JPH0436455A - Formation of sprayed deposit - Google Patents
Formation of sprayed depositInfo
- Publication number
- JPH0436455A JPH0436455A JP2141952A JP14195290A JPH0436455A JP H0436455 A JPH0436455 A JP H0436455A JP 2141952 A JP2141952 A JP 2141952A JP 14195290 A JP14195290 A JP 14195290A JP H0436455 A JPH0436455 A JP H0436455A
- Authority
- JP
- Japan
- Prior art keywords
- high frequency
- sprayed
- plasma
- anode nozzle
- thermal spray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000007751 thermal spraying Methods 0.000 claims abstract description 3
- 239000007921 spray Substances 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 230000001133 acceleration Effects 0.000 abstract 1
- 238000005507 spraying Methods 0.000 description 24
- 239000002245 particle Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000003518 caustics Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶射皮膜形成方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming a thermal spray coating.
従来の溶射皮膜形成方法としては、溶射ガンに供給され
る線状又は粉末状の溶射材料を酸素とアセチレン、プロ
パン又は水素の混合ガスの燃焼ガス火炎により加熱溶融
し、溶射粒子を被溶射物表面に吹付は溶射皮膜を形成す
る燃焼熱溶射方法や、溶射ガン内のタングステン棒状陰
極と銅製陽極ノズルの間に生ぜしめる直流アークの周り
に窒素、アルゴン等の作動ガスを旋回流として流してプ
ラズマ化し、その中へ線状又は粉末状の溶射材料を供給
して加熱溶融し、溶射粒子をプラズマ流に乗せて被溶射
物表面に吹付は溶射皮膜を形成するプラズマ溶射方法が
知られている。In the conventional thermal spray coating formation method, linear or powdered thermal spray material supplied to a thermal spray gun is heated and melted by a combustion gas flame of a mixed gas of oxygen, acetylene, propane, or hydrogen, and the thermal spray particles are applied to the surface of the object to be sprayed. Spraying is achieved by the combustion heat spraying method that forms a thermal spray coating, or by flowing a working gas such as nitrogen or argon as a swirling flow around a direct current arc generated between a tungsten rod cathode and a copper anode nozzle in a thermal spray gun to turn it into plasma. A plasma spraying method is known in which a linear or powder spraying material is fed into the material, heated and melted, and the sprayed particles are carried in a plasma stream and sprayed onto the surface of the object to be sprayed to form a sprayed coating.
しかしながら、このような方法による溶射皮膜の形成状
態は、第3図断面図に示すように、飛行した溶射粒子0
16が被溶射物017に衝突して偏平状態となり、それ
が堆積して溶射皮膜018が形成され、偏平化した溶射
粒子016の重なりにより粒界に空隙019ができ、全
体として多孔質の皮膜となる。従ってこのような溶射皮
膜018を耐腐食性膜として通用した場合、腐食物が多
孔質皮膜内へ浸透し被溶射物017母材を腐食させる原
因となる。また粒界に空隙019が存在することによっ
て粒子間の接触部が少なくてその密着力が小さく、溶射
皮膜018は軟質な皮膜となる。However, as shown in the cross-sectional view of Fig.
16 collides with the object to be sprayed 017 and becomes flat, which accumulates to form a sprayed coating 018. The overlap of the flattened sprayed particles 016 creates voids 019 at the grain boundaries, resulting in a porous coating as a whole. Become. Therefore, if such a thermal sprayed coating 018 is used as a corrosion-resistant coating, corrosive substances will penetrate into the porous coating and cause corrosion of the base material of the thermal sprayed object 017. Further, due to the presence of voids 019 in the grain boundaries, there are few contact areas between particles, and the adhesion force is small, so that the thermal sprayed coating 018 becomes a soft coating.
本発明は、このような事情に鑑みて提案されたもので、
溶射粒子の粒界の空隙が少なく緻密でかつ粒子間の結合
力が強い硬質な皮膜であり、耐腐食性膜として適用した
場合腐食物の浸透が抑えられ、ひいては被溶射物母材を
腐食から防ぐことができる溶射皮膜を形成することがで
きる溶射皮膜形成方法を提供することを目的とする。The present invention was proposed in view of these circumstances, and
It is a hard film that is dense with few voids in the grain boundaries of the sprayed particles and has a strong bonding force between particles. When applied as a corrosion-resistant film, it suppresses the penetration of corrosive substances and protects the base material of the sprayed object from corrosion. It is an object of the present invention to provide a method for forming a thermal spray coating that can prevent the formation of a thermal spray coating.
そのために本発明は、プラズマ溶射ガンの陰極及び陽極
ノズル間に直流印加してプラズマジェットを発生させる
とともに上記陽極ノズルの前に配した絶縁円筒の外周巻
装コイルに高周波印加して高周波プラズマを発生させ、
上記陽極ノズルから上記プラズマジエ・ノド内に溶射材
料粉末を供給して被溶射物番こ溶射皮膜を形成させなが
ら上記高周波プラズマによって同溶射皮膜に熱処理を施
すことを特徴とする。To this end, the present invention generates a plasma jet by applying direct current between the cathode and anode nozzles of a plasma spray gun, and generates high-frequency plasma by applying a high frequency to a coil wound around the outer circumference of an insulated cylinder placed in front of the anode nozzle. let me,
The present invention is characterized in that a thermal spray material powder is supplied from the anode nozzle into the plasma die nozzle to form a thermal spray coating on the object to be thermally sprayed, and the thermal spray coating is heat-treated by the high frequency plasma.
本発明溶射皮膜形成方法においては、プラズマ溶射ガン
の陰極と陽極ノズル間の直流印加により発生するプラズ
マジェットにより、溶射材料粉末が加熱溶融されて、被
溶射物に衝突し偏平粒子となり、堆積して溶射皮膜を形
成すると、その溶射皮膜は高周波プラズマの高温に晒さ
れて、まず高周波プラズマの熱によって粒子間が焼結し
、更に加熱持続により粒子は再溶融して粒界空隙は少な
くなり、その結果粒子間の密着が強く空隙の少ない緻密
な溶射皮膜が形成される。In the thermal spray coating forming method of the present invention, the thermal spray material powder is heated and melted by the plasma jet generated by direct current application between the cathode and anode nozzle of the plasma spray gun, collides with the object to be sprayed, becomes flat particles, and is deposited. When a thermal sprayed coating is formed, it is exposed to the high temperature of high-frequency plasma, and the particles are first sintered by the heat of the high-frequency plasma, and then as the heating continues, the particles remelt, reducing the number of grain boundary voids. As a result, a dense thermal sprayed coating with strong interparticle adhesion and few voids is formed.
本発明溶射皮膜形成方法の一実施例を図面について説明
すると、第1図は本方法を実施するプラズマ溶射ガンの
縦断面図、第2図は本方法による溶射皮膜の断面図であ
る。An embodiment of the thermal spray coating forming method of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a plasma spray gun for carrying out the method, and FIG. 2 is a sectional view of the thermal spray coating formed by the method.
第1図において、プラズマ溶射ガン1は、タングステン
棒製の陰極2と銅製の陽極ノズル3から構成され、後者
の基部中央に絶縁体4を介して前者が先端を突入して固
定されるとともに、後者のノズル壁には冷却水通路5が
穿設されている。In FIG. 1, a plasma spray gun 1 is composed of a cathode 2 made of a tungsten rod and an anode nozzle 3 made of copper. A cooling water passage 5 is bored in the latter nozzle wall.
また陽極ノズル3の先端近傍に溶射材料粉末供給口6が
設けられるとともに、基部の絶縁体4に作動ガス供給ロ
アが設けられており、陰極2と陽極ノズル3との間に直
流電源8と高周波発生器9が並列に接続されている。Further, a thermal spray material powder supply port 6 is provided near the tip of the anode nozzle 3, and a working gas supply lower is provided in the insulator 4 at the base, and a DC power supply 8 and a high frequency Generators 9 are connected in parallel.
更に陽極ノズル3の前に例えば水冷石英管からなる絶縁
円筒10が同軸的に配設されて、その基部に作動ガス供
給口11が穿設されるとともに、外周にコイル12が巻
装され、同コイル12には高周波発振機13が接続され
ている。Further, in front of the anode nozzle 3, an insulating cylinder 10 made of, for example, a water-cooled quartz tube is arranged coaxially, and a working gas supply port 11 is bored at the base of the insulating cylinder 10, and a coil 12 is wound around the outer periphery. A high frequency oscillator 13 is connected to the coil 12.
なお図中において、14は陰極2及び陽極ノズル3間に
直流印加して発生するプラズマジェット、15はコイル
12に高周波印加して発生する高周波プラズマ、16は
飛行する溶射粒子であり、また17はプラズマ溶射ガン
lに対向して配置された被溶射物、18はこの被溶射物
17表面に形成される溶射皮膜である。In the figure, 14 is a plasma jet generated by applying a direct current between the cathode 2 and anode nozzle 3, 15 is a high-frequency plasma generated by applying a high frequency to the coil 12, 16 is a flying sprayed particle, and 17 is a The object to be thermally sprayed 18 placed opposite the plasma spray gun 1 is a thermal spray coating formed on the surface of the object to be thermally sprayed 17 .
このようなプラズマ溶射ガン1を用いて溶射皮膜18を
形成する要領を説明すると、陽極ノズル3内に作動ガス
供給ロアから作動ガスとしてAr5j!/+++inを
供給し、冷却されている陽極ノズル3と陰極2の間に出
カフkWの直流電源8から40数■の無負荷電圧を加え
、高周波発生器9をオンにすれば、陽極ノズル3よりプ
ラズマジェット14が発生する。To explain how to form the thermal spray coating 18 using such a plasma spray gun 1, Ar5j! /+++in is supplied, a no-load voltage of several 40 cm is applied between the cooled anode nozzle 3 and the cathode 2 from the DC power supply 8 with an output of kW, and the high frequency generator 9 is turned on. As a result, a plasma jet 14 is generated.
またAr501/ll1nの作動ガスを作動ガス供給口
11から絶縁円筒10内へ供給し、4MHz、20kW
の高周波発振機13を作動させコイル12に高周波電流
を印加させると、絶縁円筒10内に交番磁場が生し高周
波プラズマ15が発生する。その後設定した溶射条件に
ガス流量、出力を調整する。In addition, a working gas of Ar501/ll1n is supplied from the working gas supply port 11 into the insulating cylinder 10, and the frequency of 4MHz, 20kW is
When the high frequency oscillator 13 is activated to apply a high frequency current to the coil 12, an alternating magnetic field is generated within the insulating cylinder 10 and high frequency plasma 15 is generated. Then, adjust the gas flow rate and output to the set thermal spray conditions.
次に溶射材料粉末として粒度分布が10〜40μmのイ
ントリア(Y2 o2)骨部安定化ジルコニア(Zr0
2)を、図示せざる粉末供給装置からArガスによって
10g/sinの割合で溶射材料粉末供給口6から陽極
ノズル3内へ供給する。Next, Intoria (Y2 o2) bone stabilized zirconia (Zr0
2) is supplied into the anode nozzle 3 from the thermal spray material powder supply port 6 at a rate of 10 g/sin using Ar gas from a powder supply device (not shown).
すると溶射材料粉末はプラズマジェット14によって加
熱溶融された溶射粒子16となって、プラズマジェット
14とともに加速されて陽極ノズル3から絶縁円筒10
内へ噴出され、更に高周波プラズマ15によって加熱熔
融が促進され、被溶射物17に向かって飛行する。そし
て飛行した溶射粒子16は被溶射物17の表面に衝突し
偏平となり凝固する。この偏平粒子が堆積して溶射皮膜
18が形成される。Then, the thermal spray material powder becomes thermal spray particles 16 that are heated and melted by the plasma jet 14, are accelerated together with the plasma jet 14, and are sent from the anode nozzle 3 to the insulating cylinder 10.
It is ejected inward, heated and melted by the high-frequency plasma 15, and flies toward the object 17 to be thermally sprayed. The flying thermal spray particles 16 then collide with the surface of the object 17 to be thermally sprayed, become flattened, and solidify. The flat particles are deposited to form a thermal spray coating 18.
この溶射皮膜18は、溶射粒子16が堆積し膜厚が増し
ていくと同時に、高周波プラズマ15に晒され続けるた
め加熱され、溶射皮膜18に与える熱容量を適宜制御す
ることによって、そこに熱処理を施すことができ、熱容
量の制御は被溶射物17と絶縁円筒10先端との距離を
変えることによって行う。This thermal sprayed coating 18 is heated as it continues to be exposed to the high frequency plasma 15 as the thermal sprayed particles 16 accumulate and the coating thickness increases, and heat treatment is applied to the thermal sprayed coating 18 by appropriately controlling the heat capacity given to the thermal sprayed coating 18. The heat capacity can be controlled by changing the distance between the object to be sprayed 17 and the tip of the insulating cylinder 10.
すなわち溶射皮膜18に与える熱容量が溶射材料の融点
より低くければ、溶射皮膜18を構成する偏平粒子の粒
界で焼結作用が進み、粒子間の結合力が強化され、更に
与える熱容量が粉末材料の融点より高くなると、偏平粒
子は再溶融し粒界がなくなって、粒子間の結合力は更に
増し、粒界に生ずる空隙は少なくなり緻密な膜となる。In other words, if the heat capacity imparted to the thermal spray coating 18 is lower than the melting point of the thermal spray material, the sintering action will proceed at the grain boundaries of the flat particles constituting the thermal spray coating 18, the bonding force between the particles will be strengthened, and the heat capacity imparted will be lower than that of the powder material. When the temperature rises above the melting point, the flat grains remelt and the grain boundaries disappear, the bonding force between the grains further increases, and the voids formed at the grain boundaries decrease, forming a dense film.
例えば、被溶射物17と絶縁円筒10先端との距離を4
5flとした場合につき、その溶射皮膜18の断面図を
示すと、第2図の通りとなり、粒界がなく空隙19の少
ない溶射皮11!i!18’が形成されている。For example, the distance between the object to be sprayed 17 and the tip of the insulating cylinder 10 is set to 4.
A cross-sectional view of the thermal sprayed coating 18 in the case of 5 fl is as shown in FIG. 2, and the thermal sprayed coating 11 has no grain boundaries and few voids 19! i! 18' is formed.
要するに本発明によれば、プラズマ溶射ガンの陰極及び
陽極ノズル間に直流印加してプラズマジェットを発生さ
せるとともに上記陽極ノズルの前に配した絶縁円筒の外
周巻装コイルに高周波印加して高周波プラズマを発生さ
せ、上記陽極ノズルから上記プラズマジェット内に溶射
材料粉末を供給して被溶射物に溶射皮膜を形成させなが
ら上記高周波プラズマによって同溶射皮膜に熱処理を施
すことにより、溶射粒子の粒界の空隙が少なく緻密でか
つ粒子間の結合力が強い硬質な皮膜であり、耐腐食性膜
として通用した場合腐食物の浸透が抑えられ、ひいては
被溶射物母材を腐食から防ぐことができる溶射皮膜を形
成することができる溶射皮膜形成方法を得るから、本発
明は産業上極めて有益なものである。In short, according to the present invention, a direct current is applied between the cathode and anode nozzles of a plasma spray gun to generate a plasma jet, and a high frequency is applied to the outer circumferentially wound coil of an insulated cylinder placed in front of the anode nozzle to generate high frequency plasma. By supplying thermal spray material powder from the anode nozzle into the plasma jet to form a thermal spray coating on the object to be thermally sprayed, and heat-treating the thermal spray coating using the high-frequency plasma, the voids in the grain boundaries of the thermal spray particles are removed. It is a hard coating that is dense and has a strong bonding force between particles, and if it is used as a corrosion-resistant coating, it will suppress the penetration of corrosive substances, and in turn, it will prevent the base material of the sprayed object from corroding. The present invention is industrially extremely useful because it provides a method for forming a thermal spray coating that can be formed.
第1図は本発明溶射皮膜形成方法の一実施例における本
方法を実施するプラズマ溶射ガンの縦断面図、第2図は
本方法による溶射皮膜の断面図である。
第3図は従来方法による溶射皮膜の断面図である。
1・・・プラズマ溶射ガン、2・・・陰極、3・・・陽
極ノズル、4・・・絶縁体、5・・・冷却水通路、6・
・・溶射材料粉末供給口、7・・・作動ガス供給口、8
・・・直流電源、9・・・高周波発生器、10・・・絶
縁円筒、11・・・作動ガス供給口、12・・・コイル
、13・・・高周波発振機、14・・・プラズマジェッ
ト、15・・・高周波プラズマ、16・・・溶射粒子、
17・・・被溶射物、18.18’・・・溶射皮膜、1
9・・・空隙。
代理人 弁理士 塚 本 正 文
第
図
第
図
第3
図FIG. 1 is a longitudinal sectional view of a plasma spray gun for carrying out the method in one embodiment of the method for forming a thermal spray coating of the present invention, and FIG. 2 is a sectional view of the thermal spray coating formed by the method. FIG. 3 is a sectional view of a thermally sprayed coating obtained by a conventional method. DESCRIPTION OF SYMBOLS 1... Plasma spray gun, 2... Cathode, 3... Anode nozzle, 4... Insulator, 5... Cooling water passage, 6...
...Thermal spray material powder supply port, 7...Working gas supply port, 8
... DC power supply, 9 ... High frequency generator, 10 ... Insulating cylinder, 11 ... Working gas supply port, 12 ... Coil, 13 ... High frequency oscillator, 14 ... Plasma jet , 15... High frequency plasma, 16... Thermal spray particles,
17...Thermal spraying object, 18.18'...Thermal spray coating, 1
9...Void. Agent: Patent Attorney Masa Tsukamoto Figure 3 Figure 3
Claims (1)
上記陽極ノズルの前に配した絶縁円筒の外周巻装コイル
に高周波印加して高周波プラズマを発生させ、上記陽極
ノズルから上記プラズマジェット内に溶射材料粉末を供
給して被溶射物に溶射皮膜を形成させながら上記高周波
プラズマによって同溶射皮膜に熱処理を施すことを特徴
とする溶射皮膜形成方法。[Claims] Direct current is applied between the cathode and anode nozzle of a plasma spray gun to generate a plasma jet, and high frequency is applied to an insulated cylindrical outer circumferentially wound coil placed in front of the anode nozzle to generate high frequency plasma. A method for forming a thermal sprayed coating, comprising: supplying thermal spraying material powder from the anode nozzle into the plasma jet to form a thermal sprayed coating on the object to be thermally sprayed, and heat-treating the thermal sprayed coating using the high-frequency plasma.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2141952A JPH0436455A (en) | 1990-05-31 | 1990-05-31 | Formation of sprayed deposit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2141952A JPH0436455A (en) | 1990-05-31 | 1990-05-31 | Formation of sprayed deposit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0436455A true JPH0436455A (en) | 1992-02-06 |
Family
ID=15303948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2141952A Pending JPH0436455A (en) | 1990-05-31 | 1990-05-31 | Formation of sprayed deposit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0436455A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141565A (en) * | 1988-11-24 | 1990-05-30 | Mitsubishi Heavy Ind Ltd | Plasma thermal spraying method |
JPH03287754A (en) * | 1990-04-02 | 1991-12-18 | Toyonobu Yoshida | Formation of oxide film by means of combined plasma |
-
1990
- 1990-05-31 JP JP2141952A patent/JPH0436455A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141565A (en) * | 1988-11-24 | 1990-05-30 | Mitsubishi Heavy Ind Ltd | Plasma thermal spraying method |
JPH03287754A (en) * | 1990-04-02 | 1991-12-18 | Toyonobu Yoshida | Formation of oxide film by means of combined plasma |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5858470A (en) | Small particle plasma spray apparatus, method and coated article | |
US5744777A (en) | Small particle plasma spray apparatus, method and coated article | |
RU2569861C2 (en) | System of plasma transferred wire arc thermal spraying | |
US5844192A (en) | Thermal spray coating method and apparatus | |
US4982067A (en) | Plasma generating apparatus and method | |
US5144110A (en) | Plasma spray gun and method of use | |
CA1300694C (en) | High power extended arc plasma spray method | |
Crawmer | Thermal spray processes | |
EP0002623B1 (en) | Electric arc apparatus and method for treating a flow of material by an electric arc | |
JPH03150341A (en) | Conjugate torch type plasma generator and plasma generating method using the same | |
US5900272A (en) | Plasma spraying arc current modulation method | |
JPH0436455A (en) | Formation of sprayed deposit | |
US5743961A (en) | Thermal spray coating apparatus | |
JP2716844B2 (en) | Thermal spray composite film forming method | |
JP2809359B2 (en) | Thermal spray composite film forming method | |
JP2595365B2 (en) | Thermal plasma jet generator | |
JPH04131649U (en) | plasma spray gun | |
JPH10102228A (en) | Thermal spraying method by magnetic field controlled plasma | |
JPH02141565A (en) | Plasma thermal spraying method | |
Henne | Thermal plasmas for material processing | |
JP2587459B2 (en) | Thermal spray equipment | |
Kushram et al. | Design of Spray Guns 5 | |
JPH03166356A (en) | Thermal spraying method | |
JPH04246160A (en) | Thermal-spraying torch | |
JPS62213862A (en) | Plasma flame-spraying method |