JPH0145516B2 - - Google Patents
Info
- Publication number
- JPH0145516B2 JPH0145516B2 JP17207781A JP17207781A JPH0145516B2 JP H0145516 B2 JPH0145516 B2 JP H0145516B2 JP 17207781 A JP17207781 A JP 17207781A JP 17207781 A JP17207781 A JP 17207781A JP H0145516 B2 JPH0145516 B2 JP H0145516B2
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- raw material
- boiling point
- temperature
- petroleum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002994 raw material Substances 0.000 claims description 35
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 29
- 239000004917 carbon fiber Substances 0.000 claims description 29
- 238000009835 boiling Methods 0.000 claims description 25
- 239000000295 fuel oil Substances 0.000 claims description 23
- 238000005984 hydrogenation reaction Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000011282 treatment Methods 0.000 claims description 19
- 238000003763 carbonization Methods 0.000 claims description 18
- 239000003921 oil Substances 0.000 claims description 18
- 239000002243 precursor Substances 0.000 claims description 17
- 239000003208 petroleum Substances 0.000 claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 13
- 238000005087 graphitization Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000002074 melt spinning Methods 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 238000004230 steam cracking Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 5
- 238000004231 fluid catalytic cracking Methods 0.000 claims description 4
- 239000011295 pitch Substances 0.000 description 71
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 21
- 208000012886 Vertigo Diseases 0.000 description 9
- 238000009987 spinning Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000011302 mesophase pitch Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 239000011294 coal tar pitch Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- -1 naphtha Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011318 synthetic pitch Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
- Working-Up Tar And Pitch (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は炭素繊維製造用原料としての優れた性
能を有するピツチの製造方法に関する。
現在、炭素繊維は主にポリアクリロニトリルを
原料として製造されている。しかしながらポリア
クリロニトリルを原料とした場合、原料が高価で
あり、また加熱炭化時において繊維状の原形がく
ずれ易く、さらに炭化収率も悪いという欠点があ
る。
近年、この点に着目してピツチを原料として炭
素繊維を製造する方法が数多く報告されている。
ピツチを原料として用いた場合、原料安価であ
り、また炭化収率が通常85〜95%と高いため、安
価に炭素繊維を製造できることが期待される。し
かしながら、ピツチを原料として得られる炭素繊
維は、ポリアクリロニトリル系炭素繊維に比べ弾
性率は高いものの、強度が劣るという問題があ
る。従つて、もしこの問題点を解決し、また弾性
率をさらに向上し得ることができれば、ピツチか
ら安価に高強度かつ高弾性率の炭素繊維を製造す
ることが可能となる。
最近になつて、市販の石油ピツチを熱処理して
メソ相(mesophase)と呼ばれる光学的異方性の
液晶を含有するピツチを得、このメソ相を含有す
るピツチを前駆体ピツチ(以後、溶融紡糸時にお
けるピツチを前駆体ピツチと呼ぶ)として用い、
この前駆体ピツチを溶融紡糸した後、不融化し、
次いで炭化あるいは更に黒鉛化することにより、
弾性率および強度が向上した炭素繊維が得られる
ことが報告された(特開昭49−19127号)。
しかしながら、ピツチが液晶を形成し得るか否
かは種々の要因により決まるものであり、また液
晶の構造や軟化点、粘度等の物性は原料ピツチに
大きく依存するものである。前記特開昭49−
19127号はメソ相を含有するピツチ(以後、メソ
相ピツチと略記する)の製造法に関するものであ
つて、良質のメソ相ピツチを形成するための原料
ピツチについては何ら言及していない。前記した
ように、良質のメソ相ピツチは原料ピツチに大き
く依存するものであり、最適な原料ピツチを見出
すことができれば弾性率および強度がさらに優れ
た炭素繊維を製造することが可能となる。それ
故、この最適の原料ピツチを見出だすことが当該
技術分野の重要な課題である。
例えば、コールタールピツチはカーボンブラツ
ク状のキノリンに不溶で不融性の物質を含有して
おり、これらは前駆体ピツチの不均一性の原因と
なり紡糸性を悪くさせるばかりか、炭素繊維の強
度および弾性率に悪影響を及ぼす。
一方、市販の石油ピツチやその他の合成ピツチ
の多くは、キノリンに不溶で不融性の物質をほと
んど含有していないが、これらのピツチを加熱処
理して前駆体ピツチを調製する段階で、キノリン
に不溶な高分子量成分が生成する。すなわち、こ
れらのピツチを熱処理すると熱分解と重縮合反応
が併発し、低分子量成分は徐々に高分子量化し、
キノリンに不溶の高分子量成分となり、また同時
に高分子量成分はさらに高分子量化する。これに
併つてピツチの軟化点も上昇する。このキノリン
不溶分がコールタール中のカーボンブラツク状物
質に類似の物質であれば、前述の如く紡糸以降の
工程で悪影響を及ぼす。また、前記のカーボンブ
ラツク状物質とは異なる物質であつたとしても、
多量のキノリン不溶分の存在と高い軟化点は溶融
紡糸の段階で悪影響を及ぼす。すなわち、前駆体
ピツチを溶融紡糸するためには前駆体ピツチが紡
糸可能な粘度になるまで紡糸温度を上げることが
必要であつて、前駆体ピツチの軟化点が余りにも
高過ぎれば、紡糸温度も当然高くせざるを得ず、
その結果、キノリン不溶分は一層高分子量化する
と共に、ピツチの熱分解が起こり軟質ガスが発生
し、均一な前駆体ピツチとはなり得ず、紡糸する
ことが事実上不可能となる。
このように前駆体ピツチは、比較的低い軟化点
で紡糸するために適当な粘度を持つていなければ
ならない。また、紡糸時さらには炭化時に揮発性
成分を実質的に含有するものであつてはならな
い。
このため、生成したキノリン不溶分を加圧過
や溶剤分別等の手段により除去することにより炭
素繊維製造用前駆体ピツチを調製することが行わ
れている(特開昭47−9804号、同50−142820号、
同55−1342号、同55−5954号)。しかしながら、
これらの手段を用いた場合には処理装置の複雑化
および処理費用の増大を招き、経済的観点から好
ましいものではない。
もし、原料ピツチとして優れた性能を有するピ
ツチを用いることにより、メソ相化の加熱段階で
キノリン不溶分となる高分子量成分を生成させな
いことができれば最も好ましいものである。
本発明者らは、これらの課題について鋭意研究
した結果、本発明を完成したものである。すなわ
ち、本発明者らは、前駆体ピツチを調製する段階
で高分子量成分の生成を抑制し、最適な粘度を有
し、また炭化初期の段階では芳香族平面が秩序だ
つて配列をし易い組成を持つことができる性能の
優れた原料ピツチを見出したものである。換言す
れば、本発明は軟化点が比較的低く保持され、か
つメソ相を容易に形成するような原料ピツチの製
造方法を提供するものである。
以下に本発明を詳述する。
本発明は、原料ピツチを加熱処理して得られる
前駆体ピツチを溶融紡糸した後、不融化処理およ
び炭化あるいは更に黒鉛化処理して炭素繊維を製
造するに当たり、該原料ピツチが、(1)石油類を水
蒸気分解した際に得られる沸点200℃以上の重質
油と、(2)石油類を流動接触分解した際に得られる
沸点200℃以上の重質油と、(3)石油類を水蒸気分
解した際に得られる沸点範囲160〜400℃の留分お
よび/または石油類を水蒸気分解した際に得られ
る沸点200℃以上の重質油を温度380〜480℃で加
熱処理した際に生成する沸点範囲160〜400℃の留
分を、水素化触媒の存在下に水素と接触させ、該
留分中に含有される芳香族系炭化水素の芳香族核
を10〜70%核水素化して得られる水素化油との混
合物を温度370〜480℃、圧力2〜50Kg/cm2・Gに
て熱処理して得られるものであることを特徴とす
る炭素繊維用原料ピツチの製造方法である。
本発明により得られる原料ピツチを用いてメソ
相化反応を行わせしめた場合、キノリン不溶分の
生成が抑制されるばかりか、ピツチが改質され、
最終製品である炭素繊維が高弾性率で、かつ高強
度となり得たことは全く予期され得ないものであ
つた。
これに対し、コールタールピツチ、市販の石油
ピツチあるいは合成ピツチを特開昭49−19127号
の方法に従つて加熱処理し、メソ相化を行つたと
ころ、生成ピツチの軟化点が340℃以上のもの、
固形分が沈積したもの、あるいは固形物が沈積し
ないまでもキノリン不溶分が70wt%以上にも達
したもの等、多くの場合、溶融紡糸が事実上不可
能であつた。また溶融紡糸を行い得た場合でも、
さらに不融化、炭化および黒鉛化処理して得た炭
素繊維の強度は120〜200Kg/mm2、弾性率は12〜
20ton/mm2程度であつた。また軟化点のものを紡
糸した場合には、紡糸物中に熱分解ガス発生に起
因する空孔が存在していた。
本発明において用いられる石油類を水蒸気分解
した際に得られる沸点200℃以上の重質油とはナ
フサ、灯油あるいは軽油等の石油類を通常700〜
1200℃で水蒸気分解して、エチレン、プロピレン
等のオレフイン類を製造する際に副生する重質油
であつて、実質的に沸点が200〜450℃の範囲内の
重質油である。
本発明において用いられる石油類を流動接触分
解した際に得られる沸点200℃以上の重質油とは、
灯油、軽油、るいは常圧残油等の石油類を天然あ
るいは合成のシリカ・アルミナ触媒あるいはゼオ
ライト触媒の存在下に450〜550℃、常圧〜20Kg/
cm2・Gにて流動接触分解することにより、ガソリ
ン等の軽質油を製造する際に副生する重質油であ
つて、実質的に沸点が200〜450℃の範囲内の重質
油である。
本発明において用いられる水素化油はナフサ、
灯油あるいは軽油等の石油類を通常700〜1200℃
で水蒸気分解して、エチレン、プロピレン等のオ
レフイン類を製造する際に副生する沸点範囲が実
質的に160〜400℃、好ましくは170〜350℃の留分
および/またはナフサ、灯油あるいは軽油等の石
油類を通常700〜1200℃で水蒸気分解して、エチ
レン、プロピレン等のオレフイン類を製造する際
に副生する沸点が実質的に200℃以上の留分、好
ましくは沸点範囲が200〜450℃の留分を温度380
〜480℃、圧力2〜50Kg/cm2・Gで15分〜20時間
加熱処理した際に生成する沸点範囲が実質的に
160〜400℃、好ましくは170〜350℃の留分を、水
素化触媒の存在下に水素と接触させ、該留分中に
含有される芳香族系炭化水素の芳香族核を部分的
に核水素化したものである。
このとき使用する水素化触媒は通常の水素化反
応に用いられる触媒でよく、例えばボーキサイ
ト、活性炭素、珪藻土、ゼオライト、シリカ、チ
タニヤ、ジリコニア、アルミナあるいはシリカゲ
ル等の無機固体を担体として用い、銅などの周期
律表b族金属、クロム、モリブデン、コバル
ト、パラジウムあるいは白金などの周期律表族
金属を金属の形で、または酸化物あるいは硫化物
の形で前記担体に担持させたもの等が用いられ
る。
水素化条件は、使用する触媒の種類により異な
るものであるが通常、温度が120〜450℃、好まし
くは150〜350℃、圧力が20〜100Kg/cm2・G、好
ましくは30〜70℃/cm2・Gで行われる。また回分
式で行つた場合の、水素化処理時間は0.5〜3時
間が適当である。連続式で行つた場合には空間速
度(LHSV)0.5〜3.0が選ばれる。
水素化条件の例を挙げれば、2wt%のラネー・
ニツケルを触媒として用い回分式で行つた場合に
は、圧力40〜50Kg/cm2・G、温度160〜170℃、処
理時間1〜1.5時間が好ましく採用され、ニツケ
ル・モリブデン系触媒を用いて連続式で行つた場
合には圧力30〜50Kg/cm2・G、温度330℃程度、
空間速度(LHSV)1.5程度が好ましく採用され
る。
水素化反応により、留分中に含有される芳香族
系炭化水素の芳香族核を部分的に核水素化を行う
が、この時の核水素化率が10〜70%、好ましくは
15〜50%、最も好ましくは15〜35%となるように
することが必要である。なお、核水素化率は下式
によつて定義されるものであり、また下式中の芳
香族環炭素数とはASTM D−2140−66で示され
るものである。
核水素化率=(水素化処理前の芳香族環炭素数)−(
水素化処理後の芳香族環炭素数)/水素化処理前の芳香
族環炭素数
本発明の原料ピツチの製造方法は(1)石油類を水
蒸気分解した際に得られる沸点200℃以上の重質
油と(2)石油類を流動接触分解した際に得られる沸
点200℃以上の重質油と(3)石油類を水蒸気分解し
た際に得られる沸点範囲160〜400℃の留分およ
び/または石油類を水蒸気分解した際に得られる
沸点200℃以上の重質油を温度380〜480℃で加熱
処理した際に生成する沸点範囲160〜400℃で留分
を、水素化触媒の存在下に水素と接触させ、該留
分中に含有される芳香族炭化水素の芳香族核を10
〜70%核水素化して得られる水素化油を特定の割
合で混合し、かつ特定の条件下で加熱処理するこ
とにより得られる。
上記の成分(1)と成分(2)の混合割合は、成分(1):
成分(2)が重量比で1:0.1〜9、好ましくは1:
0.2〜4である。成分3の混合割合は、成分(1)と
成分(2)の合計量に対し、重量比で0.1〜2倍、好
ましくは0.2〜1.5倍用いる。加熱処理温度として
は370〜480℃、好ましくは390〜460℃の範囲内の
温度で行う。加熱処理温度が370℃よりも低いと
反応の進行が遅く、長時間要するため不経済であ
る。また480℃よりも高い温度で熱処理を行うと
コーキング等の問題が生じ、好ましくない。加熱
処理時間は加熱処理温度との兼ね合いで決められ
るものでり、低温の場合は長時間、高温の場合は
短時間行う。通常は15分〜20時間、好ましくは30
分〜10時間の範囲内の処理時間を採用することが
できる。圧力に関しては任意の圧力下で実施し得
るが、原料中の有効成分が未反応のまま実質的に
系外に留出しない圧力が好ましく、具体的には2
〜50Kg/cm2・G、好ましくは5〜30Kg/cm2・Gが
採用される。
熱処理を行つた後、必要であれば蒸留等の操作
により軽質分を除去することも好ましく採用され
る。
かくして得られる本発明よりなる原料ピツチを
用いることにより、加熱処理してメソ相化を行つ
た際、キノリン不溶分である高分子量成分の生成
が抑制されると同時にピツチの軟化点の上昇を防
ぐことができ、さらに芳香族平面が秩序だつて配
列し易い組成を持つた良好な前駆体ピツチとな
る。この結果、弾性率および強度がきわめて優れ
た炭素繊維を得ることができる。
本発明により得られる原料ピツチを用いて炭素
繊維を製造する方法は公知の方法を採用すること
ができる。すなわち原料ピツチを加熱処理してメ
ソ相化を行い、得られる前駆体ピツチを溶融紡糸
した後、不融化処理および炭化あるいはさらに黒
鉛化処理を行つて炭素繊維を製造する。
原料ピツチを加熱処理し、メソ相化を行つて前
駆体ピツチを得る段階での反応は、通常、温度
340〜450℃、好ましくは370〜420℃で常圧あるい
は減圧下に窒素等の不活性ガスを通気することに
よつて行われる。この時の加熱処理時間は温度、
不活性ガスの通気量等の条件により任意に行い得
るものであるが、通常、1〜50時間、好ましくは
3〜20時間で行う。不活性ガスの通気量は0.7〜
5.0scfh/lbピツチが好ましい。
前駆体ピツチを溶融紡糸する方法としては押出
法、遠心法、霧吹法等の公知の方法を用いること
ができる。
溶融紡糸されて得られるピツチ繊維は、次に酸
化性ガス雰囲気下で不融化処理が施される。酸化
性ガスとしては通常、酸素、オゾン、空気、窒素
酸化物、ハロゲン、亜硫酸ガス等の酸化性ガスを
1種あるいは2種以上用いる。この不融化処理は
被処理体である溶融紡糸されたピツチ繊維が軟化
変形しない温度条件下で実施される。例えば20〜
360℃、好ましくは20〜300℃の温度が採用され
る。また処理時間は通常、5分〜10時間である。
不融化処理されたピツチ繊維は、次に不活性ガ
ス雰囲気下で炭化あるいは更に黒鉛化を行い、炭
素繊維を得る。炭化は通常、温度800〜2500℃で
行う。一般には炭化に要する処理時間は0.5分〜
10時間である。さらに黒鉛化を行う場合には、温
度2500〜3500℃で、通常1秒〜1時間行う。
また、不融化、炭化あるいは黒鉛化処理の際、
必要であれば収縮や変形等を防止する目的で、被
処理体に若干の荷重あるいは張力をかけておくこ
ともできる。
以下に実施例および比較例により本発明を具体
的に説明するが、本発明はこれらに制限されるも
のではない。
実施例 1
ナフサを830℃で水蒸気分解した際に副生した
沸点200℃以上の重質油(以下、重質油(1)と略す。
その性状を第1表に示す)を得た。
アラビア系原油の減圧軽油(VGO)の水素化
処理油をシリカ・アルミナ系触媒を用いて500℃
にて接触分解して得られた沸点200℃以上の重質
油(以下、重質油(2)と略す。その性状を第2表に
示す)を得た。
次いで重質油(1)を、圧力15Kg/cm2・G、温度
400℃で3時間熱処理を行つ後、250℃/1mmHg
で蒸留して沸点範囲160〜400℃の留分(3)を採取し
た。その性状を第3表に示す。この留分(3)を、ニ
ツケル・モリブデン系触媒(NM−502)を用い
て、圧力35Kg/cm2・G、温度330℃、空間速度
(LHSV)1.5で水素と接触させ、部分核水素化を
行わせ、水素化油(4)を得た。核水素化率は31%あ
つた。
前記した重質油(1)60重量部、重質油(2)30重量部
および水素化油(4)100重量部を混合し、圧力20
Kg/cm2・G、温度430℃にて3時間熱処理した。
この熱処理油を250℃/1.0mmHgで蒸留して軽質
分を留出させ軟化点80℃、ベンゼン不溶分22wt
%の原料ピツチを得た。
次に、この原料ピツチ30gに対し窒素を550
ml/分で通気しながら撹拌し、温度400℃で10時
間熱処理を行い、軟化点280℃、キノリン不溶分
33wt%、メソ相含量80%のピツチを得た。この
ピツチをノズル径0.3mmφ、L/D=2の紡糸器
を用い334℃にて溶融紡糸を行い11〜15μのピツ
チ繊維をつくり、さらに下記に示す条件にて不融
化、炭化および黒鉛化処理して炭素繊維を得た。
不融化、炭化および黒鉛化の処理条件は以下の
如くである。
Γ不融化条件:空気雰囲気中で、200℃までは3
℃/分、300℃までは1℃/分の昇温速度で加
熱し、300℃で10分間保持。
Γ炭化条件:窒素雰囲気中で10℃/分で昇温し
1000℃で30分間保持。
Γ黒鉛化条件:アルゴン気流中で、50℃/分の昇
温速度で、2500℃まで加熱処理。
得られた炭素繊維の引張強度は258Kg/mm2、ヤ
ング率は42ton/mm2であつた。
The present invention relates to a method for producing pitch, which has excellent performance as a raw material for producing carbon fibers. Currently, carbon fiber is mainly manufactured using polyacrylonitrile as a raw material. However, when polyacrylonitrile is used as a raw material, there are disadvantages in that the raw material is expensive, the original fibrous shape is easily destroyed during heating and carbonization, and the carbonization yield is also poor. In recent years, focusing on this point, many methods have been reported for producing carbon fibers using pitch as a raw material.
When pitch is used as a raw material, it is expected that carbon fibers can be produced at low cost because the raw material is inexpensive and the carbonization yield is usually as high as 85 to 95%. However, carbon fibers obtained using pitch as a raw material have a higher modulus of elasticity than polyacrylonitrile carbon fibers, but have a problem in that they are inferior in strength. Therefore, if this problem could be solved and the modulus of elasticity could be further improved, it would be possible to produce carbon fibers with high strength and high modulus at low cost from pitch. Recently, commercially available petroleum pits have been heat-treated to obtain pits containing optically anisotropic liquid crystals called mesophases, and pitches containing this mesophases have been converted into precursor pits (hereinafter referred to as melt-spun). The pitch at the time is called the precursor pitch),
After melt-spinning this precursor pitch, it is made infusible and
Then, by carbonization or further graphitization,
It was reported that carbon fibers with improved elastic modulus and strength could be obtained (Japanese Patent Application Laid-open No. 19127-1983). However, whether a pitch can form a liquid crystal is determined by various factors, and the structure, softening point, viscosity, and other physical properties of the liquid crystal greatly depend on the raw material pitch. Said Japanese Unexamined Patent Application Publication No. 1973-
No. 19127 relates to a method for producing pitch containing mesophase (hereinafter abbreviated as mesophase pitch), but does not mention anything about the raw material pitch for forming high quality mesophase pitch. As mentioned above, a high-quality mesophase pitch largely depends on the raw material pitch, and if an optimal raw material pitch can be found, it will be possible to produce carbon fibers with even better elastic modulus and strength. Therefore, finding this optimal raw material pitch is an important challenge in this technical field. For example, coal tar pitch contains substances that are insoluble and infusible in carbon black quinoline, and these not only cause non-uniformity of the precursor pitch and deteriorate spinnability, but also reduce the strength and strength of carbon fibers. Adversely affects elastic modulus. On the other hand, many commercially available petroleum pitches and other synthetic pitches contain almost no substances that are insoluble and infusible in quinoline. Insoluble high molecular weight components are produced. In other words, when these pitches are heat-treated, thermal decomposition and polycondensation reactions occur simultaneously, and the low molecular weight components gradually increase in molecular weight.
It becomes a high molecular weight component that is insoluble in quinoline, and at the same time, the high molecular weight component further increases in molecular weight. At the same time, the softening point of pitch increases. If this quinoline insoluble matter is similar to the carbon black-like substance in coal tar, it will have an adverse effect on the steps after spinning as described above. Furthermore, even if the substance is different from the carbon black-like substance mentioned above,
The presence of a large amount of quinoline insolubles and a high softening point have an adverse effect on the melt spinning stage. That is, in order to melt-spun a precursor pitch, it is necessary to raise the spinning temperature until the precursor pitch reaches a viscosity that allows spinning, and if the softening point of the precursor pitch is too high, the spinning temperature will also increase. Naturally, it had to be expensive,
As a result, the molecular weight of the quinoline-insoluble components becomes higher, and the pitch is thermally decomposed to generate soft gas, making it impossible to form a uniform precursor pitch and making spinning virtually impossible. Thus, the precursor pitch must have a suitable viscosity for spinning with a relatively low softening point. Furthermore, it must not substantially contain volatile components during spinning or carbonization. For this reason, precursor pitch for carbon fiber production is prepared by removing the generated quinoline insoluble matter by means such as pressurization and solvent separation (Japanese Patent Application Laid-Open No. 47-9804, 50 −142820,
55-1342, 55-5954). however,
When these means are used, the processing equipment becomes complicated and the processing cost increases, which is not preferable from an economic point of view. It would be most preferable if a pitch having excellent performance could be used as the raw material pitch to prevent the formation of high molecular weight components that would become quinoline-insoluble components during the heating step of mesophase formation. The present inventors have completed the present invention as a result of intensive research into these problems. That is, the present inventors suppressed the formation of high molecular weight components at the stage of preparing the precursor pitch, had an optimal viscosity, and created a composition in which the aromatic planes were easily arranged in an orderly manner at the early stage of carbonization. We have discovered a raw material pitch with excellent performance. In other words, the present invention provides a method for producing a raw material pitch in which the softening point is kept relatively low and the mesophase is easily formed. The present invention will be explained in detail below. In the present invention, in producing carbon fiber by melt-spinning a precursor pitch obtained by heating a raw material pitch, and then subjecting it to infusibility treatment and carbonization or further graphitization treatment, the raw material pitch is (1) (2) heavy oil with a boiling point of 200°C or more obtained when petroleum is subjected to fluid catalytic cracking, and (3) heavy oil that is obtained by steam cracking of petroleum. Produced when heat-treating a fraction with a boiling point range of 160 to 400°C obtained when cracking and/or heavy oil with a boiling point of 200°C or higher obtained when steam cracking petroleum at a temperature of 380 to 480°C. A fraction with a boiling point range of 160 to 400°C is brought into contact with hydrogen in the presence of a hydrogenation catalyst, and 10 to 70% of the aromatic nuclei of aromatic hydrocarbons contained in the fraction are hydrogenated. This is a method for producing a raw material pitch for carbon fiber, characterized in that it is obtained by heat-treating a mixture with hydrogenated oil at a temperature of 370 to 480°C and a pressure of 2 to 50 kg/cm 2 ·G. When the mesophase reaction is carried out using the raw material pitch obtained by the present invention, not only the production of quinoline-insoluble components is suppressed, but also the pitch is modified,
It was completely unexpected that the final product, carbon fiber, could have a high modulus of elasticity and high strength. On the other hand, when coal tar pitch, commercially available petroleum pitch, or synthetic pitch was heat-treated to form a mesophase according to the method of JP-A-49-19127, the resulting pitch had a softening point of 340°C or higher. thing,
In many cases, melt spinning was practically impossible, such as in cases where the solid content was precipitated, or even when no solid content was precipitated, the quinoline insoluble content reached 70 wt% or more. Furthermore, even if melt spinning is possible,
Furthermore, the strength of the carbon fiber obtained by infusibility, carbonization, and graphitization is 120 to 200 Kg/mm 2 and the elastic modulus is 12 to 200 kg/mm 2
It was around 20ton/mm2. Furthermore, when a material having a softening point was spun, pores were present in the spun material due to the generation of thermal decomposition gas. The heavy oil with a boiling point of 200°C or higher obtained by steam cracking of petroleum used in the present invention refers to petroleum such as naphtha, kerosene, or light oil, which usually has a boiling point of 700°C or more.
It is a heavy oil that is produced as a by-product during the production of olefins such as ethylene and propylene by steam cracking at 1200°C, and it is a heavy oil with a substantially boiling point within the range of 200 to 450°C. The heavy oil with a boiling point of 200°C or higher obtained by fluid catalytic cracking of petroleum used in the present invention is:
Petroleum such as kerosene, light oil, or atmospheric residual oil is heated at 450 to 550℃ and at normal pressure to 20 kg/kg in the presence of a natural or synthetic silica/alumina catalyst or zeolite catalyst.
A heavy oil that is produced as a by-product when producing light oil such as gasoline by fluidized catalytic cracking at cm2・G, and has a boiling point substantially within the range of 200 to 450℃. be. The hydrogenated oil used in the present invention is naphtha,
Petroleum such as kerosene or light oil is usually heated to 700 to 1200℃.
Distillates with a boiling point range of substantially 160 to 400°C, preferably 170 to 350°C, which are produced as by-products when producing olefins such as ethylene and propylene by steam decomposition, and/or naphtha, kerosene, light oil, etc. A distillate with a boiling point of substantially 200°C or higher, preferably a boiling point range of 200 to 450°C, is a by-product produced when producing olefins such as ethylene and propylene by steam cracking petroleum products, usually at 700 to 1200°C. ℃ distillate temperature 380
When heated at ~480℃ and a pressure of 2~50Kg/ cm2・G for 15 minutes~20 hours, the boiling point range of the product is substantially
A fraction of 160 to 400°C, preferably 170 to 350°C is brought into contact with hydrogen in the presence of a hydrogenation catalyst to partially denucleate the aromatic nuclei of aromatic hydrocarbons contained in the fraction. It is hydrogenated. The hydrogenation catalyst used at this time may be a catalyst used in ordinary hydrogenation reactions, for example, using an inorganic solid such as bauxite, activated carbon, diatomaceous earth, zeolite, silica, titania, zirconia, alumina or silica gel as a carrier, copper etc. Metals from group B of the periodic table, such as chromium, molybdenum, cobalt, palladium, or platinum, supported on the carrier in the form of metals, or in the form of oxides or sulfides, are used. . Hydrogenation conditions vary depending on the type of catalyst used, but usually the temperature is 120 to 450°C, preferably 150 to 350°C, and the pressure is 20 to 100 Kg/cm 2 G, preferably 30 to 70°C/ It is carried out in cm 2・G. Further, when the hydrogenation treatment is carried out in a batch manner, the appropriate hydrogenation treatment time is 0.5 to 3 hours. When carried out in a continuous manner, a space velocity (LHSV) of 0.5 to 3.0 is selected. To give an example of hydrogenation conditions, 2wt% Raney
When the process is carried out batchwise using nickel as a catalyst, the pressure is preferably 40 to 50 kg/cm 2 G, the temperature is 160 to 170°C, and the treatment time is 1 to 1.5 hours. When using the formula, the pressure is 30-50Kg/ cm2・G, the temperature is about 330℃,
A space velocity (LHSV) of about 1.5 is preferably adopted. The aromatic nuclei of aromatic hydrocarbons contained in the fraction are partially hydrogenated by the hydrogenation reaction, and the nuclear hydrogenation rate at this time is preferably 10 to 70%.
It should be between 15 and 50%, most preferably between 15 and 35%. Incidentally, the nuclear hydrogenation rate is defined by the following formula, and the number of aromatic ring carbon atoms in the following formula is as indicated by ASTM D-2140-66. Nuclear hydrogenation rate = (number of aromatic ring carbons before hydrogenation treatment) - (
(Number of aromatic ring carbon atoms after hydrogenation treatment)/Number of aromatic ring carbon atoms before hydrogenation process The method for producing the raw material pitch of the present invention is as follows: (2) heavy oil with a boiling point of 200°C or more obtained when petroleum is subjected to fluid catalytic cracking; and (3) a fraction with a boiling point range of 160 to 400°C obtained when petroleum is steam cracked. Alternatively, in the presence of a hydrogenation catalyst, a distillate with a boiling point range of 160 to 400 °C, which is generated when heavy oil with a boiling point of 200 °C or more obtained when petroleum is steam cracked, is heat-treated at a temperature of 380 to 480 °C. is brought into contact with hydrogen to remove the aromatic nuclei of the aromatic hydrocarbons contained in the fraction.
It is obtained by mixing hydrogenated oil obtained by ~70% nuclear hydrogenation in a specific ratio and heat-treating it under specific conditions. The mixing ratio of component (1) and component (2) above is component (1):
Component (2) has a weight ratio of 1:0.1 to 9, preferably 1:
It is 0.2 to 4. The mixing ratio of component 3 is 0.1 to 2 times, preferably 0.2 to 1.5 times, the total weight of component (1) and component (2). The heat treatment temperature is 370 to 480°C, preferably 390 to 460°C. If the heat treatment temperature is lower than 370°C, the reaction progresses slowly and takes a long time, which is uneconomical. Further, heat treatment at a temperature higher than 480° C. causes problems such as caulking, which is not preferable. The heat treatment time is determined in consideration of the heat treatment temperature; when the temperature is low, the heat treatment is performed for a long time, and when the temperature is high, the heat treatment is performed for a short time. Usually 15 minutes to 20 hours, preferably 30 hours
Processing times ranging from minutes to 10 hours can be employed. Regarding the pressure, it can be carried out under any pressure, but it is preferable to use a pressure at which the active ingredients in the raw materials do not substantially distill out of the system unreacted.
~50Kg/cm 2 ·G, preferably 5 to 30Kg/cm 2 ·G is adopted. After the heat treatment, it is also preferable to remove light components by distillation or the like, if necessary. By using the raw material pitch of the present invention thus obtained, when heat-treated to form a mesophase, the production of high molecular weight components that are insoluble in quinoline is suppressed, and at the same time, the softening point of the pitch is prevented from increasing. Furthermore, it becomes a good precursor pitch having a composition in which the aromatic planes are easily arranged in an orderly manner. As a result, carbon fibers with extremely excellent elastic modulus and strength can be obtained. A known method can be used to produce carbon fiber using the raw material pitch obtained according to the present invention. That is, a raw material pitch is heat-treated to form a mesophase, the resulting precursor pitch is melt-spun, and then subjected to infusibility treatment and carbonization or further graphitization treatment to produce carbon fibers. The reaction at the stage of heat-treating the raw material pitch to convert it into a mesophase to obtain the precursor pitch is usually carried out at a temperature
It is carried out at 340 to 450°C, preferably 370 to 420°C, under normal pressure or reduced pressure and by bubbling inert gas such as nitrogen. The heat treatment time at this time is the temperature,
Although it can be carried out arbitrarily depending on conditions such as the amount of inert gas ventilation, it is usually carried out for 1 to 50 hours, preferably 3 to 20 hours. Inert gas ventilation rate is 0.7~
A pitch of 5.0 scfh/lb is preferred. As a method for melt-spinning the precursor pitch, known methods such as an extrusion method, a centrifugation method, and an atomization method can be used. The pitch fiber obtained by melt spinning is then subjected to an infusible treatment in an oxidizing gas atmosphere. As the oxidizing gas, one or more of oxidizing gases such as oxygen, ozone, air, nitrogen oxide, halogen, and sulfur dioxide gas are usually used. This infusibility treatment is carried out under temperature conditions at which the melt-spun pitch fibers to be treated do not soften or deform. For example 20~
Temperatures of 360°C, preferably between 20 and 300°C are employed. Further, the treatment time is usually 5 minutes to 10 hours. The infusible pitch fibers are then carbonized or further graphitized in an inert gas atmosphere to obtain carbon fibers. Carbonization is usually carried out at a temperature of 800-2500°C. Generally, the processing time required for carbonization is 0.5 minutes ~
It is 10 hours. Further, when graphitizing is carried out, it is carried out at a temperature of 2500 to 3500°C, usually for 1 second to 1 hour. In addition, during infusibility, carbonization or graphitization treatment,
If necessary, a slight load or tension may be applied to the object to be processed in order to prevent shrinkage, deformation, etc. The present invention will be specifically explained below using Examples and Comparative Examples, but the present invention is not limited thereto. Example 1 Heavy oil with a boiling point of 200°C or higher (hereinafter abbreviated as heavy oil (1)) was produced as a by-product when naphtha was steam cracked at 830°C.
The properties are shown in Table 1). Hydrotreated vacuum gas oil (VGO) of Arabian crude oil is heated to 500℃ using a silica/alumina catalyst.
A heavy oil (hereinafter referred to as heavy oil (2), whose properties are shown in Table 2) with a boiling point of 200° C. or higher was obtained by catalytic cracking. Next, add heavy oil (1) at a pressure of 15Kg/cm 2・G and a temperature of
After heat treatment at 400℃ for 3 hours, 250℃/1mmHg
The fraction (3) with a boiling point range of 160 to 400°C was collected. Its properties are shown in Table 3. This fraction (3) was brought into contact with hydrogen using a nickel-molybdenum catalyst (NM-502) at a pressure of 35 Kg/cm 2 G, a temperature of 330°C, and a space velocity (LHSV) of 1.5, resulting in partial nuclear hydrogenation. was carried out to obtain hydrogenated oil (4). The nuclear hydrogenation rate was 31%. 60 parts by weight of the heavy oil (1), 30 parts by weight of heavy oil (2) and 100 parts by weight of hydrogenated oil (4) were mixed and heated to a pressure of 20 parts by weight.
Heat treatment was performed at a temperature of 430 ° C. for 3 hours.
This heat-treated oil is distilled at 250℃/1.0mmHg to remove light components, which have a softening point of 80℃ and a benzene-insoluble component of 22wt.
% raw material pitch was obtained. Next, add 550 g of nitrogen to 30 g of this raw material pitch.
Stir with ventilation at ml/min, heat treatment at 400℃ for 10 hours, softening point 280℃, quinoline insoluble content.
Pitch with a mesophase content of 80% and 33wt% was obtained. This pitch was melt-spun at 334°C using a spinner with a nozzle diameter of 0.3 mmφ and L/D = 2 to produce pitch fibers of 11 to 15μ, and further treated with infusibility, carbonization, and graphitization under the conditions shown below. Carbon fiber was obtained. The processing conditions for infusibility, carbonization and graphitization are as follows. ΓInfusibility conditions: 3 in air atmosphere up to 200℃
℃/min, heat at a rate of 1℃/min up to 300℃, and hold at 300℃ for 10 minutes. Γ Carbonization conditions: Temperature raised at 10℃/min in nitrogen atmosphere.
Hold at 1000℃ for 30 minutes. Γ Graphitization conditions: Heat treatment in an argon stream at a heating rate of 50°C/min to 2500°C. The obtained carbon fiber had a tensile strength of 258 Kg/mm 2 and a Young's modulus of 42 ton/mm 2 .
【表】【table】
【表】【table】
【表】
比較例 1
実施例1で用いた重質油(1)100重量部と重質油
(2)50重量部との混合物を圧力15Kg/cm2・G、温度
400℃にて3時間熱処理した。この熱処理油を250
℃/1.0mmHgにて蒸留し、軽質分を留去させ、軟
化点49℃の原料ピツチを得た。
次に、実施例1と同様の方法でこの原料ピツチ
を熱処理して、軟化点308℃、キノリン不溶分48
重量%、メソ相含量86%のピツチを得た。このピ
ツチを実施例1で用いた紡糸器により、358℃で
溶融紡糸し、20〜27μのピツチ繊維をつくり、実
施例1と同様な方法で不融化、炭化および黒鉛化
処理して炭素繊維を得た。この炭素繊維の引張強
度は154Kg/mm2、ヤング率は27ton/mm2であつた。
比較例 2
実施例1において使用した本発明の原料ピツチ
の代わりに、市販の石油ピツチであるアツシユラ
ンド(Ash land)240LS(軟化点120℃)を用い
て、実施例1と同様な方法で熱処理を行つたとこ
ろ、メソ相含量50%のピツチを得た。このピツチ
を実施例1と同様の方法で溶融紡糸、不融化処
理、炭化および黒鉛化処理して炭素繊維を得た。
得られた炭素繊維の引張強度は137Kg/mm2、ヤ
ング率は28ton/mm2であつた。
実施例 2
ナフサを830℃で水蒸気分解した際に副生した
沸点160〜400℃の留分(4)を採取した。その性状を
第4表に示す。この留分(4)をコバルト・モリブデ
ン系触媒(ケツチエンフアイン124)を用いて、
温度330℃、圧力35Kg/cm2・G、LHSV1.0にて、
水素と接触させ、部分核水素化を行わせ、水素化
油(5)を得た。核水素化率は24%であつた。
実施例1で使用した重質油(1)100重量部と重質
油50重量部と水素化油(5)220重量部とを混合し、
圧力15Kg/cm2・G、温度430℃にて2時間熱処理
を行つた。この熱処理油を減圧蒸留して軽質分を
留去させ、軟化点73℃の原料ピツチを得た。
次に、この原料ピツチを実施例1の同様の方法
で熱処理し、軟化点282℃、キノリン不溶分29wt
%、メソ相含量83%のピツチを得た。このピツチ
を実施例1で用いた紡糸器により、340℃で溶融
紡糸し13〜16μのピツチ繊維をつくり、実施例1
と同様な方法で不融化、炭化および黒鉛化処理を
行い炭素繊維を得た。この炭素繊維の引張速度は
255Kg/cm2・G、ヤング率は40ton/mm2であつた。[Table] Comparative example 1 100 parts by weight of heavy oil (1) used in Example 1 and heavy oil
(2) Mixture with 50 parts by weight at a pressure of 15Kg/ cm2・G and a temperature of
Heat treatment was performed at 400°C for 3 hours. 250% of this heat treated oil
Distillation was carried out at ℃/1.0 mmHg to remove light components to obtain raw material pitch with a softening point of 49℃. Next, this raw material pitch was heat treated in the same manner as in Example 1, so that the softening point was 308°C and the quinoline insoluble content was 48°C.
Pitch with a mesophase content of 86% by weight was obtained. This pitch was melt-spun at 358°C using the spinning machine used in Example 1 to produce pitch fibers of 20 to 27μ, which were then subjected to infusibility, carbonization, and graphitization treatments in the same manner as in Example 1 to produce carbon fibers. Obtained. This carbon fiber had a tensile strength of 154 Kg/mm 2 and a Young's modulus of 27 ton/mm 2 . Comparative Example 2 Instead of the raw material pitch of the present invention used in Example 1, Ash land 240LS (softening point 120°C), which is a commercially available petroleum pitch, was used and heat treated in the same manner as in Example 1. As a result, pitch was obtained with a mesophase content of 50%. This pitch was subjected to melt spinning, infusibility treatment, carbonization and graphitization treatment in the same manner as in Example 1 to obtain carbon fibers. The obtained carbon fiber had a tensile strength of 137 Kg/mm 2 and a Young's modulus of 28 ton/mm 2 . Example 2 A fraction (4) with a boiling point of 160 to 400°C, which was produced as a by-product when naphtha was steam decomposed at 830°C, was collected. Its properties are shown in Table 4. This fraction (4) was treated with a cobalt-molybdenum catalyst (Ketsuchen Huain 124).
At temperature 330℃, pressure 35Kg/cm 2・G, LHSV1.0,
Partial nuclear hydrogenation was performed by contacting with hydrogen to obtain hydrogenated oil (5). The nuclear hydrogenation rate was 24%. Mix 100 parts by weight of heavy oil (1) used in Example 1, 50 parts by weight of heavy oil, and 220 parts by weight of hydrogenated oil (5),
Heat treatment was performed at a pressure of 15 kg/cm 2 ·G and a temperature of 430° C. for 2 hours. This heat-treated oil was distilled under reduced pressure to remove light components to obtain raw material pitch with a softening point of 73°C. Next, this raw material pitch was heat treated in the same manner as in Example 1, with a softening point of 282°C and a quinoline insoluble content of 29wt.
% and a mesophase content of 83% was obtained. This pitch was melt-spun at 340°C using the spinning machine used in Example 1 to produce pitch fibers of 13 to 16 μm.
Infusible, carbonized and graphitized treatments were performed in the same manner as above to obtain carbon fibers. The tensile speed of this carbon fiber is
The weight was 255Kg/cm 2 ·G, and the Young's modulus was 40ton/mm 2 .
Claims (1)
ツチを溶融紡糸した後、不融化処理および炭化あ
るいは更に黒鉛化処理して炭素繊維を製造するに
当たり、該原料ピツチが(1)石油類を水蒸気分解し
た際に得られる沸点200℃以上の重質油と、(2)石
油類を流動接触分解した際に得られる沸点200℃
以上の重質油と、(3)石油類を水蒸気分解した際に
得られる沸点範囲160〜400℃の留分および/また
は石油類を水蒸気分解した際に得られる沸点200
℃以上の重質油を温度380〜480℃で加熱処理した
際に生成する沸点範囲160〜400℃の留分を、水素
化触媒の存在下に水素と接触させ、該留分中に含
有される芳香族系炭化水素の芳香族核を10〜70%
核水素化して得られる水素化油との混合物を温度
370〜480℃、圧力2〜50Kg/cm2・Gにて熱処理し
て得られるものであることを特徴とする炭素繊維
用原料ピツチの製造方法。1 After melt-spinning a precursor pitch obtained by heating a raw material pitch, infusibility treatment and carbonization or further graphitization treatment is performed to produce carbon fiber. (2) heavy oil with a boiling point of 200°C or higher obtained when petroleum is subjected to fluid catalytic cracking;
(3) A distillate with a boiling point range of 160 to 400°C obtained when steam cracking petroleum and/or a boiling point 200°C obtained when steam cracking petroleum.
A fraction with a boiling point range of 160 to 400 °C, which is produced when heavy oil with a temperature of 380 to 480 °C is heated, is brought into contact with hydrogen in the presence of a hydrogenation catalyst, and the fraction contained in the fraction is 10 to 70% of the aromatic nuclei of aromatic hydrocarbons
Temperature of the mixture with hydrogenated oil obtained by nuclear hydrogenation
A method for producing a raw material pitch for carbon fiber, characterized in that it is obtained by heat treatment at 370-480°C and a pressure of 2-50 Kg/cm 2 ·G.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17207781A JPS5874786A (en) | 1981-10-29 | 1981-10-29 | Raw pitch for carbon fiber |
US06/366,937 US4521294A (en) | 1981-04-13 | 1982-04-09 | Starting pitches for carbon fibers |
CA000400889A CA1181708A (en) | 1981-04-13 | 1982-04-13 | Starting pitches for carbon fibers |
DE8282301912T DE3272976D1 (en) | 1981-04-13 | 1982-04-13 | Starting pitches for carbon fibers |
EP82301912A EP0063052B1 (en) | 1981-04-13 | 1982-04-13 | Starting pitches for carbon fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17207781A JPS5874786A (en) | 1981-10-29 | 1981-10-29 | Raw pitch for carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5874786A JPS5874786A (en) | 1983-05-06 |
JPH0145516B2 true JPH0145516B2 (en) | 1989-10-03 |
Family
ID=15935105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17207781A Granted JPS5874786A (en) | 1981-04-13 | 1981-10-29 | Raw pitch for carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5874786A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250388A (en) * | 1985-08-28 | 1987-03-05 | Osaka Gas Co Ltd | Production of pitch for making carbon fiber |
WO2022150232A1 (en) * | 2021-01-06 | 2022-07-14 | ExxonMobil Technology and Engineering Company | Steam cracking process for converting crude oils to pitch compositions spinnable into carbon articles |
-
1981
- 1981-10-29 JP JP17207781A patent/JPS5874786A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5874786A (en) | 1983-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1181707A (en) | Starting pitches for carbon fibers | |
KR880002095B1 (en) | Carbon fiber pitch | |
CA1334012C (en) | Process for the production of mesophase pitch | |
EP0063052B1 (en) | Starting pitches for carbon fibers | |
US4460455A (en) | Process for producing pitch for using as raw material for carbon fibers | |
EP0072573B1 (en) | Process for producing pitch for use as raw material for carbon fibers and carbon fibers produced from the pitch | |
JPH0150272B2 (en) | ||
US4391788A (en) | Starting pitches for carbon fibers | |
JPH0148312B2 (en) | ||
JPH0148314B2 (en) | ||
US4579645A (en) | Starting pitch for carbon fibers | |
JPH0145516B2 (en) | ||
JPH0150273B2 (en) | ||
JPH0144752B2 (en) | ||
EP0119015B1 (en) | Starting pitches for carbon fibers | |
JPH0150271B2 (en) | ||
JPH0150275B2 (en) | ||
JPH0148313B2 (en) | ||
JPH0148315B2 (en) | ||
JPH0144751B2 (en) | ||
JPH0144750B2 (en) | ||
JPH0144753B2 (en) | ||
JPH0150274B2 (en) | ||
JPH0150276B2 (en) | ||
JPH0480075B2 (en) |