも変倍の際、若しくはフォーカスの際に変化する構成
の変倍光学系であって、該第1レンズ群の焦点距離をf
1、望遠端における全系の焦点距離をfTとしたとき 0.2<|f1/fT|<5 なる条件を満足し、該変倍光学系が全体として角度を傾
いたときの該傾きにより生ずる撮影画像のブレをブレ検
出手段により検出し、該ブレ検出手段からの出力信号に
応じて駆動手段により前記第1レンズ群を|f1・ε|程
度平行偏心させたとき、該撮影画像のブレが補正される
ように前記複数のレンズ群の光学的諸定数を設定したこ
とを特徴とする防振機能を有した変倍光学系。
1. A zooming system having a plurality of lens units, wherein the distance between the first lens unit and the second lens unit counted from the object side changes at least when zooming or when focusing. An optical system, wherein the focal length of the first lens group is f
1. Assuming that the focal length of the entire system at the telephoto end is fT, the image satisfies the condition of 0.2 <| f1 / fT | <5. When the first lens group is decentered in parallel by about | f1 · ε | by drive means in accordance with an output signal from the shake detection means, the shake of the photographed image is corrected. A variable power optical system having an image stabilizing function, wherein optical constants of the plurality of lens groups are set as described above.
JP63015411A 1987-10-30 1988-01-26 Variable power optical system with anti-vibration function Expired - Fee Related JP2621280B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63015411A JP2621280B2 (en) 1988-01-26 1988-01-26 Variable power optical system with anti-vibration function
US07/261,231 US5270857A (en) 1987-10-30 1988-10-24 Optical system for stabilizing an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015411A JP2621280B2 (en) 1988-01-26 1988-01-26 Variable power optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JPH01189621A JPH01189621A (en) 1989-07-28
JP2621280B2 true JP2621280B2 (en) 1997-06-18

Family

ID=11888000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015411A Expired - Fee Related JP2621280B2 (en) 1987-10-30 1988-01-26 Variable power optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP2621280B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836142B2 (en) * 1989-12-07 1998-12-14 ミノルタ株式会社 Zoom lens
JPH04362909A (en) * 1991-01-23 1992-12-15 Nikon Corp Zoom lens with vibration-proof correcting optical system
EP0592916B1 (en) * 1992-10-14 1998-01-21 Nikon Corporation Zoom lens incorporating vibration-proofing function
EP0655638A1 (en) * 1993-11-29 1995-05-31 Nikon Corporation Lens capable of short distance photographing with vibration reduction functionm
JPH07152002A (en) 1993-11-29 1995-06-16 Nikon Corp Zoom lens having vibrationproof function
JPH07199124A (en) * 1993-12-28 1995-08-04 Nikon Corp Zoom lens with oscillation-proof function
US5774267A (en) * 1995-10-20 1998-06-30 Nikon Corporation Zoom lens
US5841588A (en) * 1996-03-06 1998-11-24 Nikon Corporation Zoom lens system with vibration reduction means
JPH11258504A (en) * 1998-03-12 1999-09-24 Nikon Corp Vibration proof zoom lens
US6493142B1 (en) 1999-07-30 2002-12-10 Canon Kabushiki Kaisha Zoom lens and photographing apparatus having it
JP4374853B2 (en) 2002-12-27 2009-12-02 株式会社ニコン Anti-shake zoom lens
JP2006251037A (en) * 2005-03-08 2006-09-21 Sony Corp Bent optical system and imaging apparatus
JP4143933B2 (en) 2005-03-29 2008-09-03 ソニー株式会社 Zoom lens and imaging device
JP2009192771A (en) 2008-02-14 2009-08-27 Sony Corp Zoom lens, image pickup apparatus, and control method for zoom lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243614A (en) * 1985-08-22 1987-02-25 Canon Inc Rear focus type zoom lens
JPS6247012A (en) * 1985-08-26 1987-02-28 Canon Inc Vibration-proof optical device

Also Published As

Publication number Publication date
JPH01189621A (en) 1989-07-28

Similar Documents

Publication Publication Date Title
JP2918115B2 (en) Variable power optical system with vibration proof function
JP3412964B2 (en) Optical system with anti-vibration function
JP3072815B2 (en) Variable power optical system
JP3869895B2 (en) Optical system with anti-vibration function
JP3141681B2 (en) Optical system with anti-vibration function
JP3003370B2 (en) Variable power optical system with anti-vibration function
JP2560377B2 (en) Variable magnification optical system with anti-vibration function
JP2605326B2 (en) Variable power optical system with anti-vibration function
JP2621280B2 (en) Variable power optical system with anti-vibration function
JP2535969B2 (en) Variable magnification optical system with anti-vibration function
JP2002244037A (en) Variable power optical system having vibrationproof function and optical equipment using it
JPH1152245A (en) Zoom lens having vibration compensating function
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JPH11237550A (en) Variable power optical system provided with vibration proof function
JPH02230114A (en) Photography system with vibration damping function
JP3860231B2 (en) Anti-vibration optical system
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP2621387B2 (en) Variable power optical system with anti-vibration function
JPH0862541A (en) Variable power optical system having vibration damping function
JP3387669B2 (en) Variable power optical system with anti-vibration function
JPH10260355A (en) Variable power optical system with vibration-proof function
JP2001356270A (en) Variable power optical system having vibration-proof function and optical equipment using the same
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JP3070592B2 (en) Variable power optical system with anti-vibration function
JP3927730B2 (en) Variable magnification optical system with anti-vibration function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees