[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02135671A - Metal-halogen battery - Google Patents

Metal-halogen battery

Info

Publication number
JPH02135671A
JPH02135671A JP63289804A JP28980488A JPH02135671A JP H02135671 A JPH02135671 A JP H02135671A JP 63289804 A JP63289804 A JP 63289804A JP 28980488 A JP28980488 A JP 28980488A JP H02135671 A JPH02135671 A JP H02135671A
Authority
JP
Japan
Prior art keywords
bromine
halogen
electrolyte
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63289804A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63289804A priority Critical patent/JPH02135671A/en
Publication of JPH02135671A publication Critical patent/JPH02135671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To efficiently continue reaction even at the time of complete discharge by installing a halogen supply tank in a positive electrode side electrolyte storage tank, and installing a diffusion membrane in the halogen supply tank to permeate only halogen vapor and to keep halogen concentration in an electrolyte in a specified value. CONSTITUTION:When a battery is charged, zinc 200 is deposited on a negative electrode 12a in a negative chamber 16, and a bromine complex is formed in a positive chamber 18 and stored in a bromine complex storage tank 28. When the battery is discharged, zinc 200 is ionized to Zn<2+> on the negative electrode side and bromine of the bromine complex 100 is converted into 2Br<->. Bromine is replenished from a halogen supply tank 36 before bromine concentration is decreased to keep bromine concentration in an electrolyte in a range of 0.05-0.1mol. Even in complete discharge, discharge reaction is surely continued. Zinc is smoothly dissolved on the negative electrode side and generation of dendrite is prevented. A diffusion membrane 38 such as 'Teflon(R)' film permeates only halogen without permeation of the electrolyte.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属−ハロゲン電池、特に反応槽に電解液を循
環させて充放電反応を効率よく行うための電解液貯蔵槽
の構成に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal-halogen battery, and in particular to the structure of an electrolyte storage tank for efficiently carrying out charging and discharging reactions by circulating an electrolyte in a reaction tank. be.

[従来の技術] 電解液循環式の金属−ハロゲン電池が蓄積エネルギの大
きい二次電池として電気自動車の電源用などに用いられ
ており、この種の電池の基本的構成は特開昭57−19
9167号公報等に詳細に示されている。
[Prior Art] A metal-halogen battery with an electrolyte circulation type is used as a secondary battery with a large stored energy as a power source for an electric vehicle.
It is shown in detail in 9167 publication and the like.

第3図には、このような従来の金属−ハロゲン電池の概
要が示されており、反応槽10には負極12a及び正極
12bが、この両極の間にはセパレータ14が設けられ
、このセパレータ14により負極室16と正極室18と
が分離形成されている。
FIG. 3 shows an outline of such a conventional metal-halogen battery, in which a reaction tank 10 is provided with a negative electrode 12a and a positive electrode 12b, and a separator 14 is provided between these two electrodes. The negative electrode chamber 16 and the positive electrode chamber 18 are formed separately.

そして、この負極室16には負極液貯蔵槽20から負極
液がポンプ24により循環され、正極室18には正極液
貯蔵槽22から正極液がポンプ26により循環されてい
る。また、正極液貯蔵槽22内には、臭素錯化合物貯蔵
槽28が設けられており、この臭素錯化合物はバルブ3
oにより必要な時期に正極電解液に混合される。
The negative electrode liquid is circulated into the negative electrode chamber 16 from the negative electrode liquid storage tank 20 by a pump 24, and the positive electrode liquid is circulated into the positive electrode chamber 18 from the positive electrode liquid storage tank 22 by a pump 26. Further, a bromine complex compound storage tank 28 is provided in the positive electrode liquid storage tank 22, and this bromine complex compound is stored in the valve 3.
o is mixed into the positive electrode electrolyte at the required time.

このような金属−ハロゲン電池として、例えば亜鉛(Z
n)−臭素(B「)が用いられ、正極電解液にはメチル
・エチル・そりホリニウム番ブロマイト等の四級アンモ
ニウム塩の錯化剤が加えられており、この錯化剤は臭素
と反応して電解液に不溶でかつ電解液よりも比重の大き
い臭素錯化合物を形成する役割をする。また、電解液の
導電率を増加させるために、必要に応じて、例えばKC
、e、 NH4Cj!等の支持電解液を加えることもで
きる。
As such a metal-halogen battery, for example, zinc (Z
n)-bromine (B'') is used, and a quaternary ammonium salt complexing agent such as methyl, ethyl, and sophorinium bromite is added to the positive electrode electrolyte, and this complexing agent reacts with bromine. It plays the role of forming a bromine complex compound that is insoluble in the electrolyte and has a higher specific gravity than the electrolyte.Also, in order to increase the conductivity of the electrolyte, for example, KC
, e, NH4Cj! It is also possible to add a supporting electrolyte such as .

このような構成によれば、充電時には図中の負極12a
にZnが、正極12bにBr2が生成し、次のような反
応が行われる。
According to such a configuration, during charging, the negative electrode 12a in the figure
Zn is produced at the positive electrode 12b, and Br2 is produced at the positive electrode 12b, and the following reaction takes place.

正極 2Br−−e  Br2+2e=(1)負極 Z
n”+2e4 Zn     −(2)そして、正極1
2bで生成された臭素は前記錯化剤と反応して臭素錯化
合物を形成し、この臭素錯化合物は図示100のように
反応槽10から臭素錯化合物貯蔵槽28に供給され沈澱
することになる。一方、負極12aで生成した亜鉛は負
極12aの電極板上に電解析出(電析)することになる
Positive electrode 2Br--e Br2+2e=(1) Negative electrode Z
n”+2e4 Zn −(2) and positive electrode 1
The bromine produced in step 2b reacts with the complexing agent to form a bromine complex, and this bromine complex is supplied from the reaction tank 10 to the bromine complex storage tank 28 and precipitated as shown in the figure 100. . On the other hand, the zinc generated at the negative electrode 12a is electrolytically deposited (electrodeposited) on the electrode plate of the negative electrode 12a.

従って、放電時には各電極において前記反応式と逆の反
応が行われ、これにより電極間から所定の電流が取り出
される。
Therefore, during discharge, a reaction opposite to the reaction formula described above takes place at each electrode, and a predetermined current is thereby extracted from between the electrodes.

このような電解液循環式電池では、完全放電を行うとき
負極12aに電析される亜鉛が全て良好に溶解されるよ
うに、正極液中に予め臭素を0.05〜0.1 M (
モル/Jり程度添加しており、これにより充放電効率を
良好に保つようにしている。
In such an electrolyte circulation type battery, 0.05 to 0.1 M (0.05 to 0.1 M) of bromine is added to the positive electrode solution in advance so that all the zinc deposited on the negative electrode 12a is well dissolved during complete discharge.
It is added in an amount of about mol/J, thereby maintaining good charge/discharge efficiency.

[発明が解決しようとする課題] しかしながら、従来の金属−臭素電池では、次の理由に
より臭素濃度が徐々に減少するという問題がある。
[Problems to be Solved by the Invention] However, conventional metal-bromine batteries have a problem in that the bromine concentration gradually decreases due to the following reason.

イ)、電池を構成する部材が臭素を吸収する。b) The components that make up the battery absorb bromine.

口)、臭素が電池の収納容器を透過して外部に徐々に拡
散する。
), bromine permeates the battery container and gradually diffuses to the outside.

ハ)、臭素は電解液中の水と直接反応して、正極液中で
不必要な臭素化合物を生成し、これを反応式で示すと次
のようになる。
c) Bromine reacts directly with water in the electrolyte to generate unnecessary bromine compounds in the positive electrode solution, which is expressed in the following reaction formula.

Hz O+B r2−HB ro+HB r−(3)H
B ro →HB r+ (1/2)02− (4)こ
の式において、HBr0は(4)式で分解されるが、完
全に分解されず臭素を含んだ状態で少しずつ残留するこ
とになる。
Hz O+B r2-HB ro+HB r-(3)H
B ro →HB r+ (1/2)02− (4) In this equation, HBr0 is decomposed according to equation (4), but it is not completely decomposed and remains little by little in a state containing bromine.

そして、前記理由により生じる臭素濃度の減少は、充放
電反応における反応抵抗となるので、電流効率及びエネ
ルギ効率を低下させるという問題がある。また、完全放
電時には臭素不足により負極側で亜鉛が完全に溶解しな
いので、充放電の繰返しにより亜鉛の電析状態が徐々に
悪化してデンドライトを形成し、このデンドライトはセ
パレータ14を損傷したり、電池内でショートを起こす
原因ともなっている。
The decrease in bromine concentration caused by the above-mentioned reason becomes a reaction resistance in charge/discharge reactions, resulting in a problem of lowering current efficiency and energy efficiency. In addition, during complete discharge, zinc is not completely dissolved on the negative electrode side due to lack of bromine, so repeated charging and discharging gradually deteriorates the state of zinc electrodeposition and forms dendrites, which can damage the separator 14, This can also cause a short circuit within the battery.

このような不具合を回避するためには、前述したような
事前に行う臭素の1回の添加だけでなく、月に1〜2回
定期的に臭素を添加すれば良いことになるが、このため
のメンテナンスが煩雑となる。
In order to avoid such problems, it is necessary not only to add bromine once in advance as mentioned above, but also to add bromine regularly once or twice a month. maintenance becomes complicated.

また、電解液中の臭素濃度が規定量以下であるか否かの
判定が簡単に行えないことから、メンテナンスする際に
おける臭素の添加時期を正確に判断することも困難であ
る。
Further, since it is not easy to determine whether the bromine concentration in the electrolyte is below a specified amount, it is also difficult to accurately determine when to add bromine during maintenance.

このようなことから、事前に多量の臭素(0,5M以上
)を添加することも行われているが、この場合には添加
した臭素を錯化するための錯化剤の量も多くしなければ
ならず、この結果、電池重量が増加して好ましくない。
For this reason, a large amount of bromine (0.5M or more) is sometimes added in advance, but in this case, the amount of complexing agent to complex the added bromine must also be increased. As a result, the weight of the battery increases, which is undesirable.

例えば、0.5 Mの臭素を添加した場合には、従来の
電池に比べて4〜6%電池重量が増加する。
For example, when 0.5 M of bromine is added, the battery weight increases by 4-6% compared to conventional batteries.

また、臭素及び錯化剤を多量添加すると、電解液の粘度
、比重が増加するので、電解液を循環させるポンプ出力
が増大しトータルで考えると、電池のエネルギ密度を低
下させる結果となる。
Furthermore, when large amounts of bromine and complexing agents are added, the viscosity and specific gravity of the electrolyte increase, which increases the pump output for circulating the electrolyte, which results in a decrease in the energy density of the battery when considered in total.

前記のような問題点は、他の金属−ハロゲン電池におい
ても生じ、ハロゲン物質の減少を良好に防止することが
要請されている。
The above-mentioned problems also occur in other metal-halogen batteries, and there is a need to effectively prevent the reduction of halogen substances.

なお、従来の電池では、亜鉛−塩素電池において電解液
中の塩素濃度を一定に制御するものとして、特開昭60
−208068号公報に示されるものがある。
In addition, in conventional batteries, in order to control the chlorine concentration in the electrolyte to a constant level in zinc-chlorine batteries, Japanese Patent Laid-Open No. 60
There is one shown in Japanese Patent No.-208068.

発明の目的 本発明は前記従来の問題点を解決することを課題として
なされたものであり、その目的は、メンテナンスを煩雑
にすることなくハロゲン物質濃度の減少を良好に回避し
、充放電反応を効率よく行うことができる金属−ハロゲ
ン電池を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to effectively avoid a decrease in the concentration of halogen substances without complicating maintenance, and to improve charge/discharge reactions. The object of the present invention is to provide a metal-halogen battery that can be operated efficiently.

[課題を解決するための手段] 前記目的を達成するために、本発明に係る金属−ハロゲ
ン電池は、ハロゲン物質補充槽と拡散膜を有し、前記ハ
ロゲン物質補充槽はハロゲン物質を貯蔵した状態で正極
側電解液貯蔵槽内に設けられる。また、拡散膜は前記ハ
ロゲン物質補充槽に設けられ、電解液は透過させないで
ハロゲン物質の蒸気を透過させ電解液中のハロゲン物質
濃度を所定値に維持しており、例えばテフロンやポリエ
チレン等で形成された微多孔質膜から成ることを特徴と
する。
[Means for Solving the Problems] In order to achieve the above object, a metal-halogen battery according to the present invention includes a halogen substance replenishment tank and a diffusion membrane, and the halogen substance replenishment tank stores a halogen substance. and is provided in the positive electrode side electrolyte storage tank. Further, the diffusion membrane is provided in the halogen substance replenishment tank, and allows the vapor of the halogen substance to pass through while not allowing the electrolyte to pass through, thereby maintaining the halogen substance concentration in the electrolyte at a predetermined value. It is characterized by consisting of a microporous membrane.

[作用] 以上の構成によれば、前記ハロゲン物質補充槽に収納さ
れているハロゲン物質、例えば臭素は、その蒸気が拡散
膜を透過して正極側の電解液中に溶は込むことになる。
[Function] According to the above configuration, the vapor of the halogen substance, such as bromine, stored in the halogen substance replenishment tank permeates through the diffusion membrane and dissolves into the electrolyte on the positive electrode side.

この場合の臭素の溶解量は拡散膜により所定値に調整さ
れており、これにより放電時の電解液中の臭素濃度は常
に一定に維持されるので、完全放電時においても効率の
よい反応状態が確保される。
In this case, the amount of dissolved bromine is adjusted to a predetermined value by the diffusion membrane, and as a result, the bromine concentration in the electrolyte during discharge is always maintained constant, so an efficient reaction state can be maintained even during complete discharge. Secured.

[実施例] 以下、本発明の好適な実施例を図面に基づいて説明する
[Examples] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、実施例に係る亜鉛−臭素電池の概略構成が
示されており、基本的な構成は前述した第3図と同様と
なっている。
FIG. 1 shows a schematic configuration of a zinc-bromine battery according to an example, and the basic configuration is the same as that shown in FIG. 3 described above.

すなわち、負極12a及び正極12bが設けられている
反応槽10には、電解液貯蔵槽である負極液貯蔵槽20
及び正極液貯蔵槽22からそれぞれの電解液が循環され
る構成となっており、正極液貯蔵槽22には臭素錯化合
物を貯蔵する臭素錯化合物貯蔵槽28が設けられている
That is, the reaction tank 10 in which the negative electrode 12a and the positive electrode 12b are provided includes a negative electrode liquid storage tank 20 which is an electrolyte storage tank.
The electrolytic solution is configured to be circulated from the positive electrode liquid storage tank 22, and the positive electrode liquid storage tank 22 is provided with a bromine complex compound storage tank 28 for storing a bromine complex compound.

本発明において特徴的なことは、臭素濃度を常に一定に
維持できるようにしたことであり、このために、正極液
貯蔵槽22内に臭素34(液体)を貯蔵したハロゲン物
質補充槽36を設ける。そして、このハロゲン物質補充
槽36の上面には貯蔵されている臭素の蒸気を拡散させ
るための拡散膜38が形成されている。
A feature of the present invention is that the bromine concentration can always be maintained constant, and for this purpose, a halogen substance replenishment tank 36 storing bromine 34 (liquid) is provided in the positive electrode liquid storage tank 22. . A diffusion film 38 is formed on the upper surface of this halogen substance replenishment tank 36 to diffuse the stored bromine vapor.

この拡散膜38は、テフロンやポリエチレン等を用いて
、電解液は透過させずハロゲン物質、実施例では臭素の
みを透過させるように形成しており、例えばボアテック
ス(商品名)膜や電池用セパレータ(前記セパレータ1
4と同様のもの)等のような微多孔質膜を用いることが
できる。そして、この拡散膜38の膜厚、面積等は、臭
素の拡散速度を考慮して決定されており、実施例では、
完全放電時の正極電解液中の臭素濃度が常に0.05〜
0.1 M (モル)となるような膜厚及び面積にして
前記拡散膜38を設けることになる。
This diffusion membrane 38 is made of Teflon, polyethylene, or the like, and is formed so that it does not allow the electrolyte to pass through, but allows only the halogen substance (in the example, bromine) to pass therethrough. (The separator 1
Microporous membranes such as those similar to 4) can be used. The film thickness, area, etc. of this diffusion film 38 are determined in consideration of the diffusion rate of bromine, and in the embodiment,
The bromine concentration in the positive electrode electrolyte during complete discharge is always 0.05~
The diffusion film 38 is provided with a thickness and area of 0.1 M (mole).

また、実施例では第2図に示されるように、ハロゲン物
質補充槽36内の臭素34の残量を確認できるようにす
るため、ハロゲン物質補充槽36を配備した正極液貯蔵
槽22のケースの所定領域に透明部材からなる確認窓4
0を設けている。この確認窓40によれば、臭素34の
残量が一目で容易に確認できる。
In addition, in the embodiment, as shown in FIG. 2, in order to check the remaining amount of bromine 34 in the halogen substance replenishment tank 36, the case of the positive electrode liquid storage tank 22 equipped with the halogen substance replenishment tank 36 is Confirmation window 4 made of transparent material in a predetermined area
0 is set. According to this confirmation window 40, the remaining amount of bromine 34 can be easily confirmed at a glance.

実施例は以上の構成からなり、以下にその作用を説明す
る。
The embodiment has the above configuration, and its operation will be explained below.

まず、充電時においては、前記(1)式により負極室1
6では負極12a上に亜鉛200が析出し、また正極室
18では(2)式により臭素錯化合物が形成され、この
臭素錯化合物は臭素錯化合物貯蔵槽28に蓄積されるこ
とになる。
First, during charging, the negative electrode chamber 1
6, zinc 200 is deposited on the negative electrode 12a, and in the positive electrode chamber 18, a bromine complex compound is formed according to equation (2), and this bromine complex compound is accumulated in the bromine complex compound storage tank 28.

一方、放電時においては、前記(1)、(2)式の逆の
反応が行われ、負極側では亜鉛200がイオン化してZ
n2+となり、正極側では臭素錯化合物100の臭素が
イオン化して2Br−となる。
On the other hand, during discharging, the reverse reaction of equations (1) and (2) takes place, and on the negative electrode side, zinc 200 is ionized and Z
n2+, and on the positive electrode side, bromine of the bromine complex compound 100 is ionized to become 2Br-.

このとき、従来では充放電サイクルが進むに従って4頁
イ)、口)、ハ)に示す原因により正極液貯蔵槽22内
での臭素濃度が低下し、特に完全放電する場合には臭素
の不足により負極側の亜鉛が完全に溶解しない事態が起
こる。
At this time, conventionally, as the charge/discharge cycle progresses, the bromine concentration in the positive electrode liquid storage tank 22 decreases due to the causes shown in a), ex), and c) on page 4, and especially in the case of complete discharge, the bromine concentration decreases due to the lack of bromine. A situation occurs where the zinc on the negative electrode side is not completely dissolved.

しかし、本発明では臭素濃度が低下する前に臭素がハロ
ゲン物質補充槽36から補充されているので、電解液中
の臭素濃度を0,05〜0.1モルに維持することがで
き、完全放電時においても良好な放電反応が行われるこ
とになる。従って、負極側での亜鉛の溶解が良好に行わ
れ、デンドライトの発生を防ぐことができる。
However, in the present invention, bromine is replenished from the halogen substance replenishment tank 36 before the bromine concentration decreases, so the bromine concentration in the electrolyte can be maintained at 0.05 to 0.1 mol, and the bromine concentration is completely discharged. A good discharge reaction will be carried out even at times. Therefore, zinc is well dissolved on the negative electrode side, and the generation of dendrites can be prevented.

しかも、実施例において、ハロゲン物質補充槽36に臭
素を全電解液量に対し0.5M相当分を貯蔵した場合に
は、はぼ1年間臭素を補給することなく、電池を運転す
ることが可能である。
Furthermore, in the embodiment, if bromine is stored in the halogen substance replenishment tank 36 in an amount equivalent to 0.5M based on the total amount of electrolyte, it is possible to operate the battery for approximately one year without replenishing bromine. It is.

また、前記ハロゲン物質補充槽36内の臭素の残量は確
認窓40にて確認することができ、消費状態に応じてハ
ロゲン物質を補給することが可能となり、メンテナンス
が容易になるという利点がある。
Further, the remaining amount of bromine in the halogen substance replenishment tank 36 can be checked through the confirmation window 40, making it possible to replenish the halogen substance according to the state of consumption, which has the advantage of facilitating maintenance. .

[発明の効果コ 以上説明したように、本発明によれば、正極側電解液貯
蔵槽内にハロゲン物質補充槽を設け、このハロゲン物質
補充槽には電解液は透過させないでハロゲン物質の蒸気
を透過させる拡散膜を設け、電解液中のハロゲン物質の
濃度を所定値に維持するようにしたので、放電が進むに
つれて減少するハロゲン物質を補うことができ、充放電
反応を効率よく行うことが可能となる。
[Effects of the Invention] As explained above, according to the present invention, a halogen substance replenishment tank is provided in the positive electrode side electrolyte storage tank, and the halogen substance vapor is not allowed to pass through the halogen substance replenishment tank. By providing a diffusion membrane that allows the electrolyte to pass through and maintain the concentration of halogen substances in the electrolyte at a predetermined value, it is possible to compensate for the halogen substances that decrease as the discharge progresses, making it possible to carry out charging and discharging reactions efficiently. becomes.

また、ハロゲン物質を補充槽に貯蔵することにより、ハ
ロゲン物質を長期間にわたって供給することができ、メ
ンテナンスが極めて容易になる。
Further, by storing the halogen substance in the replenishment tank, the halogen substance can be supplied for a long period of time, and maintenance becomes extremely easy.

更に、本発明は錯化剤を添加することな(臭素のみを供
給できるので、電池重量を重くすることもなく、また電
解液の粘度、比重を増大させてポンプ負荷増によるエネ
ルギ損を発生させることもないという利点がある。
Furthermore, the present invention does not require the addition of a complexing agent (only bromine can be supplied, so the weight of the battery does not increase, and the viscosity and specific gravity of the electrolytic solution increase, causing energy loss due to increased pump load). The advantage is that there is no problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属−ハロゲン電池の概略構成を
示す説明図、 第2図はハロゲン物質補充槽内のハロゲン物質の残量を
確認する確認窓を示す図、 第3図は従来の金属−臭素電池の概要を示す説反応槽 ・・・ 負極 ・・・ 正極 負極液貯蔵槽 正極液貯蔵槽 臭素錯化合物貯蔵槽 臭素 ハロゲン物質補充槽 拡散膜 確認窓 四回である。 10 ・・・ 2a 2b 20 ・・・ 22 ・・・ 28 ・・・ 34 ・・・ 36 ・・・ 38 ・・・ 40 ・・・ 第1図 38:拡散II貰
FIG. 1 is an explanatory diagram showing the schematic structure of the metal-halogen battery according to the present invention, FIG. 2 is a diagram showing a confirmation window for checking the remaining amount of halogen material in the halogen material replenishment tank, and FIG. A theory showing the outline of a metal-bromine battery Reaction tank... Negative electrode... Positive electrode, negative electrode liquid storage tank, positive electrode liquid storage tank, bromine complex compound storage tank, bromine halogen substance replenishment tank, diffusion membrane confirmation window 4 times. 10 ... 2a 2b 20 ... 22 ... 28 ... 34 ... 36 ... 38 ... 40 ... Figure 1 38: Received Diffusion II

Claims (1)

【特許請求の範囲】[Claims] (1)電解液貯蔵槽から電解液を反応槽に循環して充放
電反応を行う金属−ハロゲン電池において、正極側電解
液貯蔵槽内に設けられハロゲン物質を貯蔵するハロゲン
物質補充槽と、このハロゲン物質補充槽に設けられ電解
液は透過させないでハロゲン物質の蒸気を透過させ電解
液中のハロゲン物質濃度を所定値に保つ拡散膜と、を有
することを特徴とする金属−ハロゲン電池。
(1) In a metal-halogen battery in which charging and discharging reactions occur by circulating electrolyte from an electrolyte storage tank to a reaction tank, a halogen substance replenishment tank is installed in the positive electrode side electrolyte storage tank and stores halogen substances; 1. A metal-halogen battery, comprising: a diffusion membrane provided in a halogen substance replenishment tank, which allows vapor of the halogen substance to pass therethrough without allowing the electrolyte to pass therethrough, and maintains the concentration of the halogen substance in the electrolyte at a predetermined value.
JP63289804A 1988-11-16 1988-11-16 Metal-halogen battery Pending JPH02135671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289804A JPH02135671A (en) 1988-11-16 1988-11-16 Metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289804A JPH02135671A (en) 1988-11-16 1988-11-16 Metal-halogen battery

Publications (1)

Publication Number Publication Date
JPH02135671A true JPH02135671A (en) 1990-05-24

Family

ID=17747981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289804A Pending JPH02135671A (en) 1988-11-16 1988-11-16 Metal-halogen battery

Country Status (1)

Country Link
JP (1) JPH02135671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508896A (en) * 2009-10-23 2013-03-07 レッドフロー・プロプライエタリー・リミテッド Recombiner for fluid electrolyte batteries
CN108028403A (en) * 2015-09-23 2018-05-11 乐天化学株式会社 Method for the driving for controlling chemical flow battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508896A (en) * 2009-10-23 2013-03-07 レッドフロー・プロプライエタリー・リミテッド Recombiner for fluid electrolyte batteries
CN108028403A (en) * 2015-09-23 2018-05-11 乐天化学株式会社 Method for the driving for controlling chemical flow battery
EP3355399A4 (en) * 2015-09-23 2019-05-29 Lotte Chemical Corporation Method for controlling operation of chemical flow battery

Similar Documents

Publication Publication Date Title
CA1096937A (en) Metal halogen batteries and method of operating same
US4181777A (en) Rechargeable zinc halogen battery
EP0165000A2 (en) Metal-halogen secondary battery
US4491625A (en) Zinc-bromine batteries with improved electrolyte
EP0235445A2 (en) Metal bromine cell with electrolyte additive
AU633953B2 (en) Electrolyte for zinc bromide battery
JPS6313310B2 (en)
US10541438B2 (en) Systems and methods for management of additives in electrochemical cells
JPH0574909B2 (en)
JPH02135671A (en) Metal-halogen battery
JPS62211875A (en) Solid bromine complexing apparatus
US4677039A (en) Zinc-bromine battery
EP0186204A2 (en) Zinc-bromine battery
KR101873562B1 (en) Method of operating redox flow battery
JPS631709B2 (en)
JPS62211874A (en) Electrolyte circulation type metal-halogen battery
USRE31871E (en) Metal halogen batteries and method of operating same
JPH077681B2 (en) Metal-bromine battery clean-out method
JP2518257B2 (en) Zinc bromide secondary battery charging method
JPS63195976A (en) Electrolyte circulation type metal-halogen battery
JP2526659B2 (en) How to store zinc-bromine batteries
JP2853264B2 (en) Electrolyte stationary metal-bromine battery
JPH02256179A (en) Electrolyte circulation type zinc-bromine battery
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JPH0578911B2 (en)