[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02109059A - Developer for magnetic brush development - Google Patents

Developer for magnetic brush development

Info

Publication number
JPH02109059A
JPH02109059A JP63261363A JP26136388A JPH02109059A JP H02109059 A JPH02109059 A JP H02109059A JP 63261363 A JP63261363 A JP 63261363A JP 26136388 A JP26136388 A JP 26136388A JP H02109059 A JPH02109059 A JP H02109059A
Authority
JP
Japan
Prior art keywords
toner
developer
particles
carrier
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63261363A
Other languages
Japanese (ja)
Inventor
Masayoshi Shimamura
正良 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63261363A priority Critical patent/JPH02109059A/en
Publication of JPH02109059A publication Critical patent/JPH02109059A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To enhance image quality and durability of a developer by specifying the particle diameters of fine colored particles and the specific area of a fluidity donor and mixing 2 kinds of carriers different in particle diameter and saturation magnetization with the colored particles and the fluidity donor. CONSTITUTION:The developer is a mixture of a toner composed of fine colored particles (A) having an average particle diameter of 3 - 9mum, and as the fluidity donor (B) the fine powder having a surface area of >=50m<2> measured by the BET method, such as silica powder, and carrier particles (C) composed of a mixture of 10 - 50wt.% magnetic particles having an average particle diameter of 25 - 45mum and a saturation magnetization of 140 - 240emu/g, and 50 - 90wt.% magnetic particles having an average particle diameter of 45 - 80mum and a saturation magnetization of 45 - 90emu/g.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は電子写真、静電記録、静電印刷などに用いられ
る静電荷像を現像するのに用いるための乾式現像剤に関
する。 [従来の技術] 従来より1電子写真法については米国特許229789
1 s>、特公昭42−23910号公tし性分昭43
−24748号公報等に記載されているごとく、光導電
層」二にコロナ放電によって、−様に静電荷をかえ、こ
れに原稿に応じた光像を露光させるitsにより露光部
分の′心向を消滅させ潜像形成を行なう。 この得られた静電潜像−しに微粉末検電物質、いわゆる
トナーを付着させることにより現像を行なうものである
。 トナーは光導′重層上の’itt荷量の大小に応じて静
′−に潜像に引きつけられ濃淡を持ったトナー像を形成
する。このトナー像は心安に応じて紙又は布帛等の支持
表面に転写し、加熱、加圧又は溶剤処理や上塗り処理な
ど適当な定着を段を用い支持表面にに永久定着する。ま
たトナー像転写工程を省略したい場合には、このトナー
像を光導電層上に定石することもできる。 前記、静電潜像の現像において、トナーは、比較的大粒
子であるキャリアと混合され、電子写真用現像剤として
用いられる。トナーとキャリアの両者のAll或は、相
!fの接触摩擦により、トナーが光導電層りの電荷と反
対の極性を帯びるように選ばれる。また両者の接触摩擦
の結果、キャリアはトナーを表面に静電的に付若させ、
現像剤として、現像装置内を搬送し、また光導電層りに
トナーを供給する。 従来知られている現像法の一つに磁気ブラシ現像法があ
る。この現像法は結着樹脂中に染料、顔ネ4を分散し微
粒化したトナーと還元鉄粉、酸化鉄粉、カルボニル鉄粉
、フェライト、センダスト合金等の高透磁性粉末(キャ
リア粒子)とを混合してなる乾式現像剤が磁石によって
、その磁界作用により81 Z5表面にブラシ状になら
ぶ、この磁気ブラシで静電潜像を保持する表面をこする
とトナーは静′屯潜像の吸引力によって磁気ブラシから
静′屯潜像へ吸引され潜像は顕像化される。 従来、&i磁気ブラシ現像法おいて使用される現像剤は
5粒径10体厘程度の絶縁性トナーと、粒径100〜2
00μ腸程度の鉄粉からなるキャリアとを混合すること
によって構成されている。しかし、この種の現像剤を用
いた現像法においては、トナーとキャリアとの混合比を
常時一定にしておかなければ安定した現像が期待できず
、しかも混合比の許容範囲が狭いため混合比を一定にす
るための対策に:’; IX!iシなければならない、
さらにこの種の現像剤を用い磁気ブラシ法で現像した画
像は静電荷の強弱にかかわらず画fi&濃度に差がつき
にくく階調に富んだ原稿のjII現が得られず、細線の
再現性に対しても満足いくべきものではない。 また、この鉄粉キャリアを含む現像剤は鉄粉キャリアの
磁気特性が大きいため、硬い磁気ブラシを形成すること
があり、この硬いブラシによりベタ黒部に白線を引き起
こすという(ベタ黒部白線)欠点がある。さらに鉄粉キ
ャリアを用いた現像剤は比重が重く、シかも磁気特性も
大きいので、トナー粒子がキャリア粒子に強く衝突して
刺着し、キャリア粒子を汚染し、現像特性に悪影響を4
える傾向があり、 さらにまた磁気ブラシの駆動に大き
なトルクを必要とする欠点もある。 近年、磁気ブラシ現像用のキャリアとして、フェライト
を用いることが提案されている。フェライi・キャリア
は磁気特性が鉄粉より大きくないので硬いプランによる
ベタ黒部白線が発生せず、現像剤の耐久性も向l−シ、
さらに磁気ブラシの駆動に大きなトルクを必要としない
利点がある。しかしながら、磁気ブラシ現像法にフェラ
イトキャリアを用いても階調性及び細線再現性共に十分
優れた現像性を示す現像剤は得られていない。 ・股にトナーの粒度が小さい場合(9角以下)には、階
調性及び7a線再現性に優れている。しかしながら、ト
ナーを小粒径化するとトナーの比表+hi Jt”tが
増大するため、キャリアとトナーとの混合比を小さくす
ることが必要となり、その結果1画像C度が低くなって
しまう。 さらに、トナーの小粒径化は、トナーの流動性を悪化さ
せ、トナーとキャリアとの混合が十分行なわれず、地力
ブリやトナー飛散を発生しやすい傾向にある。 そこで、このような欠点を改良するための手段として小
粒径の鉄粉やフェライトをキャリアとして使用し、さら
に小粒径トナーに流動外付′j−剤を添加する方法があ
る。この方法によれば階謂丙現性、ライン再現性、ベタ
画像濃度、地方ブリ等は比較的数片されるが、しかし、
小粒径鉄粉キャリアを用いた場合は、やはりベタ黒部白
線やトナーによるキャリア汚染及び磁気ブラシの駆動に
大きなトルクを必要とするなどの闇題点があり、−・方
小粒径フェライトキャリアを用いた場合はキャリアの磁
気特性が小さいので光導電層りにキャリアがイ・1着し
、それが紙などの支持体表面上に転写され、画質を悪化
させる原因となる。 [5F、明が解決しようとする問題点]未発[JJは上
記の如き欠点を解決した磁気ブラシ現像用現像剤を提供
するものである。すなわち、線画像、ベタ黒画像、階調
再現性、解像力等に優れた高品位画像を与える乾式現像
剤を提供するものである。 未発暉1の他のIJ的はトナーiH隻が変動しても常に
良好かつ高品位な画像を乍える乾式現像剤を提供するも
のである。さらに本発明の他の目的は性能劣化が起こら
ず繰返し使用に耐える乾式現像剤を提供するものである
。 さらに本発明の他の目的は搬送性、トナー供給効率に優
れ、低速機から高速機まで幅広い複写装おに適用できる
乾式現像剤を提供するものである。 [課題を解決するための手段及び作用]本発明は着色微
粒子と流動性向上剤とからなるトナーとキャリア粒子と
を混合してなる現像剤であって1着色微粒子の平均粒径
が3〜9μであり、流動性付与剤はBET法による比表
面積が50rg’、1gLI丑の超微粉末であり、キャ
リア粒子が平均粒径が25〜45井で且つその飽和磁化
が140〜240emu/gの磁性粒子A10〜50重
量%と、平均粒径が45〜80ルで且つその飽和磁化が
45〜90emu/gの磁性粒子B50〜90重琶%と
を混合してなる磁気ブラシ現像用現像剤である。 本発明に用いられる着色微粒子の粒径は、体積平均粒径
で3〜91であり、さらに20.2pm以上の粗粉が体
積分/
[Industrial Application Field] The present invention relates to a dry developer for use in developing electrostatic images used in electrophotography, electrostatic recording, electrostatic printing, and the like. [Prior Art] Conventionally, US Pat. No. 2,297,89 describes the electrophotographic method.
1 s>, Special Publication No. 1973-23910
As described in Japanese Patent No. 24748, etc., the electrostatic charge is changed in the photoconductive layer by corona discharge, and a light image corresponding to the original is exposed to the photoconductive layer. The latent image is formed by erasing it. Development is carried out by depositing a finely powdered electrostatic substance, so-called toner, on the electrostatic latent image thus obtained. The toner is statically attracted to the latent image depending on the amount of load on the light guide layer, forming a toner image with shading. This toner image is transferred to a supporting surface such as paper or cloth as required, and is permanently fixed to the supporting surface using a suitable fixing step such as heating, pressure, solvent treatment, or overcoating. Furthermore, if it is desired to omit the toner image transfer step, this toner image can also be placed on the photoconductive layer. In developing the electrostatic latent image, the toner is mixed with carrier having relatively large particles and used as an electrophotographic developer. All or phase of both toner and carrier! The contact friction of f is chosen so that the toner has a polarity opposite to that of the photoconductive layer. Also, as a result of the contact friction between the two, the carrier electrostatically attaches the toner to the surface.
As a developer, it is transported through the developing device and also supplies toner to the photoconductive layer. One of the conventionally known developing methods is a magnetic brush developing method. This development method uses toner particles made by dispersing dye and face 4 in a binder resin, and highly magnetically permeable powders (carrier particles) such as reduced iron powder, iron oxide powder, carbonyl iron powder, ferrite, and sendust alloy. The mixed dry developer is moved by a magnet, and by the action of the magnetic field, it forms a brush on the surface of the 81 Z5. When this magnetic brush rubs the surface holding the electrostatic latent image, the toner is absorbed by the attraction of the electrostatic latent image. The static latent image is attracted by the magnetic brush and the latent image is visualized. Conventionally, the developer used in the &i magnetic brush development method is an insulating toner with a particle size of about 5 to 10 liters, and a toner with a particle size of 100 to 2
It is constituted by mixing with a carrier consisting of iron powder of about 0.00 μm. However, in the development method using this type of developer, stable development cannot be expected unless the mixing ratio of toner and carrier is kept constant at all times.Moreover, the tolerance range for the mixing ratio is narrow, so the mixing ratio must be kept constant. Measures to keep it constant:'; IX! i must,
Furthermore, images developed by the magnetic brush method using this type of developer are difficult to differentiate in image fi and density regardless of the strength of electrostatic charge, making it impossible to obtain a JII image of an original with rich gradations, and the reproducibility of fine lines is poor. However, it is not something we should be satisfied with. In addition, since the magnetic properties of the iron powder carrier are large, developers containing iron powder carriers may form hard magnetic brushes, which have the disadvantage of causing white lines in solid black areas (white lines in solid black areas). . Furthermore, developers using iron powder carriers have a heavy specific gravity and strong magnetic properties, so the toner particles collide strongly with the carrier particles and stick to them, contaminating the carrier particles and adversely affecting the development characteristics.
It also has the disadvantage of requiring a large amount of torque to drive the magnetic brush. In recent years, it has been proposed to use ferrite as a carrier for magnetic brush development. Since the magnetic properties of Ferrai i carrier are not greater than those of iron powder, solid black lines do not occur due to hard plans, and the durability of the developer is also improved.
Another advantage is that large torque is not required to drive the magnetic brush. However, even when a ferrite carrier is used in the magnetic brush development method, a developer that exhibits sufficiently excellent developability in both gradation and fine line reproducibility has not been obtained. - When the particle size of the toner in the crotch is small (less than 9 squares), the gradation property and 7a line reproducibility are excellent. However, when the particle size of the toner is reduced, the ratio table +hi Jt"t of the toner increases, so it is necessary to reduce the mixing ratio of carrier and toner, and as a result, the degree of C per image becomes low. However, reducing the particle size of the toner deteriorates the fluidity of the toner, making it difficult to mix the toner with the carrier sufficiently, which tends to cause burrs and toner scattering.Therefore, these shortcomings are improved. As a means for achieving this, there is a method of using small particle size iron powder or ferrite as a carrier and further adding a fluid external agent to the small particle size toner. Reproducibility, solid image density, local color, etc. are relatively small, but,
When a small particle size iron powder carrier is used, there are problems such as solid white lines on black areas, carrier contamination by toner, and the need for a large torque to drive the magnetic brush. When used, since the magnetic properties of the carrier are small, the carrier adheres to the photoconductive layer and is transferred onto the surface of a support such as paper, causing deterioration of image quality. [5F, Problems that Ming attempts to solve] Undeveloped [JJ provides a developer for magnetic brush development that solves the above-mentioned drawbacks. That is, the present invention provides a dry type developer that provides high-quality images with excellent line images, solid black images, gradation reproducibility, resolution, etc. Another feature of IJ that has not yet been developed is to provide a dry type developer that can always produce good and high-quality images even if the toner IH level fluctuates. Another object of the present invention is to provide a dry developer that can withstand repeated use without deterioration of performance. Another object of the present invention is to provide a dry developer which has excellent conveyance properties and toner supply efficiency and which can be applied to a wide range of copying equipment from low-speed machines to high-speed machines. [Means and effects for solving the problems] The present invention provides a developer prepared by mixing a toner consisting of colored fine particles and a fluidity improver with carrier particles, wherein the average particle size of each colored fine particle is 3 to 9 μm. The fluidity imparting agent is an ultrafine powder with a specific surface area of 50 rg' and 1 g LI as determined by the BET method, and the carrier particles are magnetic with an average particle size of 25 to 45 mm and a saturation magnetization of 140 to 240 emu/g. A developer for magnetic brush development comprising a mixture of 10 to 50% by weight of particles A and 50 to 90% by weight of magnetic particles B having an average particle size of 45 to 80 l and a saturation magnetization of 45 to 90 emu/g. . The particle size of the colored fine particles used in the present invention is 3 to 91 in volume average particle size, and coarse powder with a particle size of 20.2 pm or more is

【1で1.0$以下であることが好ましい。トナ
ー粒径が細かいので、微小な静゛ltW!像に対するト
ナーの付着が忠実であり、静′を潜像端部のトナー付着
の乱れが少ない、その結果、高解像度で色1[)現性の
良好な画像が得られる。特に、写真画像では、微少な潜
像の集まりであるハーフト−ン域が多く、より−・層、
トナー粒径の効果が表われ、良々fな両像となる。 しかし、一方でトナー粒径が細かいために、トナーの流
動性が悪化してしまい、キャリアとトナーとの8合が効
;〆的に行なわれず、カプリや飛散発生の原因となる。 そこで2本発明では、着色微粒r・に流動性向上剤を添
加し、トナーの流動性を向I−4させている。 本発明に用いる流動外付−ダ剤は、粒径が細かい方が良
好であり、BET法による比表面積が50国・′/g以
L、好ましくは、80ts2/g以上のものがよい。 この様な流動性向上剤の例としては、以1−のものが挙
げられるが必ずしもこれに限定されるものではない。 例えば、酸化ケイ、K、酸化アルミニウム、酸化チタン
、酸化亜鉛、酸化ジルコニウム、カーボンブラック、ス
テアリン酸亜鉛、ステアリン酸カルシウム、テフロン、
ボリア・ノ化ビニリデン、滑4j、 カリオン、白−(
;、塩基性炭酸マグネシウム沈降性炭酸マグネシウム、
その他の、tfl全粉末を用いることができる。 このなかでも、酸化ケイ素、醇化チタン、酸化アルミニ
ウム2酸化ジルコニウムは1気相法によって容易に好適
な粒度のものが製造でき、しかも無色あるいは白色であ
り、カラートナーに用いた場合、色彩に悪影響をゲえず
、より好ましい。 さらに、これらの流動性付与剤は2種以lニトナーに添
加されていても良い。 これらの流動性付与剤の適用1−は、トナーri I+
)に対して0.0に〜10%1%のとぎに本発明の効果
を発揮し、特に好ましくは0.03〜5重竜%添加した
際に優れたトナーの流動性及び帯電安定性を示す。 さらに、未発IIの構成では、−h記のようなl・ナー
に加えて、モ均粒径が25〜45μで11つその飽和磁
化が140−240emu/gの磁性粒子Aと、f均t
:l径が45〜80弘で11つその飽和磁化が45〜8
0ermu/gの磁性粒イーBとを62合したキャリア
粒子を用いる。 本発明に用いる磁性粒′t′−Aは、小粒径であるため
2キャリア比表面桔を増大し、トナー粒径が小さくなっ
てもトナーとキャリアは効率的に接触帯゛心力<Of能
となる。 それゆえ、現像剤中のトナー濃度が多少変動してもカブ
リやトナー飛散を発生せず、しかもキャリアのトナー保
持(辻を多くすることが11丁能なので、高画像濃度を
達成できる。 また、磁性粒子Aは粒径が小さいにもかかわらず、飽和
磁化が大きいのでキャリア付着を発生しにくい、しかし
ながら、磁性粒子Aはその飽和磁化が大きいので全ギヤ
リア中の50仇琶%を超えるとベタ黒部白線やトナーに
よるキャリア汚染などが発生しやすくなり、さらに磁気
ブラシの駆動に大きなトルクを必要とする問題を生じて
しまう。 一方、磁性粒子へに混合して用いられる磁性粒子Bは、
磁性粒子Aに比較して、その粒径が大きく、ILつ飽和
磁化が小さいことが好ましい、磁性粒子 Aに磁性粒子
Bが混合されることによってベタ黒部白線、トナーによ
るキャリア汚染丁の措1題が改善される。さらにこの混
合キャリアの比表面桔は従来キャリアよりかなり大きい
ので、トナーが小粒径でもキャリアと効率的に接触帯電
が可1@となり、カブリやトナー飛散がなく、[1再現
性5解像力、画像濃度等に優れた高品位画像を提供で5
6゜ 磁性粒子−A、Hに使用される材料としては5それぞれ
の磁気特性の値から、磁性粒子Aは鉄粉、磁性粒/−B
はフェライト粉が々fましいが、必ずしもこれに限定さ
れない。 さらに、A:発明に使用される混合キャリアは、トナー
の帯電ら)を制御するために、樹脂象で被覆されていて
もよい。 1−記磁性粒子の表面への被覆物質としては、トナー材
籾により異なるが1例えば、正帯′1tする樹脂として
は、アミノアクリレート樹脂、アクリル樹脂、あるいは
それらの樹脂とスチレン系樹脂との共重合体などが帯電
系列において正帯′心偏に(e置し、好適である4負帯
電する樹脂としては、シリコーン樹脂、ポリエステル樹
脂、ポリテトラフルオロエチし・ン、モノクロロトリフ
ルオロエチレン利合体、ポリフッ化ビニリデンなどが、
HF電系列において負側に位置し、好適であるが、必ず
しもこれにa7j約されない。 −・方、本発明に用いられるトナーの結着樹脂としては
、ポリスチレン、ポリp−クロルスチレン、ポリビニル
トルエンなどのスチレン及びその置換体の?ti屯合体
;スチレンーP−クロルスチレン共小合体、スチレン−
プロピレン共改合体、スチレンービニルトルエン共東合
体、スチレン−ビニルナフタリン共重合体、スチレン−
アクリル酸メチル共重合体、スチレン−アクリル酸エチ
ル共玉合体、スチレン−アクリル酸ブチル共重合体スチ
レン−アクリル酸オクチル共重合体、スチレン−メタク
リル酸メチル共東合体、スチレン−メタクリル酸エチル
共重合体、スチレン−メタクリル酸ブチル共重合体、ス
チレン−アクリル−アミノアクリル系共重合体、スチレ
ン−アミノアクリル系共利合体、スチレン−αクロルメ
タクリル酸メヂデレJ(玉合体、スチレン−アクリロニ
トリル共(’11体、スチレン−ビニルメチルエーテル
共重合体、スチレン−ビニルエチルエーテルJ(ffc
 合体、スチレン−ビニルメチルケトン共重合体、スチ
レン−ブタジェン共重合体、スチレン−イソプレン共重
合体、スチレン−アクリロニトリル−インデン八m合体
、スチレン−マレイン酸共重合体、スチレン−マレイン
酸エステル共用合体などのスチレン系共重合体:ポリメ
チルメタクリレート、ポリブチルメタクリレート、ポリ
塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ボリブa
ピレン、ポリエステル、ポリウレタン、ポリアミド、エ
ポキシ樹脂2ポリビニルブチラール、ポリアクリル酸樹
脂、ロジン、変性ロジン、テルペン樹脂、フェノール樹
脂、脂肪族または脂環族炭化水累樹脂。 芳香族系石油樹脂、塩宏化パラフィン、パラフインワ、
クスなどが巾独或いは混合して使用できる。 トナーにおいては、任7はの適当な顔料や染t#が4色
6+1として使用r+7能である。IAえば、カーボン
ブラック、鉄黒、フタロシアニンブルー、詳♂t、キナ
hリドン、ベンジジンイエローなど公知ノ洗顔料がある
。 また、荷電制御剤としてアミン化合物、第4級アンモニ
ウム化合物および有機染料、特に塩ノ、(性染才1とそ
の塩、べ、ンジルジメチルーヘキサデシルアンモニウム
クロライド、デシル−トリメチルアンモニウムクロライ
ド、ニグロシン塩基、ニグロシンとドロクロライド、サ
クラ二ノγ及びクリスタル/ヘイオレフト、を添加して
も良い。 発IJf )ナーの製造にあたっては、熱ロール、ニー
ダ−、エクストルーダー等のf8’/n練機によって構
成材料を良く混錬した後、機械的な粉砕、分級によって
得る方杖、あるいは結着樹1肘溶液中に磁性粉等の材料
を分散した後、噴霧乾燥することによりflする方法、
あるいは、結着樹脂を構成すべJ単量体に所定材料を混
合した後、この乳化懸濁液を重合させることによりトナ
ーを得る重合トナー製造法等それぞれの方法が応用でき
る。 [実施例] 以下本発明を実施例により具体的に説明するが、これは
本発明を何等限定するものではない。 本発明において、mM再現制は次に示すような方法によ
って測定を行った。すなわち、正確に幅100 u−廖
とした細線のオリジナル原稿を、適正なる複写条件でコ
ピーした画像を測定用サンプルとし、測定装ととして、
ルーセフ2フ450粒子アナティザ−を用いて、拡大し
たモニター画像から。 インジケーターによって線幅の測定を行う、このとき、
線幅の測定位置はトナーの細線画像の幅方向に凹凸があ
るため、凹凸のモ均的線幅をもって測定点とする。これ
より、細線再現性の値(%)は、下記式によって算出す
る。 、fP:、発明において、解像力の測定は次の方法によ
って打った。すなわち、線幅および間隔の等しい5本の
細線よりなるパターンで、1mmの間に2.8.3.2
.3.6.4.0.4.5.5.0.5.8.6.3.
7.1又は8.0本あるように描かれているオリジナル
画像をつくる。このi 0 !f!類の線画像を有する
オリジナル原稿を適正なる複写条件でコピーした画像を
、拡大鏡にて観察し、iB線1111が明確に分層して
いる画像の本数(本/ms)をもって解像力の値とする
。 この数字が大きいほど、解像力が高いことを示す。 尚、υ丁の配合における部数は、すべて屯ら1部である
。 実施例1 上記の混合物をロールミルで加熱混錬した。これを放冷
した後カフターミルで粗砕物とし、超if速ジェットミ
ルにより微粉砕した後、風力分級器で約2〜15μm、
体饋平均a径7.5μmの9色粒子を得た。 この粒子100部にBET法による地表面積が2508
27gのシリカ微粉体0,8部を外添してトナーとした
。 一方、 をそれぞれ混合し、混合キャリアを得た。 この様にして形成した混合キャリアと前記トナーとを9
0:10のit比率で混合し、現像剤とした。 この現像剤を市販MP−COLOR−丁(キャノン製複
写機〕を用いて複写した所1表1に示すように、画像濃
度、細線再現性、解像力に優れた階調性のある画像が得
られた。また1万枚連続複写後も初期と変らない良好な
画像であった。 比較例1 流動性付与剤として、BET法による比表面積が、 3
0rs!7gのシリカ微粉体を使用したことを除いて実
施例1と同様に行ったところ、トナーの流動性が君、〈
、キャリアとうまく混じりにくいためカブリやトナー飛
散が画像にあられれた。 比較例2 実施例1で調製したiV色粒子の体v1モ均粒径を13
.8μ層とした以外は実施例1と同様に行なったところ
カブリはなく、画像濃度も高かったものの、 III線
再現性、解像力1階調性はあまり良tlfでなかった。 実施例2 を用いて、実施例1と同様な方法で鉢植平均粒径6.2
μ耀の赤色微粉末を得た。 上記微粉末に、流動性付与剤としてBET法による比表
面積が、300m2/gであるARyCh 微粉体を、
1.0部外添してトナーとした。 −力、 をそれぞれ混合し、混合キャリアを得た。 このようにして形成した混合キャリアとトナーとを32
二8の重量比率で混合し、現像剤とした。 この現像剤を使用して、実施例1と同様に行ったところ
、表1に示すように実施例1と同様に良好な結果が得ら
れた。 比較例3 キャリアとして、 の混合キャリアを使用したことを除いて実施例2と同様
に行なったところ、カブリを生じてしまつた。 比較例4 キャリアとして、 の混合キャリアを使用したことを除いて実施例2と同様
に行なったところ1画像部非画像部共にキャリア付着が
発生し、実用に適さなかった。 実&例3 実施例2で調製した赤色粒子に、流動性付与剤として、
BET法による比表面積が、 90m2/gのTlO2
微粉体を1.0部外添してトナーとした以外は、実施例
2と同様に行なったところ、実施例2と同様に良好な結
果が得られた。 実施例4 実施例1で調製した青色粒子の体積平均粒径を5.1 
gmとし、この粒子100部にBET法による比表面積
が310m2 /Hの表面疎水化処理シリカ微粉体2.
5部を外添してトナーとした。 一方、 をそれぞれ混合し、混合キャリアを得た。 このように形成した、混合キャリアとトナーとを90:
10の重陽比率で混合し、現像剤とした。 この現像剤を使用して、実施例1と同様に行なったとこ
ろ、実施例1と同様に良好な結果が得られた。 (以下余白) C発明の効果コ 以にのように木文明の現像剤は、F記の如き優れた効果
を発揮するものである。 ■1】 細線+IrIr現性像解像度調性、画像濃度に
すぐれた現像剤である (2」トナー濃度が変動しても常に良好かつ高品位なI
IIIl像を1.える現像剤であるL3r  性能劣化
が起こらず、繰返し使用に酎える現像剤である。 出願人 キ ヤ ) ン株式会社
[1] is preferably 1.0 $ or less. Since the toner particle size is fine, there is very little static! The toner adheres to the image faithfully, and there is little disturbance in the toner adhesion at the edges of the latent image.As a result, an image with high resolution and good color 1 developability can be obtained. In particular, photographic images often have halftone areas, which are collections of minute latent images, and are more layered.
The effect of the toner particle size appears, resulting in a good f-image. However, on the other hand, since the toner particle size is small, the fluidity of the toner deteriorates, and the 8-coupling between the carrier and the toner is not carried out effectively, causing capri and scattering. Therefore, in the present invention, a fluidity improver is added to the colored fine particles R to improve the fluidity of the toner to I-4. The finer the particle size of the fluidized external agent used in the present invention, the better, and the specific surface area measured by the BET method should be at least 50 ts2/g, preferably at least 80 ts2/g. Examples of such fluidity improvers include, but are not necessarily limited to, those listed in 1- below. For example, silicon oxide, K, aluminum oxide, titanium oxide, zinc oxide, zirconium oxide, carbon black, zinc stearate, calcium stearate, Teflon,
Boria vinylidene chloride, 4j, carrion, white (
;, basic magnesium carbonate, precipitated magnesium carbonate,
Other whole tfl powders can be used. Among them, silicon oxide, titanium oxide, and aluminum oxide zirconium dioxide can be easily produced with a suitable particle size by a one-gas phase method, and are colorless or white, so when used in color toners, they have no negative effect on color. It is more preferable. Furthermore, two or more of these fluidity imparting agents may be added to the nit toner. Application 1- of these fluidizing agents is toner ri I+
), the effect of the present invention is exhibited when the amount is 0.0 to 10% to 1%, and particularly preferably when 0.03 to 5% is added, excellent fluidity and charging stability of the toner can be obtained. show. Furthermore, in the configuration of unreleased II, in addition to l・ner as described in -h, there are 11 magnetic particles A with an average grain size of 25 to 45 μ and a saturation magnetization of 140 to 240 emu/g, and t
:1 diameter is 45~80 hiro and its saturation magnetization is 45~8
Carrier particles containing 62 pieces of magnetic particles E-B of 0 ermu/g are used. Since the magnetic particles 't'-A used in the present invention have a small particle size, they can increase the specific surface area of two carriers, and even if the toner particle size becomes small, the toner and carrier can efficiently maintain a contact zone of centric force < Of ability. becomes. Therefore, fogging and toner scattering do not occur even if the toner concentration in the developer varies slightly, and high image density can be achieved because the carrier retains toner (it is possible to increase the number of crossroads). Although magnetic particle A has a small particle size, it has a large saturation magnetization, so it is difficult to cause carrier adhesion. However, since magnetic particle A has a large saturation magnetization, if it exceeds 50% of the total gear, it will cause solid black parts. Carrier contamination by white lines and toner is likely to occur, and furthermore, a large torque is required to drive the magnetic brush.On the other hand, magnetic particles B used by being mixed with magnetic particles are
It is preferable that the particle size is larger and the IL saturation magnetization is smaller than that of magnetic particle A. By mixing magnetic particle B with magnetic particle A, problems such as solid black white lines and carrier contamination caused by toner can be solved. is improved. In addition, the specific surface area of this mixed carrier is considerably larger than that of conventional carriers, so even if the toner has a small particle size, it can be efficiently charged by contact with the carrier.There is no fogging or toner scattering, and there is no fogging or toner scattering. Providing high-quality images with excellent density etc. 5
6゜The materials used for magnetic particles -A and H are 5.From the respective magnetic property values, magnetic particles A are iron powder, magnetic particles /-B
Although ferrite powder is most preferred, it is not necessarily limited to this. Furthermore, A: The mixed carrier used in the invention may be coated with a resinous material in order to control toner charging, etc. 1-The coating material on the surface of the magnetic particles varies depending on the toner material. For example, as the resin for the positive band, aminoacrylate resin, acrylic resin, or a combination of these resins and styrene resin may be used. Preferred examples of negatively charged resins include silicone resins, polyester resins, polytetrafluoroethylene polymers, monochlorotrifluoroethylene polymers, etc. Polyvinylidene fluoride, etc.
It is located on the negative side of the HF electric series and is preferred, but not necessarily reduced to this. - On the other hand, as the binder resin of the toner used in the present invention, styrene and its substituted products such as polystyrene, polyp-chlorostyrene, and polyvinyltoluene are used. ti ton combination; styrene-P-chlorostyrene copolymer, styrene-
Propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-
Methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer , styrene-butyl methacrylate copolymer, styrene-acrylic-aminoacrylic copolymer, styrene-aminoacrylic copolymer, styrene-alpha chloromethacrylate Medidere J (tall combination, styrene-acrylonitrile copolymer ('11) , styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether J (ffc
styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene 8m polymer, styrene-maleic acid copolymer, styrene-maleic acid ester copolymer, etc. Styrenic copolymers: polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polyvinyl a
Pyrene, polyester, polyurethane, polyamide, epoxy resin 2 polyvinyl butyral, polyacrylic acid resin, rosin, modified rosin, terpene resin, phenolic resin, aliphatic or alicyclic hydrocarbon resin. Aromatic petroleum resin, chlorinated paraffin, paraffin wax,
Can be used alone or in combination. In toners, any suitable pigment or dye can be used as a 4 color 6+1. For example, there are known facial cleansing agents such as carbon black, iron black, phthalocyanine blue, Shin-♂t, quinahydrone, and benzidine yellow. In addition, as a charge control agent, amine compounds, quaternary ammonium compounds, and organic dyes, especially salts, salts, dimethyl-hexadecylammonium chloride, decyl-trimethylammonium chloride, nigrosine base, etc. , nigrosine and dolochloride, Sakuranino γ and crystal/hayleft may also be added. After thorough kneading, mechanical pulverization and classification may be used, or a method of dispersing a material such as magnetic powder in a binder solution and then spray-drying it.
Alternatively, various methods can be applied, such as a polymerized toner manufacturing method in which a toner is obtained by mixing a predetermined material with the J monomer constituting the binder resin and then polymerizing the emulsified suspension. [Examples] The present invention will be specifically explained below using Examples, but these are not intended to limit the present invention in any way. In the present invention, the mM reproducibility was measured by the following method. In other words, an image of an original document with thin lines exactly 100 μm wide, copied under appropriate copying conditions, was used as a measurement sample, and as a measurement device,
From a monitor image enlarged using the Rousev 2F 450 particle anatizer. The line width is measured using the indicator.
Since the fine line image of the toner has unevenness in the width direction, the line width measurement position is set at the uniform line width of the unevenness. From this, the value (%) of fine line reproducibility is calculated using the following formula. , fP: In the invention, the resolution was measured by the following method. In other words, it is a pattern consisting of five thin lines with equal line width and spacing, and 2.8.3.2
.. 3.6.4.0.4.5.5.0.5.8.6.3.
Create an original image that appears to have 7.1 or 8.0 lines. This i 0! f! Observe with a magnifying glass an image obtained by copying an original manuscript with similar line images under appropriate copying conditions, and calculate the resolution value by the number of images (lines/ms) in which iB lines 1111 are clearly separated. do. The larger this number, the higher the resolution. In addition, the number of parts in the formulation of υ is all 1 part. Example 1 The above mixture was heated and kneaded in a roll mill. After cooling it, it was coarsely crushed with a Kafter mill, finely pulverized with an ultra-IF jet mill, and then divided into particles of about 2 to 15 μm with an air classifier.
Nine colored particles with a body average diameter of 7.5 μm were obtained. 100 parts of this particle has a ground surface area of 2508 by the BET method.
A toner was prepared by externally adding 0.8 parts of 27 g of fine silica powder. On the other hand, were mixed respectively to obtain a mixed carrier. The mixed carrier thus formed and the toner were mixed into 9
They were mixed at an it ratio of 0:10 to form a developer. When this developer was used for copying using a commercially available MP-COLOR-D (Canon copier), as shown in Table 1, an image with excellent gradation, excellent image density, fine line reproducibility, and resolution was obtained. Also, even after 10,000 sheets were continuously copied, the image remained as good as the initial one. Comparative Example 1 As a fluidity imparting agent, the specific surface area measured by the BET method was 3.
0rs! The same procedure as in Example 1 was carried out except that 7 g of silica fine powder was used, and the fluidity of the toner was as follows.
, it was difficult to mix well with the carrier, resulting in fogging and toner scattering in images. Comparative Example 2 The average particle size of the iV color particles prepared in Example 1 was 13
.. The same procedure as in Example 1 was carried out except that the 8μ layer was used, and although there was no fog and the image density was high, the III line reproducibility and resolution and 1 gradation were not very good tlf. Using Example 2, the average particle size of potted plants was 6.2 in the same manner as in Example 1.
A red fine powder of μ-yellow was obtained. ARyCh fine powder having a specific surface area of 300 m2/g by BET method was added to the above fine powder as a fluidity imparting agent.
1.0 part was added externally to prepare a toner. − force and were mixed respectively to obtain a mixed carrier. The mixed carrier and toner thus formed were mixed together for 32 hours.
The mixture was mixed at a weight ratio of 2.8 to 28 to form a developer. When this developer was used in the same manner as in Example 1, good results were obtained as in Example 1, as shown in Table 1. Comparative Example 3 When the same procedure as in Example 2 was carried out except that a mixed carrier of the following was used as the carrier, fogging occurred. Comparative Example 4 The same procedure as in Example 2 was carried out except that a mixed carrier of the following was used as the carrier. However, carrier adhesion occurred in both the image area and the non-image area, making it unsuitable for practical use. Actual & Example 3 To the red particles prepared in Example 2, as a fluidity imparting agent,
TlO2 with a specific surface area of 90 m2/g by BET method
Example 2 was carried out in the same manner as in Example 2, except that 1.0 part of fine powder was externally added to form a toner, and the same good results as in Example 2 were obtained. Example 4 The volume average particle diameter of the blue particles prepared in Example 1 was 5.1
gm, and 100 parts of the particles were mixed with surface hydrophobized silica fine powder having a specific surface area of 310 m2/H by the BET method.
5 parts were added externally to form a toner. On the other hand, were mixed respectively to obtain a mixed carrier. The mixed carrier and toner thus formed were mixed at 90:
They were mixed at a deuterium ratio of 10 to form a developer. When this developer was used in the same manner as in Example 1, the same good results as in Example 1 were obtained. (The following is a blank space) Effects of Invention C As described above, Mokubun's developer exhibits excellent effects as described in F. ■1] Fine line + IrIr development A developer with excellent image resolution tonality and image density (2) Always good and high quality IrIr even when toner density fluctuates
IIIl image 1. L3r is a developer that can be used repeatedly without causing performance deterioration. Applicant: Can Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)着色微粒子と流動性付与剤とからなるトナーと、
キャリア粒子とを混合してなる現像剤であって、着色微
粒子の平均粒径が3〜9μであり、流動性付与剤がBE
T法による比表面積が50m^2/g以上の超微粉末で
あり、キャリア粒子が平均粒径が25〜45μで且つそ
の飽和磁化が140〜240emu/gの磁性粒子A1
0〜50重量%と、平均粒径が45〜80μで且つその
飽和磁化が45〜90emu/gの磁性粒子B50〜9
0重量%とからなる事を特徴とする磁気ブラシ現像用現
像剤。
(1) A toner comprising colored fine particles and a fluidity imparting agent;
A developer formed by mixing carrier particles, in which the colored fine particles have an average particle size of 3 to 9μ, and the fluidity imparting agent is BE.
Magnetic particles A1 are ultrafine powders with a specific surface area of 50 m^2/g or more by T method, carrier particles have an average particle diameter of 25 to 45 μ, and a saturation magnetization of 140 to 240 emu/g.
Magnetic particles B50-9 with an average particle size of 45-80 μ and a saturation magnetization of 45-90 emu/g.
A developer for magnetic brush development characterized by comprising 0% by weight.
JP63261363A 1988-10-19 1988-10-19 Developer for magnetic brush development Pending JPH02109059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261363A JPH02109059A (en) 1988-10-19 1988-10-19 Developer for magnetic brush development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261363A JPH02109059A (en) 1988-10-19 1988-10-19 Developer for magnetic brush development

Publications (1)

Publication Number Publication Date
JPH02109059A true JPH02109059A (en) 1990-04-20

Family

ID=17360801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261363A Pending JPH02109059A (en) 1988-10-19 1988-10-19 Developer for magnetic brush development

Country Status (1)

Country Link
JP (1) JPH02109059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395717A (en) * 1992-05-18 1995-03-07 Kyocera Corporation Developer for developing latent electrostatic images and method of forming images by using the developer
JP2016151615A (en) * 2015-02-16 2016-08-22 京セラドキュメントソリューションズ株式会社 Two-component developer and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395717A (en) * 1992-05-18 1995-03-07 Kyocera Corporation Developer for developing latent electrostatic images and method of forming images by using the developer
JP2016151615A (en) * 2015-02-16 2016-08-22 京セラドキュメントソリューションズ株式会社 Two-component developer and method for producing the same

Similar Documents

Publication Publication Date Title
US5512402A (en) Carrier for electrophotography, two-component type developer, and image forming method
JPH0798521A (en) Electrophotographic carrier, two-component developer and image forming method
JP2003302792A (en) Cyan toner and toner set
JPS63294570A (en) Positive chargeable one-component magnetic developer
JP3093578B2 (en) Electrophotographic toner
JPH02109059A (en) Developer for magnetic brush development
JPH01193747A (en) Toner for developing electrostatic charge image
JPH0274955A (en) Carrier for electrophotographic developer
JPH07181805A (en) Member for imparting triboelectric charge for positive charge type toner
JPS59187347A (en) Magnetic toner
JP2760492B2 (en) Development method
JPH07113788B2 (en) Two-component developer
JP2694550B2 (en) Electrophotographic coated carrier
JP3066160B2 (en) Positively chargeable toner
JPH0547114B2 (en)
JP2824834B2 (en) Developer for developing electrostatic images
JP2825223B2 (en) Non-magnetic one-component toner and developing method
JP2854572B2 (en) Image forming method
JPS62168162A (en) Electrophotographic method
JPH0764367A (en) Two color image forming method
JPH0810338B2 (en) Non-magnetic one-component color toner and color image forming method
JPH0564340B2 (en)
JPH03172858A (en) Color developer
JPH0764349A (en) One component magnetic developing and image forming method
JPH0157905B2 (en)