JPH0149013B2 - - Google Patents
Info
- Publication number
- JPH0149013B2 JPH0149013B2 JP17685184A JP17685184A JPH0149013B2 JP H0149013 B2 JPH0149013 B2 JP H0149013B2 JP 17685184 A JP17685184 A JP 17685184A JP 17685184 A JP17685184 A JP 17685184A JP H0149013 B2 JPH0149013 B2 JP H0149013B2
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- resist
- positive resist
- additive
- laminating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004090 dissolution Methods 0.000 claims description 21
- 239000000654 additive Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 230000000996 additive effect Effects 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 239000008240 homogeneous mixture Substances 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 229910001507 metal halide Inorganic materials 0.000 claims description 3
- 150000005309 metal halides Chemical class 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- -1 organic acid salt Chemical class 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 25
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 13
- 229940102001 zinc bromide Drugs 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000010894 electron beam technology Methods 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical group C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 3
- CWBLKOLBEWWCOP-UHFFFAOYSA-N 2-methylprop-2-enoic acid;phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(O)=O.CC(=C)C(=O)OC1=CC=CC=C1 CWBLKOLBEWWCOP-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical group CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 2
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、半導体集積回路、光集積回路、ジヨ
セフソン素子などの製造におけるパターン形成方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pattern forming method for manufacturing semiconductor integrated circuits, optical integrated circuits, Josephson devices, and the like.
LSIなどの加工工程で被加工材料をエツチング
しないで所望のパターンを得る方法としてリフト
オフ法が用いられている。この方法では、電子
線、光、紫外線、X線などの高エネルギー線を、
これに感応する感応材料に照射して現像し、アン
ダーカツトの断面形状を形成する。このパターン
をマスクにして蒸着あるいは他の方法で被加工材
料を付着させたのち、該パターンの形成材料を除
去して所望のパターンを得ている。この方法で
は、該パターンの形成材料を除去するため、アン
ダーカツトの断面形状を形成することが重要であ
る。
The lift-off method is used as a method for obtaining a desired pattern without etching the material to be processed during the processing of LSI and other devices. In this method, high-energy rays such as electron beams, light, ultraviolet rays, and X-rays are
A sensitive material sensitive to this is irradiated and developed to form the cross-sectional shape of the undercut. Using this pattern as a mask, a material to be processed is deposited by vapor deposition or other methods, and then the material forming the pattern is removed to obtain a desired pattern. In this method, it is important to form the cross-sectional shape of the undercut in order to remove the material forming the pattern.
従来、上記の様な断面形状を得る方法として以
下の方法が用いられている。 Conventionally, the following method has been used to obtain the above-mentioned cross-sectional shape.
(1) 単層のポジ形レジストを用いて、電子線、
光、X線などの照射あるいは現像を過度に行う
と、第1図aに示すように、レジストパターン
1の断面形状が開口寸法d1よりも界面寸法d2の
方が広い、いわゆるアンダーカツト形状になる
ことを利用している。この方法は、簡単である
が、寸法や断面形状の制御、すなわち開口寸法
d1および界面寸法d2の制御が難しく、特に、微
細な開口寸法d1が得にくいという問題があつ
た。(1) Using a single layer of positive resist, electron beam,
When irradiation with light, X-rays, etc. or development is performed excessively, the cross-sectional shape of the resist pattern 1 has a so-called undercut shape in which the interface dimension d2 is wider than the opening dimension d1, as shown in FIG . 1a. It takes advantage of becoming. Although this method is simple, it is possible to control the dimensions and cross-sectional shape, i.e., the opening size.
There was a problem in that it was difficult to control d 1 and interface dimension d 2 , and in particular, it was difficult to obtain a fine opening dimension d 1 .
(2) 同一の現像液に対し溶解速度が異なるポジ形
レジストを使用し、溶解速度が速いレジストを
下層に、遅いレジストを上層に用いた2層構成
により、断面形状が第1図bの様なパターンを
得る方法がある。2は下層レジストパターン、
3は上層レジストパターンである。この方法で
は上層と下層の溶解速度比が小さいと、下層レ
ジストの溶解中にも上層レジストの溶解が進行
し、(1)と同様に微細な開口寸法が得にくいこと
や断面形状の制御が難しいという問題があつ
た。(2) By using positive resists with different dissolution rates in the same developer, and using a two-layer structure in which the resist with a faster dissolution rate is used as the lower layer and the resist with a slower dissolution rate is used as the upper layer, the cross-sectional shape is as shown in Figure 1b. There is a way to get a pattern. 2 is the lower resist pattern,
3 is an upper layer resist pattern. In this method, if the dissolution rate ratio between the upper layer and the lower layer is small, the upper resist layer will continue to dissolve while the lower resist layer is dissolving, making it difficult to obtain fine opening dimensions and difficult to control the cross-sectional shape as in (1). There was a problem.
(2)の方法では、一般に溶解速度が分子量に依存
する現象を利用し、分子量が異なるレジストを積
層する方法がある。この場合、実現できる分子量
比に限度があることや、上層レジストの塗布時に
下層レジストが溶解しやすいことなどがあり、溶
解速度比の大きい2層構成が難しいという問題が
あつた。 Method (2) generally utilizes the phenomenon that the dissolution rate depends on the molecular weight, and there is a method in which resists having different molecular weights are stacked. In this case, there is a problem that there is a limit to the molecular weight ratio that can be achieved and that the lower resist layer is easily dissolved during coating of the upper resist layer, making it difficult to create a two-layer structure with a high dissolution rate ratio.
本発明の目的は、これらの問題を除去し、所望
の断面形状のパターンを得ることができるパター
ン形成方法を提供することにある。
An object of the present invention is to provide a pattern forming method that can eliminate these problems and obtain a pattern with a desired cross-sectional shape.
上記目的を達成するため、本発明は添加剤の濃
度と熱処理温度により溶解速度が制御できるレジ
スト組成物を積層するものである。すなわち、本
発明は被加工基板上に、同一現像液に対し溶解速
度が異なるパターン形成材料を少なくとも2層積
層し、電子線、光、紫外線、X線、などの高エネ
ルギー線を照射して現像することによりパターン
を形成する方法において、パターン形成材料とし
て側鎖にカルボキシル基をもつレジストと2価金
属の酸化物、ハロゲン化金属または有機酸塩の中
の少なくとも1つから選ばれる添加剤との均一混
合物よりなるポジ形レジスト組成物を使用し、添
加剤の濃度が異なる該ポジ形レジスト組成物を熱
処理して積層するか、または、添加剤の濃度が等
しい該ポジ形レジスト組成物を異なる温度で熱処
理して積層して得られた上記パターン形成材料
に、上記高エネルギー線を照射し、その後現像す
ることによりパターンを形成することを特徴とす
る。
In order to achieve the above object, the present invention is to laminate resist compositions whose dissolution rate can be controlled by adjusting the concentration of additives and the heat treatment temperature. That is, in the present invention, at least two layers of pattern-forming materials having different dissolution rates in the same developer are laminated on a substrate to be processed, and the pattern-forming materials are developed by irradiating them with high-energy rays such as electron beams, light, ultraviolet rays, and X-rays. In the method of forming a pattern, a resist having a carboxyl group in a side chain is used as a pattern forming material, and an additive selected from at least one of divalent metal oxides, metal halides, and organic acid salts. A positive resist composition consisting of a homogeneous mixture is used, and the positive resist compositions having different concentrations of additives are heat-treated and laminated, or the positive resist compositions having the same concentration of additives are laminated at different temperatures. The method is characterized in that a pattern is formed by irradiating the pattern-forming material obtained by heat-treating and laminating the material with the high-energy rays and then developing it.
以下本発明を図面について詳細に説明する。 The invention will now be explained in detail with reference to the drawings.
第2図は、ポジ形レジストにフエニルメタクリ
レートメタクリル酸共重合体(φ−MAC)、添加
剤に臭化亜鉛を用いた場合の添加濃度(レジスト
に対する重量%)と熱処理温度による溶解速度を
示す。横軸は、電子ビームの照射量で、縦軸はφ
−MACの溶解速度である。現像液の組成は、1,
4−ジオキサン:ジイソブチルケトン=30:70
(容積比)である。また、図中の直線の傾き、す
なわち照射量に対する溶解速度の変化率は、レジ
ストの解像性を指標し、変化率が大きいほど解像
性が高い。図中、イは臭化亜鉛の添加濃度が0重
量%、熱処理温度が200℃、ロは臭化亜鉛の添加
濃度が1重量%、熱処理温度が180℃、ハは臭化
亜鉛の添加濃度が1重量%、熱処理温度が200℃、
ニは臭化亜鉛の添加濃度が3重量%、熱処理温度
が160℃、ホは臭化亜鉛の添加濃度が3重量%、
熱処理温度が180℃、ヘは臭化亜鉛の添加濃度が
3重量%、熱処理温度が200℃である。この結果
によれば、臭化亜鉛の添加量が多く、熱処理温度
が高いほど分子架橋密度が増加し、溶解速度が低
下するが、溶解速度の変化率は大きくなつてい
る。 Figure 2 shows the dissolution rate depending on the additive concentration (% by weight relative to the resist) and heat treatment temperature when phenyl methacrylate methacrylic acid copolymer (φ-MAC) is used in a positive resist and zinc bromide is used as an additive. . The horizontal axis is the electron beam irradiation amount, and the vertical axis is φ
- Dissolution rate of MAC. The composition of the developer is 1,
4-dioxane: diisobutyl ketone = 30:70
(volume ratio). Further, the slope of the straight line in the figure, that is, the rate of change in the dissolution rate with respect to the irradiation dose, is an index of the resolution of the resist, and the larger the rate of change, the higher the resolution. In the figure, A shows the added concentration of zinc bromide at 0% by weight and a heat treatment temperature of 200°C, B shows an added concentration of zinc bromide of 1% by weight and a heat treatment temperature of 180°C, and C shows the added concentration of zinc bromide at 180°C. 1% by weight, heat treatment temperature 200℃,
In D, the concentration of zinc bromide added is 3% by weight, and the heat treatment temperature is 160°C; in E, the concentration of zinc bromide added is 3% by weight,
The heat treatment temperature was 180°C, the concentration of zinc bromide added was 3% by weight, and the heat treatment temperature was 200°C. According to the results, the larger the amount of zinc bromide added and the higher the heat treatment temperature, the higher the molecular crosslink density and the lower the dissolution rate, but the rate of change in the dissolution rate became larger.
具体的な実施例を第3図に示す。 A specific example is shown in FIG.
無添加のφ−MACを基板上にスピンコーテイ
ングした後、200℃で熱処理すなわちプリベーク
する(第2図のイ参照)。塗布膜厚は4000Åであ
る。塗布溶媒は、モノクロベンゼン50%とジオキ
サン50%(容積比)の混合液である。次に、この
試料上に臭化亜鉛を3重量%添加したφ−MAC
をスピンコーテイングし、180℃でプリベークす
る(第2図ホ)。上層の塗布膜厚は3000Åであり、
塗布溶媒はメチルイソブチルケトンである。この
試料に、加速電圧30kVの電子線を0.3μm幅のラ
イン状に照射する。照射量は260μC/cm2である。 After spin-coating the additive-free φ-MAC on the substrate, it is heat-treated or prebaked at 200°C (see A in Figure 2). The coating film thickness is 4000 Å. The coating solvent is a mixture of 50% monochlorobenzene and 50% dioxane (by volume). Next, φ-MAC with 3% by weight of zinc bromide added on this sample.
Spin coat and pre-bake at 180°C (Figure 2 E). The coating thickness of the upper layer is 3000Å,
The coating solvent is methyl isobutyl ketone. This sample is irradiated with an electron beam at an accelerating voltage of 30 kV in a line shape with a width of 0.3 μm. The irradiation dose was 260 μC/cm 2 .
次に、この試料を、ジオキサン30%とジイソブ
チルケトン70%の混合液に浸漬して現像すると、
開口寸法が0.4μm、界面寸法が1μmで、下層レジ
ストパターン4および上層レジストパターン5か
らなる断面形状がアンダーカツト状のパターンを
形成できた。このパターンを用いてAlのリフト
オフを行うと、0.4μm幅のAlのラインパターンを
得た。 Next, this sample was immersed in a mixture of 30% dioxane and 70% diisobutyl ketone and developed.
A pattern having an opening size of 0.4 μm, an interface size of 1 μm, and an undercut-like cross-sectional shape consisting of the lower resist pattern 4 and the upper resist pattern 5 could be formed. When lift-off of Al was performed using this pattern, a line pattern of Al with a width of 0.4 μm was obtained.
次に、本発明の他の実施例を第4図に示す。上
述した実施例では、溶解速度の速いレジストを下
層としたが、これと逆に、溶解速度の遅いレジス
トを下層に速いレジストを上層とした構成であ
る。 Next, another embodiment of the present invention is shown in FIG. In the embodiments described above, a resist with a fast dissolving rate was used as the lower layer, but conversely, a resist with a slow dissolving rate was used as a lower layer and a resist with a fast dissolving rate was used as an upper layer.
基板上に、臭化亜鉛を1重量%添加したφ−
MACをスピンコーテイングし、200℃でプリベー
クする(第2図のハ)。塗布膜厚は、3000Åであ
る。塗布溶媒は、モノクロベンゼン50%とジオキ
サン50%の混合液である。さらに、この試料上
に、無添加のφ−MACをスピンコーテイングし、
200℃でプリベークする(第2図のイ)。塗布膜厚
は、3000Åである。塗布溶媒はメチルイソブチル
ケトンである。次に、この試料に加速電圧30kV
の電子線を0.3μm幅のライン状に照射する。照射
量は200μC/cm2である。次に、この試料をジオキ
サン30%とジイソブチルケトン70%の混合液に浸
漬して現像すると、開口寸法1μmで界面寸法0.4μ
mのオーバカツト状の断面形状を得た。 φ- to which 1% by weight of zinc bromide was added on the substrate.
Spin coat the MAC and pre-bake at 200°C (Figure 2, c). The coating film thickness is 3000 Å. The coating solvent is a mixture of 50% monochlorobenzene and 50% dioxane. Furthermore, additive-free φ-MAC was spin-coated on this sample,
Pre-bake at 200℃ (Figure 2 A). The coating film thickness is 3000 Å. The coating solvent is methyl isobutyl ketone. Next, apply an accelerating voltage of 30 kV to this sample.
The electron beam is irradiated in a line shape with a width of 0.3 μm. The irradiation dose was 200 μC/cm 2 . Next, when this sample was immersed in a mixed solution of 30% dioxane and 70% diisobutyl ketone and developed, the opening size was 1 μm and the interface size was 0.4 μm.
An overcut cross-sectional shape of m was obtained.
なお、上記実施例ではポジ形レジスト材料とし
てフエニルメタクリレートメタクリル酸共重合体
(φ−MAC)を用いたが、側鎖にカルボキシル基
をもつものなら他の材料を用いてもよい。また添
加剤としては臭化亜鉛を用いたが、2価金属の酸
化物、ハロゲン化金属または有機酸塩の中の少な
くとも1つから選ばれる他の添加剤を用いてもよ
い。さらに、上記実施例では添加剤の濃度が異な
るポジ形レジスト組成物を熱処理して積層した
が、添加剤の濃度が等しいポジ形レジスト組成物
を異なる温度で熱処理して積層してもよいことは
第2図からも明らかである。 In the above embodiments, phenyl methacrylate methacrylic acid copolymer (φ-MAC) was used as the positive resist material, but other materials may be used as long as they have carboxyl groups in their side chains. Although zinc bromide is used as an additive, other additives selected from at least one of divalent metal oxides, metal halides, and organic acid salts may also be used. Furthermore, in the above example, positive resist compositions with different concentrations of additives were heat-treated and laminated, but positive resist compositions with the same concentration of additives may be heat-treated at different temperatures and laminated. This is also clear from Figure 2.
前述のように、溶解速度が速いレジストを下層
に、遅いレジストを上層にした2層構成では、断
面形状がアンダーカツト状のパターンが得られる
から、微細なリフトオフ用パターンに適用でき
る。これと逆に、溶解速度の遅いレジストを下層
に速いレジストを上層とした構成では、断面形状
がオーバカツト状のパターンが得られる。このパ
ターンをマスクにして、ドライエツチング法で、
レジスト材料と被加工材料のエツチング速度がほ
ぼ等しい条件でコンタクトホールを加工すれば、
第4図のパターンと同様の形状をしたテーパのつ
いたコンタクトホールを形成でき、配線材料の断
線を生じにくくできる。 As mentioned above, a two-layer structure in which a resist with a fast dissolution rate is the lower layer and a resist with a slow dissolution rate is the upper layer can be applied to a fine lift-off pattern because a pattern with an undercut cross-sectional shape can be obtained. On the other hand, in a configuration in which a resist with a slow dissolution rate is the lower layer and a resist with a faster dissolution rate is the upper layer, a pattern with an overcut cross-sectional shape is obtained. Using this pattern as a mask, use the dry etching method to
If the contact hole is processed under conditions where the etching speed of the resist material and the material to be processed are almost equal,
A tapered contact hole having a shape similar to that of the pattern shown in FIG. 4 can be formed, and disconnection of the wiring material can be made less likely to occur.
以上説明したように、本発明は側鎖にカルボキ
シル基をもつレジストと2価金属の酸化物、ハロ
ゲン化金属または有機酸塩の中の少なくとも1つ
から選ばれる添加剤との均一混合物(添加剤が均
一に分布する混合物)よりなるポジ形レジスト組
成物は、熱処理によりイオノマーを形成して熱架
橋を生じるから、添加量と熱処理温度で架橋密度
を制御できる。従つて、添加濃度が異なる該ポジ
形レジスト組成物を積層することによりレジスト
パターンの断面形状を制御することができる。ま
た、添加剤の添加による溶解速度の制御が容易で
かつ制御量が大きいことから、上層と下層の溶解
速度比の大きい多層レジスト構成が可能となり断
面形状の制御範囲が広い特長を有する。これによ
り、微細寸法のパターンが得られる効果がある。
また、添加剤を添加して熱処理することにより溶
媒が不溶となるから、添加濃度の異なる同一レジ
ストを重ね塗りできる効果がある。
As explained above, the present invention provides a homogeneous mixture (additive Since a positive resist composition consisting of a mixture (mixture in which the ionomer is uniformly distributed) forms an ionomer through heat treatment and thermal crosslinking occurs, the crosslinking density can be controlled by the amount added and the heat treatment temperature. Therefore, the cross-sectional shape of the resist pattern can be controlled by laminating the positive resist compositions having different additive concentrations. Furthermore, since the dissolution rate can be easily controlled by adding additives and the amount of control is large, a multilayer resist structure with a large dissolution rate ratio between the upper layer and the lower layer can be formed, and the cross-sectional shape can be controlled over a wide range. This has the effect of obtaining a pattern with fine dimensions.
Furthermore, since the solvent becomes insoluble by adding additives and performing heat treatment, it is possible to overcoat the same resist with different additive concentrations.
第1図a,bはそれぞれ従来のパターン形成方
法を示す図、第2図は添加剤である臭化亜鉛の添
加濃度(レジストに対する重量%)と熱処理温度
(℃)によるφ−MAC溶解速度を示す図、第3
図、第4図はそれぞれ本発明の実施例を示す図で
ある。
d1……開口寸法、d2……界面寸法、1……レジ
ストパターン、2,4……下層レジストパター
ン、3,5……上層レジストパターン。
Figures 1a and b show the conventional pattern forming method, respectively, and Figure 2 shows the φ-MAC dissolution rate depending on the concentration of zinc bromide (wt% relative to the resist) and heat treatment temperature (°C). Figure shown, 3rd
FIG. 4 is a diagram showing an embodiment of the present invention, respectively. d 1 --- Opening dimension, d 2 --- Interface dimension, 1 --- Resist pattern, 2, 4 --- Lower layer resist pattern, 3, 5 --- Upper layer resist pattern.
Claims (1)
が異なるパターン形成材料を少なくとも2層積層
し、高エネルギー線を照射して現像することによ
りパターンを形成する方法において、パターン形
成材料として側鎖にカルボキシル基をもつレジス
トと2価金属の酸化物、ハロゲン化金属または有
機酸塩の中の少なくとも1つから選ばれる添加剤
との均一混合物よりなるポジ形レジスト組成物を
使用し、上記添加剤の濃度が異なる該ポジ形レジ
スト組成物を熱処理して積層するか、または、添
加剤の濃度が等しい該ポジ形レジスト組成物を異
なる温度で熱処理して積層して得られた上記パタ
ーン形成材料に、上記高エネルギー線を照射し、
その後現像することによりパターンを形成するこ
とを特徴とするパターン形成方法。1 In a method of forming a pattern by laminating at least two layers of pattern forming materials having different dissolution rates in the same developing solution on a substrate to be processed and developing them by irradiating them with high energy rays, a side chain is used as the pattern forming material. A positive resist composition comprising a homogeneous mixture of a resist having a carboxyl group and an additive selected from at least one of a divalent metal oxide, a metal halide, or an organic acid salt is used, and the additive is The pattern forming material obtained by heat treating and laminating the positive resist compositions having different concentrations of additives, or by heat treating and laminating the positive resist compositions having the same additive concentration at different temperatures. , irradiate with the above high energy rays,
A pattern forming method characterized by forming a pattern by subsequent development.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59176851A JPS6155922A (en) | 1984-08-27 | 1984-08-27 | Formation of pattern |
EP85903700A EP0187870B1 (en) | 1984-07-23 | 1985-07-22 | Pattern formation |
KR1019860700161A KR910001590B1 (en) | 1984-07-23 | 1985-07-22 | Patterning method |
DE8585903700T DE3577930D1 (en) | 1984-07-23 | 1985-07-22 | EDUCATION OF MOTIVES. |
US06/847,907 US4699870A (en) | 1984-07-23 | 1985-07-22 | Patterning method |
PCT/JP1985/000411 WO1986001009A1 (en) | 1984-07-23 | 1985-07-22 | Pattern formation |
US07/067,263 US4820609A (en) | 1984-07-23 | 1987-06-25 | Highly sensitive positive resist mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59176851A JPS6155922A (en) | 1984-08-27 | 1984-08-27 | Formation of pattern |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6155922A JPS6155922A (en) | 1986-03-20 |
JPH0149013B2 true JPH0149013B2 (en) | 1989-10-23 |
Family
ID=16020939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59176851A Granted JPS6155922A (en) | 1984-07-23 | 1984-08-27 | Formation of pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6155922A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0263056A (en) * | 1988-04-05 | 1990-03-02 | Mitsubishi Kasei Corp | Formation of resist pattern |
JPH01296237A (en) * | 1988-05-25 | 1989-11-29 | Mitsubishi Electric Corp | Resist pattern forming method |
JP4622084B2 (en) * | 2000-11-01 | 2011-02-02 | 富士通株式会社 | Pattern formation method |
EP3398202B1 (en) | 2015-12-30 | 2023-08-09 | FujiFilm Electronic Materials USA, Inc. | Photosensitive stacked structure |
-
1984
- 1984-08-27 JP JP59176851A patent/JPS6155922A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6155922A (en) | 1986-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3934057A (en) | High sensitivity positive resist layers and mask formation process | |
KR930000293B1 (en) | Fine pattern forming method | |
US3987215A (en) | Resist mask formation process | |
US4078098A (en) | High energy radiation exposed positive resist mask process | |
KR910001590B1 (en) | Patterning method | |
JP2926622B2 (en) | Pattern formation method | |
JPH0149013B2 (en) | ||
JPS5934296B2 (en) | Electron beam resist and its usage | |
JPS59104127A (en) | Formation of fine pattern | |
JPS587054B2 (en) | Resist pattern formation method | |
JPS6211852A (en) | Formation of pattern | |
JPS62175739A (en) | Pattern forming method | |
JPS6137774B2 (en) | ||
JPS60254036A (en) | Formation of pattern | |
JPS6256947A (en) | Composition for flattened layer for resist having two-layered structure | |
JPH042183B2 (en) | ||
JPH02156244A (en) | Pattern forming method | |
JPS589323A (en) | Formation of fine resist pattern | |
JPH01132122A (en) | Pattern forming method | |
JPS60140824A (en) | Forming method of resist pattern | |
JPH0147009B2 (en) | ||
JPS63254728A (en) | Forming method for resist pattern | |
JPS63263723A (en) | Pattern forming method | |
JPS6072231A (en) | Fabrication of resist pattern | |
JPS6074521A (en) | Pattern forming process |