JPH02141565A - Plasma thermal spraying method - Google Patents
Plasma thermal spraying methodInfo
- Publication number
- JPH02141565A JPH02141565A JP63296864A JP29686488A JPH02141565A JP H02141565 A JPH02141565 A JP H02141565A JP 63296864 A JP63296864 A JP 63296864A JP 29686488 A JP29686488 A JP 29686488A JP H02141565 A JPH02141565 A JP H02141565A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- thermal spraying
- particles
- anode nozzle
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000007751 thermal spraying Methods 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000007750 plasma spraying Methods 0.000 claims description 11
- 239000000843 powder Substances 0.000 abstract description 13
- 230000005611 electricity Effects 0.000 abstract 1
- 239000007921 spray Substances 0.000 description 21
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000005507 spraying Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ溶射方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a plasma spraying method.
従来のプラズマ溶射方法を第2図模式図について説明す
る。まず装置構成として、1は被溶射体で、1aはその
被溶射面である。2は被溶射面1aに対向するプラズマ
溶射ガンの陽極ノズルで、冷却水通路2aによって冷却
されており、3は先端が陽極ノズル2内へ挿入されてい
る陰極で、陽極ノズル2と絶縁体4によって電気的に絶
縁されている。5は陽極ノズル2の側部に穿設された溶
射材料粉末供給口で、6はその粉末供給ボー1〜.7は
絶縁体4に設けられた作動ガス供給口、8は陽極ノズル
2と陰極3に接続された直流電源、9は直流電源8と並
列接続された高周波発生器である。A conventional plasma spraying method will be explained with reference to a schematic diagram in FIG. First, as for the apparatus configuration, 1 is an object to be thermally sprayed, and 1a is its surface to be thermally sprayed. 2 is an anode nozzle of the plasma spray gun facing the surface 1a to be thermally sprayed, and is cooled by a cooling water passage 2a; 3 is a cathode whose tip is inserted into the anode nozzle 2; electrically isolated by 5 is a thermal spray material powder supply port bored in the side of the anode nozzle 2, and 6 is the powder supply port 1 to . 7 is a working gas supply port provided in the insulator 4; 8 is a DC power supply connected to the anode nozzle 2 and the cathode 3; and 9 is a high frequency generator connected in parallel with the DC power supply 8.
このような装置によってプラズマ溶射を行うには、まず
作動ガスとしてA「ガスを作動ガス供給ロアより陽極ノ
ズル2内に供給し、直流電源8をオンとして陽極ノズル
2と陰極3との間に無負荷電圧を与える。次いで高周波
発生器9をオンとして陽極ノズル2と陰極3との間にア
ーク放電を発生させると、直流電源8からの電力により
連続的なアークが発生して作動ガスはプラズマガスとな
り、陽極ノズル2から高温のプラズマジェット14とな
って噴出する。To perform plasma spraying using such a device, first supply gas A as the working gas into the anode nozzle 2 from the working gas supply lower, turn on the DC power supply 8, and close the space between the anode nozzle 2 and the cathode 3. A load voltage is applied.Then, when the high frequency generator 9 is turned on to generate an arc discharge between the anode nozzle 2 and the cathode 3, a continuous arc is generated by the power from the DC power supply 8, and the working gas becomes plasma gas. As a result, a high-temperature plasma jet 14 is ejected from the anode nozzle 2.
次に図示せざる粉末供給装置の溶射材料粉末を、Arガ
スによって粉末供給ボート6から溶射材料供給口5を通
って、陽極ノズル2内に供給すると、プラズマジェット
14によって加熱加速され、高温高速の溶射材料粒子1
6となって被溶射面1aに向かって飛んで行き、被溶射
面1aに衝突、付着し溶射皮膜を形成する。なおプラズ
マ溶射を行う間は、陽極ノズル2の温度上昇を防止する
ために冷却水通路2aに水を強制的に流している。Next, when the thermal spray material powder from a powder supply device (not shown) is supplied from the powder supply boat 6 through the thermal spray material supply port 5 into the anode nozzle 2 using Ar gas, it is heated and accelerated by the plasma jet 14, and is heated at high temperature and high speed. Thermal spray material particles 1
6 and fly toward the sprayed surface 1a, collide with and adhere to the sprayed surface 1a, and form a sprayed coating. Note that during plasma spraying, water is forced to flow through the cooling water passage 2a in order to prevent the temperature of the anode nozzle 2 from rising.
しかしながら、このような直流アーク放電によるプラズ
マ溶射では、プラズマ流が数百m / sと高速なこと
と、プラズマの高温域が狭いために、プラズマジェット
内に供給された溶射材料粒子は完全に溶は切らないか、
又は全く未溶融のまま溶射皮膜に混入する惧れがあり、
そのため溶射皮膜の緻密性密着力の低下をまねく原因と
なる。However, in plasma spraying using direct current arc discharge, the plasma flow is at a high speed of several hundred m/s and the high temperature region of the plasma is narrow, so the spray material particles supplied into the plasma jet are not completely melted. Shouldn't you cut it?
Or, there is a risk that it may be mixed into the thermal spray coating without being melted at all.
This causes a decrease in the density and adhesion of the sprayed coating.
またプラズマジェットにより加熱加速された溶射材料粒
子は被溶射面に衝突付着し溶射皮膜を形成するにあたり
、衝突する際粒子は偏平化するが、溶射材料の種類及び
粒子径によっては偏平化しながら一部は飛散することが
あり、この飛散物が皮膜の緻密性、密着力を低下させる
欠陥となる惧れがある。In addition, the particles of the thermal spray material heated and accelerated by the plasma jet collide and adhere to the surface to be thermally sprayed to form a thermal spray coating.During the collision, the particles become flattened, but depending on the type and particle size of the thermal spray material, some of the particles may become flattened. may scatter, and there is a risk that these scattered particles may become defects that reduce the denseness and adhesion of the film.
本発明は、このような事情に鑑みて提案されたもので、
溶射材料粒子が十分に溶融加熱され、溶射皮膜内への皮
膜を得ることができるとともに、プラズマ流速が制御で
きて付着偏平化する際の飛散物をなくすことができるプ
ラズマ溶射方法を提供することを目的とする。The present invention was proposed in view of these circumstances, and
To provide a plasma spraying method in which thermal spraying material particles are sufficiently melted and heated to form a coating within a sprayed coating, and the plasma flow rate can be controlled to eliminate flying debris during adhesion and flattening. purpose.
そのために本発明は、直流印加の陰極及び陽極ノズル間
の放電によるプラズマジェットにより加熱加速された溶
射材料粒子が噴出される上記陽極ノズルの前に、絶縁円
筒及びその外周巻装の高周波印加コイルを配設し、上記
陽極ノズルからプラズマジェットを噴出させながら、上
記絶縁円筒内に高周波プラズマを発生させることを特徴
とする。To this end, the present invention provides an insulated cylinder and a high-frequency application coil wound around its outer circumference in front of the anode nozzle, from which sprayed material particles heated and accelerated by a plasma jet caused by a discharge between the cathode and anode nozzles to which direct current is applied are ejected. A high-frequency plasma is generated within the insulating cylinder while ejecting a plasma jet from the anode nozzle.
本発明方法においては、陽極ノズルに供給される溶射材
料粒子は、陽極ノズルから発生するプラズマジェットに
よって加熱加速されたうえ、高周波プラズマの広い高温
領域によって十分に溶融状態となり、溶射皮膜内に未溶
融又は不完全熔融状態の粒子の混入を防ぎ、健全な溶射
皮膜を得ることができる。In the method of the present invention, the thermal spray material particles supplied to the anode nozzle are heated and accelerated by the plasma jet generated from the anode nozzle, and are sufficiently molten by the wide high-temperature region of the high-frequency plasma, so that they remain unmelted in the thermal spray coating. Alternatively, it is possible to prevent particles in an incompletely melted state from being mixed in and obtain a sound thermal spray coating.
またプラズマジェットと高周波プラズマとに印加する出
力をそれぞれ調整することによって、プラズマ流速を制
御することができ、これにより溶融した粒子が被溶射面
に付着偏平化する際の飛散物をなくすことができる。In addition, by adjusting the outputs applied to the plasma jet and high-frequency plasma, the plasma flow velocity can be controlled, thereby eliminating flying debris when molten particles adhere to the sprayed surface and flatten it. .
本発明プラズマ溶射方法の一実施例を第1図模式図につ
いて説明する。An embodiment of the plasma spraying method of the present invention will be described with reference to a schematic diagram in FIG.
第1図において、■は被溶射体で、1aはその被溶射面
である。2は被溶射面1aに対向するプラズマ溶射ガン
の陽極ノズルで、冷却水通路2aによって冷却されてお
り、3は先端が陽極ノズル2内へ挿入されている陰極で
、陽極ノズル2と絶縁体4によって電気的に絶縁されて
いる。5は陽極ノズル2の側部に穿設された溶射材料粉
末供給口で、6はその粉末供給ポート、7は絶縁体4に
設けられた作動ガス供給口、8は陽極ノズル2と陰極3
に接続された直流電源、9は直流電源8と並列接続され
た高周波発生器である。In FIG. 1, ■ is an object to be thermally sprayed, and 1a is its surface to be thermally sprayed. 2 is an anode nozzle of the plasma spray gun facing the surface 1a to be thermally sprayed, and is cooled by a cooling water passage 2a; 3 is a cathode whose tip is inserted into the anode nozzle 2; electrically isolated by 5 is a thermal spray material powder supply port drilled in the side of the anode nozzle 2, 6 is the powder supply port, 7 is a working gas supply port provided in the insulator 4, and 8 is the anode nozzle 2 and cathode 3.
9 is a high frequency generator connected in parallel with the DC power source 8.
10は陽極ノズル2の前に配設された水冷石英管等の絶
縁円筒、11は同絶縁円筒10の外周に巻装されたコイ
ル、12は絶縁円筒10内に作動ガスを供給する供給口
、13はコイル11と結線された例えば周波数4MHz
の高周波発振機、14は陽極ノズル2から噴射されるプ
ラズマジェット、15は絶縁円筒10内に発生される高
周波プラズマ、16は飛行する溶射材料粒子である。10 is an insulating cylinder such as a water-cooled quartz tube arranged in front of the anode nozzle 2; 11 is a coil wound around the outer periphery of the insulating cylinder 10; 12 is a supply port for supplying working gas into the insulating cylinder 10; 13 is connected to the coil 11 and has a frequency of 4 MHz, for example.
14 is a plasma jet injected from the anode nozzle 2, 15 is a high-frequency plasma generated within the insulating cylinder 10, and 16 is a flying thermal spray material particle.
このような装置構成におい′ζ、陽極ノズル2内に作動
ガスとしてA r 5127m1nを供給し、冷却され
る陽極ノズル2と陰極3との間に40数■の無負荷電圧
を与え、高周波発生器9をオンすれば、陽極ノズル2よ
りプラズマジェット14が噴射する。次に作動ガス供給
口12より、Arを507!/min、又はAr50ρ
/minにH2か02を数F/min混合したのを絶縁
円筒10内に供給しつつ、高周波発振機13を作動させ
コイル11に、20 KW、 4 MHZO高周波電
流を印加すると、絶縁円筒10内に交番磁場が生じ、高
周波プラズマ15が発生する。In such a device configuration, Ar 5127m1n is supplied as a working gas into the anode nozzle 2, a no-load voltage of about 40 mm is applied between the anode nozzle 2 to be cooled and the cathode 3, and the high frequency generator 9 is turned on, a plasma jet 14 is ejected from the anode nozzle 2. Next, from the working gas supply port 12, 507! /min, or Ar50ρ
While supplying a mixture of H2 or 02 at several F/min into the insulating cylinder 10, the high frequency oscillator 13 is activated and a 20 KW, 4 MHZO high frequency current is applied to the coil 11. An alternating magnetic field is generated, and high frequency plasma 15 is generated.
一方溶射材料として粒度分布が10〜40pmのZrO
,−8%(wt)Y20gを、図示せざる粉末供給装置
からArガスによって1分間にLogの割合で、粉末供
給ポート6から溶射材料粉末供給口5を通って、陽極ノ
ズル2内に供給する。On the other hand, ZrO with a particle size distribution of 10 to 40 pm is used as a thermal spray material.
, -8% (wt) Y20g is supplied into the anode nozzle 2 from the powder supply port 6 through the thermal spray material powder supply port 5 at a rate of Log per minute using Ar gas from a powder supply device (not shown). .
かくして溶射材料粒子16はプラズマジェット14によ
っ′ζ加熱加速され、更に高周波プラズマ15によって
加熱−f6融が促進され、未熔融又は不完全熔融の粒子
は完全に溶融状態になる。溶融して飛行する溶射材料粒
子16は被溶射面laに付着し溶射皮膜を形成する。In this way, the thermal spray material particles 16 are heated and accelerated by the plasma jet 14, and the high-frequency plasma 15 further promotes heating-f6 melting, so that the unmelted or incompletely melted particles become completely molten. The melted and flying spray material particles 16 adhere to the sprayed surface la to form a sprayed coating.
なお、直流電源8及び高周波発振機13の出力を調整す
ることによって、プラズマジェット14及び高周波プラ
ズマ15の流れを制御することができ、それにより溶射
材料粒子16の運動エネルギを制御して、被溶射面1a
に付着する際の飛散を少なくすることができる。Note that by adjusting the output of the DC power supply 8 and the high-frequency oscillator 13, the flow of the plasma jet 14 and the high-frequency plasma 15 can be controlled, thereby controlling the kinetic energy of the spray material particles 16 to Surface 1a
It is possible to reduce scattering when it adheres to the surface.
このようにして本発明方法によれば、プラズマジェット
14と高周波プラズマ15を同時に発生させながら溶射
するため、プラズマジェット14によって十分加熱され
ないか全く加熱されなかった溶射材料粒子16は高周波
プラズマ15によって十分に溶融加熱され、これによっ
て、被溶射面1aの溶射皮膜内への未溶融又は不完全熔
融粒子の混入を防ぐことができ、健全な溶射皮膜を得る
ことができる。またプラズマジェット14と高周波プラ
ズマ15に印加する出力をそれぞれ調整することによっ
て、プラズマ流速を制御でき、溶融した粒子が被溶射面
1aに付着偏平化する際の飛散物をなくすことができる
。In this manner, according to the method of the present invention, since the plasma jet 14 and the high-frequency plasma 15 are simultaneously generated during thermal spraying, the thermal spray material particles 16 that are not sufficiently heated or not heated at all by the plasma jet 14 are sufficiently heated by the high-frequency plasma 15. As a result, unmelted or incompletely melted particles can be prevented from entering the sprayed coating on the sprayed surface 1a, and a healthy sprayed coating can be obtained. Furthermore, by adjusting the outputs applied to the plasma jet 14 and the high-frequency plasma 15, the plasma flow velocity can be controlled, and it is possible to eliminate flying objects when molten particles adhere to the sprayed surface 1a and flatten it.
要するに本発明によれば、直流印加の陰極及び陽極ノズ
ル間の放電によるプラズマジェットにより加熱加速され
た溶射材料粒子が噴出される上記陽極ノズルの前に、絶
縁円筒及びその外周巻装の高周波印加コイルを配設し、
上記陽極ノズルからプラズマジェットを噴出させながら
、上記絶縁円筒内に高周波プラズマを発生させることに
より、溶射材料粒子が十分に熔融加熱され、溶射皮膜内
への皮膜を得ることができるとともに、プラズマ流速が
制御できて付着偏平化する際の飛散物をなくずことがで
きるプラズマ溶射方法を得るから、本発明は産業上極め
て有益なものである。In short, according to the present invention, an insulated cylinder and a high-frequency application coil wrapped around the outer circumference of the anode nozzle are arranged in front of the anode nozzle, from which thermal spray material particles heated and accelerated by a plasma jet caused by a discharge between the cathode and anode nozzles to which direct current is applied are ejected. and
By generating high-frequency plasma in the insulating cylinder while ejecting a plasma jet from the anode nozzle, the thermal spray material particles can be sufficiently melted and heated to form a coating within the thermal spray coating, and the plasma flow rate can be increased. The present invention is of great industrial benefit because it provides a plasma spraying method that can be controlled and eliminate debris during deposit flattening.
第F図は本発明プラズマ溶射方法の−・実施例を示す模
式図、第2図は従来のプラズマ溶射方法を示す模式図で
ある。
1・・・被溶射体、1a・・・被溶射面、2・・・陽極
ノズル、2a・・・冷却水通路、3・・・陰極、4・・
・絶縁体、5・・・溶射材料粉末供給口、6・・・粉末
供給ボート、7・・・作動ガス供給口、8・・・直流電
源、9・・・高周波発生器、10・・・絶縁円筒、11
・・・コイル、12・・・作動ガス供給1−1.13・
・・高周波発振機、14・・・プラズマジェット、15
・・・高周波プラズマ、16・・・溶射材料粒子。
代理人 弁理士 塚 本 正 文
第
図FIG. F is a schematic diagram showing an embodiment of the plasma spraying method of the present invention, and FIG. 2 is a schematic diagram showing a conventional plasma spraying method. DESCRIPTION OF SYMBOLS 1... Object to be thermally sprayed, 1a... Surface to be thermally sprayed, 2... Anode nozzle, 2a... Cooling water passage, 3... Cathode, 4...
- Insulator, 5... Thermal spray material powder supply port, 6... Powder supply boat, 7... Working gas supply port, 8... DC power supply, 9... High frequency generator, 10... Insulating cylinder, 11
...Coil, 12...Working gas supply 1-1.13.
...High frequency oscillator, 14...Plasma jet, 15
...high frequency plasma, 16...sprayed material particles. Agent Patent Attorney Masa Tsukamoto
Claims (1)
ジエットにより加熱加速された溶射材料粒子が噴出され
る上記陽極ノズルの前に、絶縁円筒及びその外周巻装の
高周波印加コイルを配設し、上記陽極ノズルからプラズ
マジェットを噴出させながら、上記絶縁円筒内に高周波
プラズマを発生させることを特徴とするプラズマ溶射方
法。An insulated cylinder and a high frequency application coil wound around its outer periphery are disposed in front of the anode nozzle, from which the sprayed material particles heated and accelerated by the plasma jet caused by the discharge between the cathode and anode nozzles applied with direct current are ejected. A plasma spraying method characterized in that high-frequency plasma is generated within the insulating cylinder while ejecting a plasma jet from a nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63296864A JPH02141565A (en) | 1988-11-24 | 1988-11-24 | Plasma thermal spraying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63296864A JPH02141565A (en) | 1988-11-24 | 1988-11-24 | Plasma thermal spraying method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02141565A true JPH02141565A (en) | 1990-05-30 |
Family
ID=17839151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63296864A Pending JPH02141565A (en) | 1988-11-24 | 1988-11-24 | Plasma thermal spraying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02141565A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03287754A (en) * | 1990-04-02 | 1991-12-18 | Toyonobu Yoshida | Formation of oxide film by means of combined plasma |
JPH0436455A (en) * | 1990-05-31 | 1992-02-06 | Mitsubishi Heavy Ind Ltd | Formation of sprayed deposit |
JPH06108221A (en) * | 1990-05-29 | 1994-04-19 | Electroplasma Inc | Thermal jet type plasma apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62213862A (en) * | 1986-03-12 | 1987-09-19 | Mitsubishi Heavy Ind Ltd | Plasma flame-spraying method |
-
1988
- 1988-11-24 JP JP63296864A patent/JPH02141565A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62213862A (en) * | 1986-03-12 | 1987-09-19 | Mitsubishi Heavy Ind Ltd | Plasma flame-spraying method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03287754A (en) * | 1990-04-02 | 1991-12-18 | Toyonobu Yoshida | Formation of oxide film by means of combined plasma |
JPH06108221A (en) * | 1990-05-29 | 1994-04-19 | Electroplasma Inc | Thermal jet type plasma apparatus |
JPH0436455A (en) * | 1990-05-31 | 1992-02-06 | Mitsubishi Heavy Ind Ltd | Formation of sprayed deposit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12030078B2 (en) | Plasma transfer wire arc thermal spray system | |
US5733662A (en) | Method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method | |
JP2959842B2 (en) | High speed arc spraying apparatus and spraying method | |
US5808270A (en) | Plasma transferred wire arc thermal spray apparatus and method | |
US6986471B1 (en) | Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics | |
JPH0580273B2 (en) | ||
JPH0585221B2 (en) | ||
EP0949350B1 (en) | Method of eliminating unevenness in pass-reversal thermal spraying | |
JPH02141565A (en) | Plasma thermal spraying method | |
JPH01319297A (en) | Method and apparatus for high speed and temperature-controlled plasma display | |
CN110042337A (en) | A kind of argon gas protection microbeam arc spray gun | |
JPH04131649U (en) | plasma spray gun | |
JPH06122956A (en) | Plasma spraying method and film forming device | |
JP2716844B2 (en) | Thermal spray composite film forming method | |
CN114351078A (en) | Plasma arc spraying method using current-carrying wire | |
JP2001003151A (en) | Plasma spraying device | |
JP2809359B2 (en) | Thermal spray composite film forming method | |
JP3074957B2 (en) | Plasma spraying apparatus and method | |
JPH0763034B2 (en) | Axial supply type plasma heating material injection device | |
JPH08167497A (en) | Plasma spraying torch | |
JPH0436455A (en) | Formation of sprayed deposit | |
JPS62213862A (en) | Plasma flame-spraying method | |
RU2094523C1 (en) | Gear for high-speed electric arc wire deposition by spraying | |
JPS61242657A (en) | Plasma thermal spray gun | |
JPH05318130A (en) | Plasma arc machine |