[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0138512Y2 - - Google Patents

Info

Publication number
JPH0138512Y2
JPH0138512Y2 JP19480683U JP19480683U JPH0138512Y2 JP H0138512 Y2 JPH0138512 Y2 JP H0138512Y2 JP 19480683 U JP19480683 U JP 19480683U JP 19480683 U JP19480683 U JP 19480683U JP H0138512 Y2 JPH0138512 Y2 JP H0138512Y2
Authority
JP
Japan
Prior art keywords
anode
torr
pressure
selection switch
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19480683U
Other languages
Japanese (ja)
Other versions
JPS60102647U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19480683U priority Critical patent/JPS60102647U/en
Publication of JPS60102647U publication Critical patent/JPS60102647U/en
Application granted granted Critical
Publication of JPH0138512Y2 publication Critical patent/JPH0138512Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【考案の詳細な説明】 本考案は、ペニング真空計の改良に関する。[Detailed explanation of the idea] The present invention relates to improvements in Penning vacuum gauges.

電子顕微鏡等に使用される真空測定装置として
ペニング真空計が広く使用されており、その構造
を第1図及び第1図をA−A′方向から眺めた第
2図に示す。図中1は陰極としての管状部材を示
し、該部材1の外側2ケ所には凹部2,3が設け
られており、該凹部2,3には2つの永久磁石
4,5が嵌め込まれ、該磁石4,5によつて管状
部材1の内部に上下方向の磁界Bを形成する。管
状部材1の一方の開放端には、Oリング6やビス
7によつて他の真空容器と接続するための接続管
8が取り付けられ連通口8aによつて例えば電子
顕微鏡等の他の真空容器と連通している。管状部
材1の他方の開放端には、Oリング9とビス10
によつて蓋体11が取り付けられており、該蓋体
11には電気絶縁素子12を介して第3図に示す
様な短かい筒状のリングからなる陽極13が前記
磁界B内に挿入されるように取り付けられてい
る。陽極13には定電圧電源である直流高圧電源
14の出力が印加されており、該電源14を流れ
る電流は電流計15によつて測定されるが、該電
流計15には各種の抵抗値と選択スイツチから構
成された分流回路15′が接続されている。そし
て、該電流計15によつて測定された電流は
10-6Torr位迄の圧力に換算されて表示される。
A Penning vacuum gauge is widely used as a vacuum measuring device used in electron microscopes and the like, and its structure is shown in FIG. 1 and FIG. 2, which is a view of FIG. 1 from the direction A-A'. In the figure, reference numeral 1 indicates a tubular member as a cathode, and recesses 2 and 3 are provided at two outside locations of the member 1. Two permanent magnets 4 and 5 are fitted into the recesses 2 and 3. The magnets 4 and 5 form a vertical magnetic field B inside the tubular member 1. A connecting tube 8 for connecting to another vacuum container is attached to one open end of the tubular member 1 using an O-ring 6 and screws 7, and a connecting tube 8 for connecting to another vacuum container such as an electron microscope is connected through a communication port 8a. It communicates with An O-ring 9 and a screw 10 are attached to the other open end of the tubular member 1.
A cover 11 is attached to the cover 11 through an electrically insulating element 12, and an anode 13 consisting of a short cylindrical ring as shown in FIG. 3 is inserted into the magnetic field B. It is installed so that The output of a DC high voltage power supply 14, which is a constant voltage power supply, is applied to the anode 13, and the current flowing through the power supply 14 is measured by an ammeter 15, which has various resistance values and A shunt circuit 15' composed of a selection switch is connected. The current measured by the ammeter 15 is
The pressure is converted and displayed up to 10 -6 Torr.

以上の様な構成のペニング真空計は、10-3
10-6Torr程度の圧力を測定するために用いられ、
該陽極13と陰極としての管状部材1の間に高圧
電源14によつて数Kv程度の高電圧を印加する
と、管状部材1の陽極13の対向面1aより冷陰
極放出により電子が放出される。この電子は、磁
石4,5によつて形成される磁界Bによつて螺旋
運動しながら真空室16内の気体分子をイオン化
し、第4図のグラフの破線イで示す様に数μA〜
数百μAの放電電流となる。この放電電流を電流
計15によつて測定し、該電流を圧力に換算する
ことによつて真空度が測定される。
The Penning vacuum gauge with the above configuration is 10 -3 ~
Used to measure pressures around 10 -6 Torr,
When a high voltage of several kilovolts is applied between the anode 13 and the tubular member 1 as a cathode by the high voltage power supply 14, electrons are emitted from the opposing surface 1a of the anode 13 of the tubular member 1 by cold cathode emission. These electrons ionize the gas molecules in the vacuum chamber 16 while spirally moving due to the magnetic field B formed by the magnets 4 and 5, and as shown by the broken line A in the graph of FIG.
The discharge current is several hundred μA. The degree of vacuum is measured by measuring this discharge current with an ammeter 15 and converting the current into pressure.

ところで、上記の従来のペニング真空計におい
ては、陽極13の形状は第3図に示す様に単一の
円筒状の陽極を使用しており、この様に形成され
たペニング真空計においては、例えば10-3Torr
では800〜900μA程度の放電電流が流れ、
10-6Torrでは放電電流は5〜50μA、又10-7Torr
ではほとんど流れない。そのため、従来の装置で
10-7Torr以下の圧力を測定する場合には、放電
電流を大きくするために複数の陽極を設けるか、
又は陽極を大きくする必要があつた。しかしなが
ら、複数の陽極を使用したり、又は陽極を大きく
して従来の高圧電源を使用して測定した場合は、
第4図実線ロで示す様に10-7Torr付近の放電電
流は増加して測定可能になるが、10-3
10-4Torr付近の放電電流があまり変化しなくな
つてしまいこの付近の圧力の測定が困難であつ
た。そのため、10-3〜10-4Torr付近の範囲を測
定できるようにするためには高圧電源14を第4
図一点鎖線ハで示す曲線の電流を供給できる大容
量の電源とする必要があり装置が高価となる欠点
があつた。
By the way, in the above-mentioned conventional Penning vacuum gauge, the anode 13 uses a single cylindrical anode as shown in FIG. 10 -3 Torr
In this case, a discharge current of about 800 to 900 μA flows,
At 10 -6 Torr, the discharge current is 5 to 50 μA, and at 10 -7 Torr
There is almost no flow. Therefore, conventional equipment
When measuring pressures below 10 -7 Torr, install multiple anodes to increase the discharge current, or
Or it was necessary to make the anode larger. However, if multiple anodes are used or the anode is made larger and measurements are taken using a conventional high-voltage power supply,
As shown by the solid line (b) in Figure 4, the discharge current near 10 -7 Torr increases and becomes measurable, but when it reaches 10 -3 to
The discharge current around 10 -4 Torr stopped changing much, making it difficult to measure the pressure around this area. Therefore, in order to be able to measure the range around 10 -3 to 10 -4 Torr, the high voltage power supply 14 should be connected to the fourth
This has the disadvantage that it requires a large capacity power source that can supply the current shown by the dashed line C in the figure, making the device expensive.

本考案は以上の点に鑑みなされたもので、測定
空間内に配置される陽極と接地電極との間に定電
圧電源の出力を印加してその出力電流を測定し、
該測定出力を圧力に換算して表示する装置におい
て、前記陽極の交換又は切り換えに応じて前記測
定出力電流を異なつた換算で圧力表示する手段を
備えたことを特徴としている。
The present invention was developed in view of the above points, and involves applying the output of a constant voltage power source between the anode and the ground electrode placed in the measurement space and measuring the output current.
The apparatus for converting the measured output into pressure and displaying it is characterized by comprising means for displaying the measured output current in different converted pressures in response to replacement or switching of the anode.

以下本考案の一実施例を添付図面に基づき説明
する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第5図は本考案の一実施例の概略構成図であ
り、第6図は第5図のC−C′断面図、第7図は第
5図に示す一実施例装置の電気的構成図である。
尚、第1図と同一構成要素には同一番号を付して
その説明を省略する。図中17は該磁石4,5に
よつて管状部材1の内部に形成される上下方向の
磁界B中に配置される複数の電極から構成された
陽極であり、該陽極17は第7図に示す様に1個
の円筒状陽極から形成された第1陽極17aと、
同じく5個の円筒状陽極から形成された第2陽極
17bの2つの陽極を、絶縁部材18により電気
的に絶縁して一体として形成されている。19は
第1陽極17aと第2陽極17bを選択的に接続
するための選択スイツチであり、該選択スイツチ
19の端子cと端子a1,a2が接続された場合は
(第7図実線で示した接続状態)、高圧電源14よ
りの高電圧は第1陽極17aのみに印加される。
又、選択スイツチ19の端子cと端子a2,a3が接
続された場合(第7図破線で示した接続状態)
は、第1陽極17a及び第2陽極17bの両陽極
に高圧電源14よりの高電圧が印加される。20
は選択スイツチ19と連動して動作する電流計1
5の分流回路15′または分流回路15″を選択す
るための選択スイツチであり、該選択スイツチ1
9が第1陽極17aを選択した場合は、端子cと
端子b1が接続され分流回路15″が選択される。
又、選択スイツチ19が第1陽極17a及び第2
陽極17bの両陽極を選択した場合は、端子cと
端子b2が接続され分流回路15′が選択される。
該分流回路15″は電流計15によつて例えば
10-3〜10-5Torrの範囲の圧力を測定する場合に
使用され、分流回路15′は10-5〜10-7Torrの範
囲の圧力を測定する場合に使用される。又、電流
計15の目盛盤には夫々の分流回路が選択された
場合の圧力を表示する目盛が刻設されている。
FIG. 5 is a schematic configuration diagram of an embodiment of the present invention, FIG. 6 is a sectional view taken along line C-C' in FIG. 5, and FIG. 7 is an electrical configuration diagram of an embodiment of the device shown in FIG. 5. It is.
It should be noted that the same components as in FIG. 1 are given the same numbers and their explanations will be omitted. In the figure, reference numeral 17 denotes an anode composed of a plurality of electrodes placed in the vertical magnetic field B formed inside the tubular member 1 by the magnets 4 and 5. As shown, a first anode 17a formed from one cylindrical anode;
Two anodes of the second anode 17b, which are also formed from five cylindrical anodes, are electrically insulated by an insulating member 18 and formed integrally. Reference numeral 19 denotes a selection switch for selectively connecting the first anode 17a and the second anode 17b, and when the terminal c of the selection switch 19 and the terminals a 1 and a 2 are connected (as indicated by the solid line in Fig. 7), In the illustrated connection state), the high voltage from the high voltage power supply 14 is applied only to the first anode 17a.
Also, when terminal c of selection switch 19 and terminals a 2 and a 3 are connected (connection state shown by broken lines in Figure 7)
A high voltage from the high voltage power supply 14 is applied to both the first anode 17a and the second anode 17b. 20
is the ammeter 1 that operates in conjunction with the selection switch 19.
This is a selection switch for selecting the shunt circuit 15' or the shunt circuit 15'' of No. 5, and the selection switch 1
9 selects the first anode 17a, the terminal c and the terminal b1 are connected and the shunt circuit 15'' is selected.
Further, the selection switch 19 selects the first anode 17a and the second anode.
When both anodes of the anode 17b are selected, the terminal c and the terminal b2 are connected and the shunt circuit 15' is selected.
The shunt circuit 15'' is detected by the ammeter 15, for example.
It is used when measuring pressures in the range of 10 -3 to 10 -5 Torr, and the branch circuit 15' is used when measuring pressures in the range of 10 -5 to 10 -7 Torr. Further, the scale of the ammeter 15 is engraved with scales that indicate the pressure when each shunt circuit is selected.

この様に構成されたペニング真空計により圧力
を測定する場合は、まず選択スイツチ19により
端子cと端子a1,a2を接続して第1陽極17aの
みに高電圧を印加する。この場合、選択スイツチ
20により分流回路15″が選択され、電流計1
5には例えば第4図破線イで示す電流が流れ、該
電流は圧力に換算された目盛盤に10-3
10-5Torrまでの範囲の圧力として表示される。
次に、選択スイツチ19により端子cと端子a2
a3を接続して第1陽極17a及び第2陽極17b
に高電圧を印加する。この場合は、分流回路1
5′が選択スイツチ20により選択され電流計1
5には例えば第4図実線ロで示す電流が流れ10-5
〜10-7Torrまでの範囲の圧力として表示される。
そのため、この様に形成された陽極を前記の様に
選択して使用することにより、10-3〜10-7Torr
の低圧力側を含む広い範囲の圧力を比較的小さな
容量の電源によつて測定することが可能となる。
When measuring pressure with the Penning vacuum gauge constructed in this manner, first, the selection switch 19 connects the terminal c and the terminals a 1 and a 2 to apply a high voltage only to the first anode 17a. In this case, the selection switch 20 selects the shunt circuit 15'', and the ammeter 1
5, for example, the current shown by the broken line A in Figure 4 flows, and the current is converted to pressure on the scale plate from 10 -3 to
Expressed as pressure in the range up to 10 -5 Torr.
Next, the selection switch 19 selects terminal c and terminal a 2 ,
a 3 to connect the first anode 17a and the second anode 17b
Apply high voltage to. In this case, the shunt circuit 1
5' is selected by the selection switch 20 and the ammeter 1
For example, the current shown by the solid line B in Figure 4 flows through 510 -5
Expressed as pressure ranging up to ~10 -7 Torr.
Therefore, by selecting and using the anode formed in this way as described above, it is possible to reduce the
It is possible to measure a wide range of pressures, including the low pressure side of the system, using a relatively small capacity power source.

尚、本考案は以上の実施例に限定されず変形が
可能である。例えば、本実施例では円筒状陽極1
7を予め複数組用意して切換えるようにしたが、
測定目的が低圧力側か高圧力側にあるかに応じて
真空計の蓋体11に取り付けられる陽極を交換す
るようにしてもよい。
It should be noted that the present invention is not limited to the above embodiments and can be modified. For example, in this embodiment, the cylindrical anode 1
I prepared multiple sets of 7 in advance and switched them, but
The anode attached to the lid 11 of the vacuum gauge may be replaced depending on whether the purpose of measurement is on the low pressure side or the high pressure side.

以上の様に本考案は、真空中に設けられた陰極
と陽極との間に高電圧を印加して、該陰極と陽極
との間に生ずる放電現象を利用して真空を測定す
る装置において、複数の陽極を選択的に使用する
ことにより電源の容量を小さくでき、更に高真空
領域で放電電流を増加したことにより10-3Torr
〜10-7Torrまでの圧力を1台の電流計で測定で
きる安価なペニング真空計を提供する。
As described above, the present invention provides an apparatus for measuring vacuum by applying a high voltage between a cathode and an anode provided in a vacuum and utilizing the discharge phenomenon that occurs between the cathode and anode. By selectively using multiple anodes, the capacity of the power supply can be reduced, and by increasing the discharge current in the high vacuum region, the discharge current can be reduced to 10 -3 Torr.
To provide an inexpensive Penning vacuum gauge that can measure pressures up to ~10 -7 Torr with a single ammeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は従来装置を説明す
るための図、第5図は本考案の一実施例を示す構
成略図、第6図は第5図の一実施例のC−C′断面
図、第7図は第5図の一実施例装置の要部の概略
図、第4図は従来装置と本考案の一実施例装置の
性能を比較するためのグラフである。 1:陰極、4,5:磁石、6,9:Oリング、
7,10:ビス、8:接続管、11:蓋体、1
2:絶縁体、13:陽極、14:直流高圧電源、
15:電流計、16:真空室、17:円筒状陽
極。
1, 2, and 3 are diagrams for explaining a conventional device, FIG. 5 is a schematic diagram showing an embodiment of the present invention, and FIG. 6 is a C-C diagram of an embodiment of the present invention. 7 is a schematic view of the essential parts of the apparatus of the embodiment shown in FIG. 5, and FIG. 4 is a graph for comparing the performance of the conventional apparatus and the apparatus of the embodiment of the present invention. 1: cathode, 4, 5: magnet, 6, 9: O ring,
7, 10: Screw, 8: Connection pipe, 11: Lid, 1
2: Insulator, 13: Anode, 14: DC high voltage power supply,
15: Ammeter, 16: Vacuum chamber, 17: Cylindrical anode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測定空間内に配置される陽極と接地電極との間
に定電圧電源の出力を印加してその出力電流を測
定し、該測定出力を圧力に換算して表示する装置
において、前記陽極の交換又は切り換えに応じて
前記測定出力電流を異なつた換算で圧力表示する
手段を備えたことを特徴とするペニング真空計。
In a device that applies the output of a constant voltage power source between an anode and a ground electrode arranged in a measurement space, measures the output current, and displays the measured output by converting it into pressure, the anode is replaced or A Penning vacuum gauge characterized by comprising means for displaying pressure in different conversions of the measured output current according to switching.
JP19480683U 1983-12-16 1983-12-16 penning vacuum gauge Granted JPS60102647U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19480683U JPS60102647U (en) 1983-12-16 1983-12-16 penning vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19480683U JPS60102647U (en) 1983-12-16 1983-12-16 penning vacuum gauge

Publications (2)

Publication Number Publication Date
JPS60102647U JPS60102647U (en) 1985-07-12
JPH0138512Y2 true JPH0138512Y2 (en) 1989-11-17

Family

ID=30418606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19480683U Granted JPS60102647U (en) 1983-12-16 1983-12-16 penning vacuum gauge

Country Status (1)

Country Link
JP (1) JPS60102647U (en)

Also Published As

Publication number Publication date
JPS60102647U (en) 1985-07-12

Similar Documents

Publication Publication Date Title
US20060012382A1 (en) Modular voltage sensor
US4967157A (en) Method and circuit for extending the range of a cold cathode discharge vacuum gauge
US5144247A (en) Method and apparatus for reducing IR error in cathodic protection measurements
US4672323A (en) Device for measuring the internal pressure of an operationally built built-in vacuum switch
JPH0138512Y2 (en)
US6701789B1 (en) Cold cathode vacuum gauging system
US4471309A (en) Vacuum detector
Hochuli et al. Erratum: Cold Cathodes for Possible Use in 6328 Å Single Mode He–Ne Gas Lasers
US3379967A (en) Vacuum gauge including a cold cathode ionization tube
US7800376B2 (en) Method and device for measuring ultrahigh vacuum
JP2606804Y2 (en) Power supply for cathode ray tube measurement and stray current measurement device for cathode ray tube
GB780828A (en) Improvements in or relating to electric glow discharge apparatus for measuring low gas-pressures
JPH1019711A (en) Cold cathode ionization gauge
RU2481562C2 (en) Ionisation vacuum gauge
US1229699A (en) High-potential-measuring device.
CN117554877A (en) Insulating oil dielectric strength tester calibrating device
KR920004498Y1 (en) Low vacuum measuring equipment
US3259772A (en) Cold cathode gauge for measuring vacuum
Benson et al. Influence of argon content on the characteristics of glow-discharge tubes
US3267377A (en) Measuring circuit for providing an output either linearly or logarithmically relatedto an input
JPS6339725Y2 (en)
Hackam Effects of electrode configuration and voltage polarity on the electrical breakdown of mercury vapour
SU871005A1 (en) Magnetic discharge manometer
Laurent et al. Distributed Sputter-Ion Pumps for use in Low Magnetic Fields
JPS636969B2 (en)