[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0578911B2 - - Google Patents

Info

Publication number
JPH0578911B2
JPH0578911B2 JP62327337A JP32733787A JPH0578911B2 JP H0578911 B2 JPH0578911 B2 JP H0578911B2 JP 62327337 A JP62327337 A JP 62327337A JP 32733787 A JP32733787 A JP 32733787A JP H0578911 B2 JPH0578911 B2 JP H0578911B2
Authority
JP
Japan
Prior art keywords
electrolyte
bromine
positive electrode
flow rate
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62327337A
Other languages
Japanese (ja)
Other versions
JPH01169881A (en
Inventor
Takashi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62327337A priority Critical patent/JPH01169881A/en
Publication of JPH01169881A publication Critical patent/JPH01169881A/en
Publication of JPH0578911B2 publication Critical patent/JPH0578911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 A 産業上の利用分野 この発明は、電解液循環型亜鉛−臭素二次電池
の運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a method of operating an electrolyte circulation type zinc-bromine secondary battery.

B 発明の概要 この発明は、電解液循環型亜鉛−臭素二次電池
の正極電解液の供給速度の上限界と下限界を定め
て、臭素錯化剤の供給ポンプの消費電力を抑え、
臭素錯化剤の安定供給を果すようにした電解液循
環型電池の運転方法に関するものである。
B. Summary of the Invention This invention sets the upper and lower limits of the supply rate of the positive electrode electrolyte of an electrolyte circulation type zinc-bromine secondary battery to suppress the power consumption of the bromine complexing agent supply pump.
The present invention relates to a method of operating an electrolyte circulation type battery that achieves a stable supply of a bromine complexing agent.

C 従来の技術 電解液循環型亜鉛−臭素二次電池の従来装置と
しては、第3図に示した通りである。
C. Prior Art A conventional device for an electrolyte circulation type zinc-bromine secondary battery is as shown in FIG. 3.

図中、2は一つの単電池(以下、単にセルとい
う)を示し、その内部は微細多孔質膜のセパレー
タ4によつて正極室6と負極室8とに区画され、
各々の室内には正極板10、負極板12が配置さ
れている。
In the figure, 2 indicates one cell (hereinafter simply referred to as a cell), the inside of which is divided into a positive electrode chamber 6 and a negative electrode chamber 8 by a separator 4 made of a microporous membrane.
A positive electrode plate 10 and a negative electrode plate 12 are arranged in each chamber.

このように構成されているセル2の正極室6と
負極室8は、さらに正極電解液貯蔵タンク14お
よび負極電解液貯蔵タンク16とそれぞれを連結
するために正極液循環パイプ18と負極液循環パ
イプ20とにより連結されていて、それぞれ循環
ポンプ22,24により電解液が循環できるよう
になつている。
The positive electrode chamber 6 and negative electrode chamber 8 of the cell 2 configured in this manner are further connected to a positive electrode electrolyte storage tank 14 and a negative electrode electrolyte storage tank 16 by a positive electrode liquid circulation pipe 18 and a negative electrode liquid circulation pipe. 20, and the electrolyte can be circulated by circulation pumps 22 and 24, respectively.

なお、正極電解液貯蔵タンク14は、その電解
液流入側近傍から正極電解液を分岐させて正極室
2に導くためのバイパスパイプ26を備えてお
り、正極電解液貯蔵タンク14から正極室6に連
結されているパイプ18にはバルブ28を、ま
た、バイパスパイプ26にはバルブ30を介して
正極電解液を正極室2に導くようにしている。
The positive electrode electrolyte storage tank 14 is equipped with a bypass pipe 26 for branching the positive electrode electrolyte from near the electrolyte inflow side and guiding it to the positive electrode chamber 2. The positive electrode electrolyte is introduced into the positive electrode chamber 2 through a valve 28 in the connected pipe 18 and a valve 30 in the bypass pipe 26 .

このような構成からなる電池においては、充電
時には、以下に示すような電池反応を行つてい
る。
In a battery having such a configuration, the following battery reactions occur during charging.

正極:2Br-→Br2+2e- 負極:Zn2++2e-→Zn また、正極で発生した臭素は電解液中の臭化錯
化剤と反応して、臭素錯化物となる。
Positive electrode: 2Br - →Br 2 +2e - Negative electrode: Zn 2+ +2e - →Zn In addition, bromine generated at the positive electrode reacts with the bromine complexing agent in the electrolyte to become a bromine complex.

そこで、充電時には、バルブ30を開けて、2
つのポンプ22,24を各々駆動させ、特に正極
板10で発生する臭化錯化物を、正極電解液貯蔵
タンク14に供給し、放電時には、バルブ28を
開け、ポンプを駆動させ、正極板10に正極電解
液貯蔵タンク14に蓄えた錯化物を供給させる。
Therefore, when charging, open the valve 30 and
The two pumps 22 and 24 are respectively driven to supply the bromide complex generated in the positive electrode plate 10 to the positive electrode electrolyte storage tank 14. At the time of discharge, the valve 28 is opened and the pumps are driven to supply the bromide complex generated in the positive electrode plate 10 to the positive electrode electrolyte storage tank 14. The complex stored in the positive electrode electrolyte storage tank 14 is supplied.

D 発明が解決しようとする問題点 このような電池の放電時では、正極室6内の正
極板10に臭素錯化物が均一に供給されなけれ
ば、安定した電流、電圧が放出されない。
D Problems to be Solved by the Invention During discharging of such a battery, unless the bromine complex is uniformly supplied to the positive electrode plate 10 in the positive electrode chamber 6, stable current and voltage will not be emitted.

充電時には発生する臭素には伴い生成する臭素
錯化物は、比重3.0と臭化亜鉛水溶液の1.6に比べ
大きい。そのため、正極電解液貯蔵タンク14か
ら正極室6内に臭素錯化物を含む電解液を供給す
る場合、配管中の流速が低ければ、臭素錯化物の
沈降により、臭素錯化物が電極板に供給されな
い。つまり、配管中の流速を低下させた所、正極
配管内を電解液は流れるが錯化物は流れず電池性
能が低下するという問題が生じた。
The bromine complex generated along with the bromine generated during charging has a specific gravity of 3.0, which is larger than that of an aqueous zinc bromide solution of 1.6. Therefore, when an electrolyte containing a bromine complex is supplied from the cathode electrolyte storage tank 14 into the cathode chamber 6, if the flow rate in the piping is low, the bromine complex will settle and will not be supplied to the electrode plate. . In other words, when the flow rate in the piping was reduced, the electrolytic solution flowed in the positive electrode piping, but the complex did not flow, resulting in a problem that the battery performance deteriorated.

本発明は、かかる問題点を解決するためになさ
れたもので、放電時における電池の正極電解液の
環境に際して錯化物の安定供給を達成することの
できる電解液循環型電池の運転方法を得ることを
目的とする。
The present invention has been made in order to solve such problems, and provides a method for operating an electrolyte circulation type battery that can achieve a stable supply of complexes in the environment of the positive electrode electrolyte of the battery during discharge. With the goal.

E 問題点を解決する手段 本発明においては、前述の目的を達成するため
に、微細多孔質膜によつて正確を含む正極室と負
極を含む負極室とに区画され前記正極室と負極室
内部に臭素錯化剤として、臭素の四級アンモニウ
ム塩を含有する亜鉛−臭素電解液を循環させ、さ
らに前記電解液を上方に流す上向通路をシステム
内に含む電解液循環亜鉛−臭素二次電池を運転す
るに際し、放電時において、前記通路内における
前記亜鉛−臭素電解液の流速を、その垂直上方向
成分が70〜150cm/secとなる流速に維持するもの
である。
E Means for Solving the Problems In the present invention, in order to achieve the above-mentioned object, the inside of the positive electrode chamber and the negative electrode chamber are divided into a positive electrode chamber containing a precise electrode and a negative electrode chamber containing a negative electrode by a microporous membrane. An electrolyte circulating zinc-bromine secondary battery in which a zinc-bromine electrolyte containing a quaternary ammonium salt of bromine as a bromine complexing agent is circulated, and the system further includes an upward passage through which the electrolyte flows upward. When operating the electrolyte, the flow rate of the zinc-bromine electrolyte in the passage is maintained at a flow rate such that its vertical upward component is 70 to 150 cm/sec during discharge.

F 作用 この種の電池システムにおいて、充電された電
解液には、比重の大きい臭素錯化物が含有されて
おり、放電に際して正極電解液貯蔵タンクから電
解液を正極室に汲上げる上向き流れの通路内にお
いて垂直方向の速度成分が70cm/secを越える流
速に維持することにより、縦方向配管の途中で臭
素錯化物が沈降することなく、電解液流れに乗つ
て安定に、正極板に供給される。また、150cm/
secを下回る流速に維持することにより、供給ポ
ンプの消費電力が抑えられる。
F Effect In this type of battery system, the charged electrolyte contains a bromine complex with a high specific gravity, and during discharge, the electrolyte is pumped up from the cathode electrolyte storage tank into the cathode chamber in an upward flow path. By maintaining the flow velocity at a vertical velocity component exceeding 70 cm/sec, the bromine complex does not settle in the middle of the vertical piping, and is stably supplied to the positive electrode plate along with the flow of the electrolyte. Also, 150cm/
By maintaining the flow rate below sec, the power consumption of the feed pump is reduced.

G 実施例 第1図は、実験装置であり。従来の装置第3図
に流速調節用バルブ34を付けたバイパスパイプ
36を正極液循環パイプ18に取り付けた。ま
た、流速計38を取り付け、流速を監視できるよ
うにした。
G Example FIG. 1 shows an experimental apparatus. In the conventional device shown in FIG. 3, a bypass pipe 36 equipped with a flow rate regulating valve 34 was attached to the positive electrode liquid circulation pipe 18. Additionally, a current meter 38 was attached to enable monitoring of the flow rate.

また、図において、正極液循環パイプ18は、
正極室6での電解液流入方向を変えるため、その
途中に四方コツク32を備えている。これは充電
時、発生する臭素に伴い生成する臭素錯化物は、
比重3.0と臭化亜鉛水溶液の1.6に比べ大きいた
め、正極室6に電解液を満たす時には正極室6内
を下から上へ流入させ、充放電時には正極室6内
を上から下へ流入させるように四方コツク32で
流れの方向を切り換えるようにして、充電時に生
成した臭素錯化物を正極室6より速やかに排出さ
せ、放電時には臭素錯化物を正極室6に均一に供
給するようになつている。
In addition, in the figure, the positive electrode liquid circulation pipe 18 is
In order to change the direction of electrolytic solution inflow into the positive electrode chamber 6, a four-way pot 32 is provided in the middle thereof. This is because the bromine complexes generated with the bromine generated during charging are
Since the specific gravity is 3.0, which is larger than 1.6 of the zinc bromide aqueous solution, when filling the positive electrode chamber 6 with electrolyte, it flows from the bottom to the top, and during charging and discharging, it flows into the positive electrode chamber 6 from the top to the bottom. The direction of the flow is switched by a four-way tap 32 at the same time, so that the bromine complex generated during charging is quickly discharged from the positive electrode chamber 6, and the bromine complex is evenly supplied to the positive electrode chamber 6 during discharging. .

装置において、電極面積は800cm2、配管パイプ
18の内径は、正極流速測定配管部でφ20mm、垂
直方向距離1m、他の配管内径はφ8mmとした。
電解液は、3mol/ZnBr2、1mol/臭素の四
級アンモニウム塩を正極、負極各々15とした。
In the apparatus, the electrode area was 800 cm 2 , the inner diameter of the piping 18 was φ20 mm at the positive electrode flow rate measurement piping section, the vertical distance was 1 m, and the other piping inner diameters were φ8 mm.
The electrolyte contained 3 mol/ZnBr 2 and 1 mol/bromine of a quaternary ammonium salt for the positive electrode and the negative electrode, respectively.

臭素の四級アンモニウム塩は、メチルエチルピ
ロリジウムブロマイド、メチルエチルモルホリニ
ウムブロマイドの等モル混合物とした。
The quaternary ammonium salt of bromine was an equimolar mixture of methylethylpyrrolidium bromide and methylethylmorpholinium bromide.

充放電の電流を16Aとして、8時間充電した
後、正極配管垂直方向の流速をバイパス配管の流
速調節バルブ34で、各々50、60、70、80、90、
100、125、150cm/secとし、放電終止電圧を1V
として放電させ、放電時間を測定し、クーロン効
率を算出した。
After charging for 8 hours at a charging/discharging current of 16A, the flow velocity in the vertical direction of the positive electrode pipe was adjusted to 50, 60, 70, 80, 90, respectively using the flow velocity control valve 34 of the bypass pipe.
100, 125, 150cm/sec, discharge end voltage 1V
The discharge time was measured, and the coulombic efficiency was calculated.

また、充電後、放電まで或る一定時間以上(例
えば8時間)の間隔がある場合、充電のまま電池
内に電解液を満たしておくと、微細多孔質膜のセ
パレータを通つてBr2が負極室に拡散し、析出金
属Znと反応して自己放電するので、これを防止
するため、充電後積層電池(単位電池の積層)内
の電解液を全て下のタンク内に戻し、放電時にそ
れを汲上げるようにした。
In addition, if there is an interval of more than a certain period of time (e.g. 8 hours) after charging until discharging, if the battery is filled with electrolyte while being charged, Br 2 will pass through the microporous membrane separator and reach the negative electrode. It diffuses into the chamber, reacts with deposited metal Zn, and self-discharges. To prevent this, all the electrolyte in the stacked battery (stack of unit batteries) is returned to the tank below after charging, and it is removed during discharge. I tried to pump it up.

第2図にその結果を示した。図に示したよう
に、70cm/sec以下はクーロン効率が30%程度に
対して、70cm/secを越えるとクーロン効果が急
に高くなり、80cm/sec以上では80%以上に上が
つている。
Figure 2 shows the results. As shown in the figure, the Coulombic efficiency is about 30% below 70cm/sec, but the Coulombic effect suddenly increases when it exceeds 70cm/sec, and rises to over 80% above 80cm/sec.

これは、比重の大きい臭素錯化物が、正極電解
液貯蔵タンクから正極室に電解液を汲上げる場
合、70cm/secより大きな流速がなければ、縦方
向配管の途中より沈降し正極室に充分に供給され
ないためである。
This is because when pumping the electrolyte from the cathode electrolyte storage tank to the cathode chamber, bromine complexes with high specific gravity will settle from the middle of the vertical piping and will not reach the cathode chamber sufficiently unless the flow rate is greater than 70 cm/sec. This is because they are not supplied.

従つて、臭素錯化物を電池本体に安定供給する
のに必要な流速は垂直上方成分が70cm/secを越
える流速である。
Therefore, the flow rate required to stably supply the bromine complex to the battery body is a flow rate at which the vertically upward component exceeds 70 cm/sec.

しかし、電池装置全体のエネルギー効率を考え
た場合、ポンプの消費電力が大きくなるほど電池
装置自体のエネルギー効率は低くなるのでむやみ
に流速を速めるのは得策ではなく、70cm/secを
越え、しかも過剰でない流速、つまり第2図によ
ると垂直上方成分流速が100cm/sec程度となる流
速が最も望ましい。
However, when considering the energy efficiency of the entire battery device, the greater the power consumption of the pump, the lower the energy efficiency of the battery device itself, so it is not a good idea to increase the flow rate unnecessarily. The most desirable flow velocity, that is, the flow velocity at which the vertical upward component flow velocity is about 100 cm/sec according to FIG.

この結果に基づき、正極電解液循環ポンプの必
要最小限に選ぶなどの方法で、ポンプの消費電力
を抑えつつ、電池のエネルギー効率を最高にする
ことが期待できる。
Based on these results, it is expected that by selecting the minimum number of cathode electrolyte circulation pumps required, it is possible to maximize the energy efficiency of the battery while minimizing the power consumption of the pumps.

H 発明の効果 以上に述べたように、本発明によれば、放電に
際して、正極板タンクから電池本体に電解液を供
給する場合、通路中の流速をその垂直上方成分が
70cm/secを越える流速に維持するので、上向き
流れの通路内での臭素錯化物の沈降による供給不
足が解消され、安定な放電効果が得られる。ま
た、150cm/secを下回る流速に維持することによ
り、供給ポンプの消費電力が抑えら、電池全体の
エネルギー効率が高まる。
H. Effects of the Invention As described above, according to the present invention, when an electrolyte is supplied from the positive plate tank to the battery body during discharge, the flow velocity in the passage is controlled by its vertically upward component.
Since the flow rate is maintained at a flow rate exceeding 70 cm/sec, supply shortages due to sedimentation of bromine complexes in the upward flow path are eliminated, and a stable discharge effect can be obtained. In addition, by maintaining the flow rate below 150 cm/sec, the power consumption of the supply pump is suppressed and the energy efficiency of the entire battery is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる実験装置の構
成を示す説明図、第2図は正極配管内の流速とク
ーロン効果の関係を示す線図、、第3図は従来の
装置例を示す説明図である。 図において、18は上向き流れの配管(通路)、
32は四方コツク、34は流速調整用バルブ、3
8は流速計である。なお、各図中同一符号は同一
または相当部分を示す。
Fig. 1 is an explanatory diagram showing the configuration of an experimental apparatus according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the flow velocity in the positive electrode pipe and the Coulomb effect, and Fig. 3 shows an example of a conventional apparatus. It is an explanatory diagram. In the figure, 18 is an upward flow pipe (passage);
32 is a four-way cock, 34 is a flow rate adjustment valve, 3
8 is a current meter. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 微細多孔質膜によつて正極を含む正極室と負
極を含む負極室とに区画され、前記正極室と負極
室内部に臭素錯化剤として臭素の四級アンモニウ
ム塩を含有する臭化亜鉛電解液を循環させ、さら
に前記電解液を上方に流す上向通路をシステム内
に含む電解液循環型亜鉛−臭素二次電池を運転す
るに際し、 放電時において、前記上向通路内における前記
亜鉛−臭素電解液の流速を、その垂直上方向成分
が70〜150cm/secとなる流速に維持することを特
徴とする電解液循環型亜鉛−臭素二次電池の運転
方法。 2 通路内における電解液の流速を、その垂直上
方向成分が100cm/sec程度となる流速に維持する
ことを特徴とする特許請求の範囲第1項記載の電
解液循環型亜鉛−臭素二次電池の運転方法。
[Scope of Claims] 1 A microporous membrane divides the cathode chamber containing the cathode into a cathode chamber containing the cathode and the anode chamber containing the anode, and a quaternary ammonium salt of bromine is contained as a bromine complexing agent inside the cathode chamber and the anode chamber. When operating an electrolyte circulation type zinc-bromine secondary battery that includes an upward passage in the system that circulates a zinc bromide electrolyte contained therein and further allows the electrolyte to flow upward, the upward passage A method for operating an electrolyte circulation type zinc-bromine secondary battery, characterized in that the flow rate of the zinc-bromine electrolyte in the electrolyte is maintained at a flow rate such that the vertically upward component thereof is 70 to 150 cm/sec. 2. The electrolyte circulation type zinc-bromine secondary battery according to claim 1, characterized in that the flow velocity of the electrolyte in the passage is maintained at a flow velocity such that its vertical upward component is approximately 100 cm/sec. How to drive.
JP62327337A 1987-12-25 1987-12-25 Operating method for electrolyte circulation type zinc-bromine secondary cell Granted JPH01169881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327337A JPH01169881A (en) 1987-12-25 1987-12-25 Operating method for electrolyte circulation type zinc-bromine secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327337A JPH01169881A (en) 1987-12-25 1987-12-25 Operating method for electrolyte circulation type zinc-bromine secondary cell

Publications (2)

Publication Number Publication Date
JPH01169881A JPH01169881A (en) 1989-07-05
JPH0578911B2 true JPH0578911B2 (en) 1993-10-29

Family

ID=18198009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327337A Granted JPH01169881A (en) 1987-12-25 1987-12-25 Operating method for electrolyte circulation type zinc-bromine secondary cell

Country Status (1)

Country Link
JP (1) JPH01169881A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503786B2 (en) * 1991-01-22 1996-06-05 トヨタ自動車株式会社 Zinc halogen battery
CN103730672B (en) * 2013-11-30 2017-03-15 国家电网公司 The fluid reservoir and its remodeling method of zinc bromine liquid flow energy storage battery mobile power vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156641A (en) * 1984-12-27 1986-07-16 Toyota Motor Corp Zinc-bromine battery
JPS62206770A (en) * 1986-03-03 1987-09-11 エクソン リサ−チ アンド エンヂニアリング コムパニ− Metal-halogen electrochemical battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156641A (en) * 1984-12-27 1986-07-16 Toyota Motor Corp Zinc-bromine battery
JPS62206770A (en) * 1986-03-03 1987-09-11 エクソン リサ−チ アンド エンヂニアリング コムパニ− Metal-halogen electrochemical battery

Also Published As

Publication number Publication date
JPH01169881A (en) 1989-07-05

Similar Documents

Publication Publication Date Title
US9531028B2 (en) Redox flow battery
JP6335303B2 (en) Electrochemical system for storing electricity in metal
JP2007188729A (en) Method of regenerating vanadium redox flow battery
JP5769070B2 (en) Redox flow battery
US4684585A (en) Electrochemical generation apparatus and method
EP0165000A2 (en) Metal-halogen secondary battery
US4663251A (en) Zinc-bromine battery
US20190103614A1 (en) Systems and methods for management of additives in electrochemical cells
JPH0578911B2 (en)
CN109638309B (en) Gas-phase countercurrent diaphragm-free metal-oxygen-containing gas flow battery
JP2020523732A (en) Redox flow battery and method for operating redox flow battery
JPH07502370A (en) How to perform suitable electrochemical transformations with rechargeable batteries
US5302472A (en) Method of operating metal-halogen battery
US20210075042A1 (en) Redox flow battery and method of operation
US4677039A (en) Zinc-bromine battery
EP0186204A2 (en) Zinc-bromine battery
JPH10334938A (en) Power storage secondary battery
JP2020107502A (en) Redox flow battery
JP2020107415A (en) Redox flow battery
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JPS6380486A (en) Circulating electrolyte type metal-halogen battery
JP2020030964A (en) Flow battery for vehicle
JPH0471172A (en) Metal-bromine battery
JPS63239782A (en) Electrolyte circulation type metal-halogen cell
JPH0367308B2 (en)