[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0137324B2 - - Google Patents

Info

Publication number
JPH0137324B2
JPH0137324B2 JP59164154A JP16415484A JPH0137324B2 JP H0137324 B2 JPH0137324 B2 JP H0137324B2 JP 59164154 A JP59164154 A JP 59164154A JP 16415484 A JP16415484 A JP 16415484A JP H0137324 B2 JPH0137324 B2 JP H0137324B2
Authority
JP
Japan
Prior art keywords
compound
silicon
liquid
room temperature
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59164154A
Other languages
Japanese (ja)
Other versions
JPS6197125A (en
Inventor
Hidehiko Tanaka
Kichizo Inomata
Ikuo Kurachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP59164154A priority Critical patent/JPS6197125A/en
Publication of JPS6197125A publication Critical patent/JPS6197125A/en
Publication of JPH0137324B2 publication Critical patent/JPH0137324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は炭化けい素(以下SiCと記載する)の
製造法に関する。更に詳しくは微細でBおよび/
またはAlを含有する易焼結性SiC粉末の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing silicon carbide (hereinafter referred to as SiC). For more details, please refer to B and/or
Alternatively, the present invention relates to a method for producing easily sinterable SiC powder containing Al.

SiC焼結体は硬度と強度が大きく、耐熱性に優
れ、化学的に安定であるから、耐摩機械部品、構
造用材、耐熱性材料等に広く利用されている。
SiC sintered bodies have high hardness and strength, excellent heat resistance, and are chemically stable, so they are widely used in wear-resistant mechanical parts, structural materials, heat-resistant materials, etc.

SiC粉末にはα,βの2つの結晶形がある。 SiC powder has two crystal forms: α and β.

従来技術 SiC粉末の製造方法としては、従来、(1)SiO2
Cの反応、(2)SiとCの反応、(3)Si化合物と炭化水
素からの気相合成法が知られているが、工業的に
は前記(1)の方法によつて製造されている。これは
高温における次のいずれかの反応による。
Conventional technology Conventionally known methods for producing SiC powder include (1) reaction of SiO 2 and C, (2) reaction of Si and C, and (3) gas phase synthesis from Si compounds and hydrocarbons. However, it is industrially produced by the method (1) above. This is due to one of the following reactions at high temperatures.

SiO2+3C→SiC+2CO(g) (1) SiO2+C→SiO(g)+CO(g) SiO(g)+2C→SiC+CO(g) (2) ただし、(g)はガス状物を表わす。 SiO 2 +3C→SiC+2CO(g) (1) SiO 2 +C→SiO(g)+CO(g) SiO(g)+2C→SiC+CO(g) (2) However, (g) represents a gaseous substance.

前記(2)の反応は、不均一な固体―気体反応であ
るため均質で粒径の均一な粉末が得難い。従つ
て、前記(1)の反応が利用されるが、(1)の反応を促
すためには、SiO2とCの混合を均一にすること
が必要である。
Since the reaction (2) is a non-uniform solid-gas reaction, it is difficult to obtain a homogeneous powder with uniform particle size. Therefore, the reaction (1) above is used, but in order to promote the reaction (1), it is necessary to uniformly mix SiO 2 and C.

高純度なSiC粉末は本来焼結が不可能でその焼
結には添加物が必要である。特にC,B,Alは
有効な焼結助剤である。添加物は粉末に均一に混
合されるか固溶されることが望ましい。このため
にSiC粉末を合成する時にBとAlを含有させてお
く方法が特開昭55―20268によつて提示された。
これは固体のけい素原料、炭素原料、B原料およ
びAl原料を混合し、加熱処理をし、BとAlを含
有するSiC粉末を得る方法である。しかし、この
方法ではSiC粉末合成の原料粉を物理的に混合す
るのみで分子的な均一状態が得られないために、
SiC合成時に前記(2)の反応が少なからず生じ、Al
とBを含有するが、粒径が均一で微細なSiC微粉
末を得ることが困難である欠点があり、焼結に際
しては粉砕が必要であつた。
High-purity SiC powder cannot be sintered, and additives are required for sintering. In particular, C, B, and Al are effective sintering aids. It is desirable that the additives be uniformly mixed or dissolved in the powder. For this purpose, a method of containing B and Al when synthesizing SiC powder was proposed in JP-A-55-20268.
This is a method in which solid silicon raw materials, carbon raw materials, B raw materials, and Al raw materials are mixed and heat treated to obtain SiC powder containing B and Al. However, this method only physically mixes the raw material powder for SiC powder synthesis, and it is not possible to obtain a molecularly homogeneous state.
During SiC synthesis, the reaction (2) above occurs to a considerable extent, and Al
However, it has the disadvantage that it is difficult to obtain fine SiC powder with uniform particle size, and pulverization is required during sintering.

発明の目的 本発明はこの問題点を解決すべくなされたもの
で、その目的はB,Alを含有し、均一で微小な
粒径をもち、粉砕や精製処理をすることなしに焼
結に供せられる易焼結性SiC粉末を合成する方法
を提供するにある。
Purpose of the Invention The present invention was made to solve this problem, and its purpose is to create a material containing B and Al, which has a uniform and minute particle size, and which can be used for sintering without pulverization or refining treatment. The present invention provides a method for synthesizing easily sinterable SiC powder.

発明の構成 本発明者らは、さきに、前記従来法の欠点を解
消する方法として、けい素と炭素とを含む原料を
非酸化性雰囲気で加熱して炭化けい素粉末を製造
するにあたり、原料として、常温で液状のけい素
化合物、官能基を有し加熱により炭素を生成する
液状有機化合物及び重合または架橋触媒を均一に
溶化させ、これを重合または架橋反応させて得ら
れたSi,O及びCを含む前駆体物質を用いること
を特徴とするβ型炭化けい素の製造方法を発明し
た。
Structure of the Invention First, the present inventors have developed a method for producing silicon carbide powder by heating a raw material containing silicon and carbon in a non-oxidizing atmosphere, as a method for solving the drawbacks of the conventional method. Si, O and We have invented a method for producing β-type silicon carbide, which is characterized by using a precursor material containing C.

これにより、極めて均一かつ微細な粒径を持
ち、粉砕や精製処理をすることなしに焼結に供し
得られる易焼結性β型炭化けい素粉末を得た。
As a result, an easily sinterable β-type silicon carbide powder was obtained which had an extremely uniform and fine particle size and could be subjected to sintering without pulverization or refining treatment.

しかし、この方法で得られたものは、焼結性を
更に良好にするためには焼結助剤を混合すること
を必要とする。
However, the products obtained by this method require the addition of a sintering aid to further improve the sinterability.

本発明者らは更に研究を重ねた結果、液状けい
素化合物と官能基を有し加熱により炭素を生成す
る常温で液状の有機化合物、これに溶液状もしく
は常温で液状のほう素化合物および/または溶液
状もしくは常温で液状のアルミニウム化合物とを
使用し、これらの混合物と少なくとも上記有機化
合物を重合または架橋させる触媒とを均一に溶化
させ、それによつて重合または架橋反応して生ず
る分子的に均一に混合されたSi,O,CとBおよ
び/またはAlとを含む物質をSiC前駆体物質とな
し、これを原料とすると、主に(1)の反応を経てB
および/またはAlを含有する均一な微粉のSiC粉
末が得られることが分つた。この粉末はBとAl
が微少量でも粉砕精製処理なしに焼結に供し得
た。またα,βのSiCの焼結体も製造し得られる
ことが分つた。この知見に基づき本発明を完成し
た。
As a result of further research, the present inventors found that a liquid silicon compound and an organic compound that has a functional group and is liquid at room temperature and that generates carbon when heated, and a boron compound that is liquid or a liquid at room temperature and/or A solution or an aluminum compound that is liquid at room temperature is used to uniformly solubilize the mixture and at least a catalyst for polymerizing or crosslinking the above organic compound, thereby producing a molecularly uniform polymerization or crosslinking reaction. If a substance containing mixed Si, O, C and B and/or Al is used as a SiC precursor material, and this is used as a raw material, B will mainly be produced through the reaction (1).
It has been found that uniform fine SiC powder containing Al and/or Al can be obtained. This powder is B and Al
Even a very small amount could be subjected to sintering without pulverization and refining treatment. It was also found that sintered bodies of α and β SiC can be produced. The present invention was completed based on this knowledge.

すなわち、本発明の要旨は、Bおよび/または
Alを含むSiC粉末を製造するにあたり、原料とし
て、常温で液状のけい素化合物および官能基を有
し加熱により炭素を生成する常温で液状の有機化
合物と、溶液状もしくは常温で液状のほう素化合
物および/または溶液状もしくは常温で液状のア
ルミニウム化合物と、少なくとも前記有機化合物
と均一に溶化する重合または架橋触媒とを混合
し、その混合液が重合または架橋反応して得られ
たSi,O,CとBおよび/またはAlを含む前駆
体物質を用いることを特徴とする易焼結性SiC粉
末の製造法にある。
That is, the gist of the present invention is that B and/or
In producing SiC powder containing Al, the raw materials are a silicon compound that is liquid at room temperature, an organic compound that is liquid at room temperature and has a functional group and generates carbon when heated, and a boron compound that is liquid at room temperature or in solution form. and/or Si, O, C obtained by mixing an aluminum compound that is in solution form or liquid at room temperature and a polymerization or crosslinking catalyst that uniformly dissolves at least the organic compound, and then polymerizing or crosslinking the mixed liquid. The present invention provides a method for producing easily sinterable SiC powder, characterized by using a precursor material containing B and/or Al.

本発明において使用する液状けい素化合物とし
ては、例えば、(1)けい酸アルカリ水溶液を酸分解
あるいは脱アルカリして得られたもの例えば水ガ
ラスの脱アルカリで得られたけい酸ポリマー、(2)
OH基を持つ有機化合物とけい酸のエステル、例
えばけい酸ポリマーをトリメチルシリル化して得
られる下記のような一群のポリマー、 (3)加水分解けい酸化合物と有機化合物または有機
金属化合物とのエステル、例えばエチルシリケー
などが挙げられる。
Examples of the liquid silicon compound used in the present invention include (1) a silicic acid polymer obtained by acid decomposition or dealkalization of an aqueous alkali silicate solution, for example, a silicic acid polymer obtained by dealkalization of water glass;
Esters of organic compounds with OH groups and silicic acid, such as the following group of polymers obtained by trimethylsilylation of silicic acid polymers, (3) Esters of hydrolyzed silicic acid compounds and organic compounds or organometallic compounds, such as ethyl silicate Examples include.

炭素源としての液状有機化合物としては、特に
残炭率が高く、触媒または加熱により重合または
架橋する有機化合物例えばフエノール樹脂、フラ
ン樹脂、ポリイミド、ポリウレタン、ポリアクリ
ロニトリル、ポリビニルアルコール、ポリ酢酸ビ
ニル、等の樹脂のモノマーやプレポリマーが好ま
しく、その他セルロース、しよ糖、ピツチ、ター
ル等も使用し得られる。
Examples of liquid organic compounds used as carbon sources include organic compounds that have a particularly high residual carbon content and can be polymerized or crosslinked by catalysts or heating, such as phenolic resins, furan resins, polyimides, polyurethanes, polyacrylonitrile, polyvinyl alcohol, and polyvinyl acetate. Resin monomers and prepolymers are preferred, and cellulose, sucrose, pitch, tar, and the like may also be used.

液状ほう素化合物としては、ほう素化合物、例
えばH3BO3,BPなどの溶液、または液状有機ほ
う素化合物、例えばほう酸エステルB(OC2H53
などがあげられる。
The liquid boron compound may be a solution of a boron compound such as H 3 BO 3 , BP, or a liquid organic boron compound such as borate ester B(OC 2 H 5 ) 3 ,
etc.

液状アルミニウム化合物としては、アルミニウ
ム化合物の溶液、例えばAlCl3,Al(OH)3の溶液
など、液状の有機アルミニウム化合物、例えばア
ルミニウムイソプロポキシド
〔(CH32CH2O〕3Alなど、があげられる。
Examples of the liquid aluminum compound include solutions of aluminum compounds, such as solutions of AlCl 3 and Al(OH) 3 , and liquid organic aluminum compounds, such as aluminum isopropoxide [(CH 3 ) 2 CH 2 O] 3 Al. can give.

液状けい素化合物と炭素源としての液状有機化
合物の混合比は、800〜1400℃での有機化合物の
残炭素量で換算して、CとSiの原子比が1<C/
Si<10、好ましくはC/Si3となるようにする
のがよい。合成した前駆体物質にCを残留させる
場合はC/Si>3とする。
The mixing ratio of the liquid silicon compound and the liquid organic compound as a carbon source is such that the atomic ratio of C and Si is 1<C/
It is preferable that Si<10, preferably C/Si3. When C remains in the synthesized precursor material, C/Si>3.

Bおよび/またはAlの混合量は合成されるSiC
粉末に含有すべき量によつて任意に選択できる
が、焼結用粉末としては原子量比で0.002<(Al+
B)/Si<0.05とするのが好ましい。
The mixing amount of B and/or Al is the SiC to be synthesized.
It can be selected arbitrarily depending on the amount to be contained in the powder, but as a powder for sintering, the atomic weight ratio is 0.002 < (Al+
B)/Si<0.05 is preferable.

前記の混合物と重合または架橋触媒を溶化さ
せ、重合または架橋反応させて固体を得る。液状
けい素化合物や炭素源としての液状有機化合物等
の粘度が高くて均一な混合が容易でないような場
合は、適当な溶媒を用いて粘度を下げるようにし
てもよい。
The above mixture and a polymerization or crosslinking catalyst are dissolved, and a polymerization or crosslinking reaction is performed to obtain a solid. If the viscosity of a liquid silicon compound or a liquid organic compound as a carbon source is so high that uniform mixing is difficult, the viscosity may be lowered by using an appropriate solvent.

重合、または架橋反応は、(1)官能基を有する有
機化合物と液状けい素化合物、液状ほう素化合
物、液状アルミニウム化合物の官能基間、(2)官能
基を有する液状有機化合物の官能基間において行
われる。
Polymerization or crosslinking reaction occurs between (1) the functional groups of an organic compound having a functional group and a liquid silicon compound, a liquid boron compound, or a liquid aluminum compound, and (2) between the functional groups of a liquid organic compound having a functional group. It will be done.

例えば、フエノール樹脂の重合反応 (1) (2) けい酸ポリマー中のシラノール基と有機化合
物のメチロール基との反応 (3) アルミニウムまたはほう素化合物中の水酸基
と有機化合物のメチロール基との反応 の反応のいずれかまたはすべての反応によつて固
体が形成される。
For example, polymerization reaction of phenolic resin (1) (2) Reaction between silanol groups in silicic acid polymers and methylol groups of organic compounds (3) Reaction between hydroxyl groups in aluminum or boron compounds and methylol groups in organic compounds A solid is formed by any or all of the reactions.

触媒としては重合または架橋反応に用いられる
触媒から選べばよく、例えば、塩酸、硫酸、ほう
酸等の鉱酸、ナトリウムエチラート等のアルカ
リ、有機過酸化物、有機スルホン酸類などが挙げ
られる。
The catalyst may be selected from catalysts used in polymerization or crosslinking reactions, and includes, for example, mineral acids such as hydrochloric acid, sulfuric acid, and boric acid, alkalis such as sodium ethylate, organic peroxides, and organic sulfonic acids.

前記比に混合したものに重合または架橋触媒を
混合し、硬化させた該混合物を不活性ガス雰囲気
中で600〜1000℃で処理すると、Si,O,CとB
および/またはAlを含有した均質な非晶物が得
られる。
When a polymerization or crosslinking catalyst is mixed with the mixture in the above ratio and the cured mixture is treated at 600 to 1000°C in an inert gas atmosphere, Si, O, C and B
and/or a homogeneous amorphous material containing Al is obtained.

この非晶物を非酸化性雰囲気、例えば真空、窒
素、ヘリウム、またはアルゴン中で、1400〜2000
℃に加熱処理するとSiCが得られる。前記加熱処
理温度は1600〜1800℃前後が好ましく、1400℃よ
り低いと反応がおそく、また2000℃を超える温度
を必要としないので、そのような温度では経済的
に不利となる。
This amorphous material is heated in a non-oxidizing atmosphere such as vacuum, nitrogen, helium, or argon at a temperature of 1400 to 2000
SiC is obtained by heat treatment at ℃. The heat treatment temperature is preferably about 1,600 to 1,800°C; if it is lower than 1,400°C, the reaction is slow, and since a temperature exceeding 2,000°C is not required, such a temperature is economically disadvantageous.

合成されるSiC粉末は微細で均一は粒径分布を
もつSiC粉末で、粉砕や精製処理することなしに
焼結に供し得る易焼結性SiC粉末である。また粉
末の結晶形はBを含有するSiC粉末はβ(3C)型、
Alを多量に含有する粉末は4Hのα型になる傾向
を有す。なお加えたBまたはAlの全部または一
部はSiC中に固溶する。その固溶量は合成温度に
依存する。
The synthesized SiC powder has a fine and uniform particle size distribution, and is an easily sinterable SiC powder that can be subjected to sintering without pulverization or refining treatment. In addition, the crystal form of the powder is β (3C) type for SiC powder containing B,
Powders containing a large amount of Al tend to be in the 4H α form. All or part of the added B or Al is dissolved in SiC. The amount of solid solution depends on the synthesis temperature.

発明の効果 本発明の方法によると、均一かつ微細な粒径を
持つ焼結助剤を含有したSiC粉末が得られ、従来
法におけるような粉砕や精製処理を施すことを必
要とせず、そのまま焼結に供し得られる。更に
α,β―のSiC焼結体も製造し得られる優れた効
果を有する。
Effects of the Invention According to the method of the present invention, SiC powder containing a sintering aid having a uniform and fine particle size can be obtained, and sintering as it is without the need for pulverization or refining treatment as in conventional methods. It can be served at the end. Furthermore, α and β-SiC sintered bodies can also be manufactured, with excellent effects.

実施例 1 液状けい素化合物としてSiO2を41重量%含有
するエチルシリケートと官能基を持つ液状有機化
合物として残炭率が40%のレゾール型フエノール
樹脂、液状ほう素化合物としてほう酸エステルB
(OC2H53を用いた。
Example 1 Ethyl silicate containing 41% by weight of SiO 2 as a liquid silicon compound, resol type phenolic resin with a residual carbon content of 40% as a liquid organic compound with a functional group, and boric acid ester B as a liquid boron compound
(OC 2 H 5 ) 3 was used.

エチルシリケート61.6重量%、フエノール樹脂
37.6重量%、ほう酸エステル0.7重量%の混合溶
液を酸触媒下で硬化させ、透明な樹脂状固体を得
た。これを窒素雰囲気下で昇温速度10℃/minで
1000℃まで加熱した。得られた固体は均質でち密
な固体で、CとSiの含有比は残炭率からC/Si=
3と考えられる。この固体の粉末X線図は第1図
の通りであつた。粉末X線回折結果では炭素系物
質の非晶質特有のブロードな回折のみ現れ、他の
回折線が検出されなかつた。これより固体はSi,
O,CとBを含む非晶質固体であることがわか
る。さらにこれをアルゴン雰囲気下昇温速度30
℃/minで1800℃に加熱し30分保持し、Bを含有
するβ―SiC粉末を得た。その粉末の性質は次に
示す通りであつた。
Ethyl silicate 61.6% by weight, phenolic resin
A mixed solution of 37.6% by weight and 0.7% by weight of boric acid ester was cured under an acid catalyst to obtain a transparent resinous solid. This was heated at a heating rate of 10℃/min under a nitrogen atmosphere.
Heated to 1000℃. The obtained solid was a homogeneous and dense solid, and the content ratio of C and Si was determined from the residual carbon ratio as C/Si=
It is considered to be 3. The powder X-ray diagram of this solid was as shown in FIG. In the powder X-ray diffraction results, only the broad diffraction characteristic of amorphous carbon-based materials appeared, and no other diffraction lines were detected. From this, the solid is Si,
It can be seen that it is an amorphous solid containing O, C and B. Furthermore, this was heated at a heating rate of 30% under an argon atmosphere.
The mixture was heated to 1800°C at a rate of °C/min and held for 30 minutes to obtain β-SiC powder containing B. The properties of the powder were as follows.

真比重 3.19〜3.21g/cm3 結晶形 立方晶(3C)単相 平均粒径 0.08μm 比表面積 15m2/g B含有量 0.28重量% 不純物 Al 0.03重量% Fe 0.03 〃 C 0.5 〃 色 淡黄色 また、その粉末X線回折図は第2図、粉末の形
状は第3図の通りであつた。第2図から、α相を
含まないβ―SiCであること、また第3図から粒
径の均一な微粉であることが分かる。この粉末に
2重量%の炭素を加えて成形し、アルゴンガス中
2100℃で常圧焼結および20MPaで加圧焼結した。
常圧焼結では密度が3.10g/cm3、加圧焼結では
3.15g/cm3までち密化した。
True specific gravity 3.19-3.21g/cm 3 crystal form Cubic (3C) single phase average particle size 0.08μm Specific surface area 15m 2 /g B content 0.28% by weight Impurities Al 0.03% by weight Fe 0.03 〃 C 0.5 〃 Color Pale yellow The powder X-ray diffraction pattern was as shown in Figure 2, and the shape of the powder was as shown in Figure 3. It can be seen from Figure 2 that it is β-SiC containing no α phase, and from Figure 3 that it is a fine powder with a uniform particle size. 2% by weight of carbon was added to this powder and molded in argon gas.
Normal pressure sintering was performed at 2100℃ and pressure sintering was performed at 20MPa.
Pressure sintering has a density of 3.10g/cm 3 , and pressure sintering has a density of 3.10g/cm 3 .
It was densified to 3.15g/cm 3 .

実施例 2 実施例1と同様のエチルシリケート、フエノー
ル樹脂および水酸化アルミニウムを用いた。エチ
ルシリケート61.4重量%、フエノール樹脂37.6重
量%、水酸化アルミニウム1.0重量%を酸触媒下
で均一に溶化させた後に硬化させて、均質な樹脂
状固体を得た。これを、実施例1と同様に処理
し、Alを含有するα―SiC粉末を得た。粉末の性
質は次に示す通りであつた。
Example 2 The same ethyl silicate, phenolic resin, and aluminum hydroxide as in Example 1 were used. 61.4% by weight of ethyl silicate, 37.6% by weight of phenol resin, and 1.0% by weight of aluminum hydroxide were uniformly dissolved under an acid catalyst and then cured to obtain a homogeneous resinous solid. This was treated in the same manner as in Example 1 to obtain α-SiC powder containing Al. The properties of the powder were as shown below.

真比重 3.19〜3.21g/cm3 結晶形 α(4H)単相 平均粒径 0.20μm 比表面積 8.3m2/g Al含有量 2.0重量% 不純物 Fe 0.03重量% C 0.04 〃 色 青緑色 粉末のX線回折図形を第4図に示す。これから
4H形のα―SiCであることがわかる。粒子形状は
実施例1と同様であつた。得られた粉末に、2重
量%の炭素を加え20MPa、2100℃で加圧焼結し
たところ3.11g/cm3まで焼結した。
True specific gravity 3.19-3.21g/cm 3 Crystal form α (4H) single phase average particle size 0.20μm Specific surface area 8.3m 2 /g Al content 2.0% by weight Impurities Fe 0.03% by weight C 0.04 〃 Color Blue-green X-ray of powder The diffraction pattern is shown in FIG. from now
It can be seen that it is 4H type α-SiC. The particle shape was the same as in Example 1. To the obtained powder, 2% by weight of carbon was added and pressure sintered at 20 MPa and 2100°C, resulting in a powder of 3.11 g/cm 3 .

実施例 3 水ガラス(けい酸4号)を塩酸とテトラヒドロ
フランで公知の方法により脱アルカリと抽出を行
つて液状けい酸化合物を得た。この液状けい酸化
合物をシリカに換算して50g、フエノール樹脂90
g、ほう酸エステル1.3gおよびアルミニウムイ
ソプロポキシドAl(OCH2CH2CH331.2gを酸触
媒下で硬化させ、樹脂状固体を得た。これを実施
例1と同様に1000℃および1800℃で熱処理し、
AlとBを含有するSiC粉末を得た。粉末の性質は
次に示す通りであつた。
Example 3 Water glass (silicic acid No. 4) was dealkalized and extracted using hydrochloric acid and tetrahydrofuran by a known method to obtain a liquid silicic acid compound. 50g of this liquid silicic acid compound converted to silica, 90g of phenol resin
g, 1.3 g of boric acid ester and 1.2 g of aluminum isopropoxide Al(OCH 2 CH 2 CH 3 ) 3 were cured under an acid catalyst to obtain a resinous solid. This was heat treated at 1000°C and 1800°C in the same manner as in Example 1,
SiC powder containing Al and B was obtained. The properties of the powder were as shown below.

真比重 3.19〜3.21g/cm3 結晶形 β(3C)とα(4H)の混合相 平均粒径 0.15μm 比表面積 9.6m2/g Al含有量 0.38重量% B含有量 0.20重量% C含有量 2.1重量% 色 灰色 得られた粉末を20MPa、2150℃で加圧焼結し
たところ密度が3.07g/cm3までち密化した。
True specific gravity 3.19-3.21 g/cm 3 crystal form Mixed phase of β (3C) and α (4H) Average particle size 0.15 μm Specific surface area 9.6 m 2 /g Al content 0.38 wt% B content 0.20 wt% C content 2.1% by weight Color: Gray The obtained powder was sintered under pressure at 20MPa and 2150°C, and was densified to a density of 3.07g/cm 3 .

比較例 高純度の無定形シリカ微粉末とカーボンブラツ
クと(モル比で1:3.5)に、両者の合量に対し
て0.5重量%のほう酸と、1重量%のγ―アルミ
ナ微粉末を加えて混合し、黒鉛質容器に入れた。
これをアルゴンガス気流下で1800℃30分加熱し
て、SiCを合成した。得られた粉末は以下の様で
あつた。
Comparative example: To high-purity amorphous silica fine powder and carbon black (molar ratio 1:3.5), 0.5% by weight of boric acid and 1% by weight of γ-alumina fine powder were added to the total amount of both. Mixed and placed in a graphite container.
This was heated at 1800°C for 30 minutes under an argon gas stream to synthesize SiC. The obtained powder was as follows.

真比重 3.20〜3.21g/cm2 結晶形 3Cと4H 平均粒径 2.6μm 比表面積 4.1m2/g B含有量 0.13重量% Al含有量 0.16重量% 色 黒色 この粉末は粒径が大きいために焼結しなかつ
た。そこで、鉄製ボールミルで粉砕し、脱炭、精
製処理を行なつた。その結果、粒径が1.0μm以下
となり、実施例1と同様の方法で加圧焼結し、密
度3.12g/cm3の焼結体を得た。
True specific gravity 3.20-3.21g/cm 2Crystal form 3C and 4H Average particle size 2.6μm Specific surface area 4.1m 2 /g B content 0.13% by weight Al content 0.16% by weight Color black This powder is sintered due to its large particle size. I couldn't tie it. Therefore, it was pulverized in an iron ball mill, decarburized, and purified. As a result, the particle size was 1.0 μm or less, and pressure sintering was performed in the same manner as in Example 1 to obtain a sintered body with a density of 3.12 g/cm 3 .

実施例と比較例とから明らかなように、本発明
の方法によると、Alおよび/またはBを含んだ
易焼結性の微粉が得られるのに対し比較例の方法
においてはSiC粉末の粒径が大きいので、焼結の
ためには粉砕が必要である。本発明で分子的に均
一に混合されたSiCの原料を用いたため微粉の
SiCが合成される。
As is clear from the examples and comparative examples, according to the method of the present invention, easily sinterable fine powder containing Al and/or B can be obtained, whereas in the method of the comparative example, the particle size of the SiC powder is Because of the large size, pulverization is necessary for sintering. In the present invention, we used SiC raw materials that were molecularly uniformly mixed, so fine powder
SiC is synthesized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1で用いる1000℃で処
理したSiC前駆体物質の粉末X線回折図形、第2
図は実施例1で得たBを含有するSiC粉末のX線
回折図形、第3図は同粉末のSEM写真、第4図
は実施例2で得られたSiC粉末のX線回折図形を
示す。
Figure 1 shows the powder X-ray diffraction pattern of the SiC precursor material treated at 1000°C used in Example 1 of the present invention;
The figure shows an X-ray diffraction pattern of the SiC powder containing B obtained in Example 1, Fig. 3 shows an SEM photograph of the same powder, and Fig. 4 shows an X-ray diffraction pattern of the SiC powder obtained in Example 2. .

Claims (1)

【特許請求の範囲】 1 けい素および炭素と、ほう素および/または
アルミニウムを含む原料を非酸化性雰囲気で加熱
して、ほう素および/またはアルミニウムを含有
する炭化けい素粉末を製造するにあたり、原料と
して、常温で液状のけい素化合物および官能基を
有し加熱により炭素を生成する常温で液状の有機
化合物と、溶液状もしくは常温で液状のほう素化
合物および/または溶液状もしくは常温で液状の
アルミニウム化合物と、少なくとも前記有機化合
物と均一に溶化する重合または架橋触媒とを混合
し、その混合液が重合または架橋反応して得られ
たけい素、酸素、炭素とほう素および/またはア
ルミニウムを含む前駆体物質を用いることを特徴
とする易焼結性炭化けい素粉末の製造法。 2 前記けい素化合物がけい酸アルカリ水溶液の
酸分解または脱アルカリにより得られたものであ
る特許請求の範囲第1項記載の易焼結性炭化けい
素粉末の製造法。 3 前記けい素化合物が水酸基を有する有機化合
物とけい酸のエステルである特許請求の範囲第1
項記載の易焼結性炭化けい素粉末の製造法。 4 前記けい素化合物が加水分解性けい素化合物
と有機化合物または有機金属化合物とを反応させ
たエステルである特許請求の範囲第1項記載の易
焼結性炭化けい素粉末の製造法。 5 前記重合または架橋反応が、官能基を有し加
熱により炭素を生成する常温で液状の有機化合物
の前記触媒による重合反応または架橋反応である
特許請求の範囲第1項記載の易焼結性炭化けい素
粉末の製造法。 6 前記重合または架橋反応が、前記けい素化合
物、ほう素化合物あるいはアルミニウム化合物と
官能基を有し加熱により炭素を生成する常温で液
状の有機化合物の前記触媒による重合反応または
架橋反応である特許請求の範囲第1項記載の易焼
結性炭化けい素粉末の製造法。
[Claims] 1. In producing silicon carbide powder containing boron and/or aluminum by heating raw materials containing silicon and carbon and boron and/or aluminum in a non-oxidizing atmosphere, As raw materials, a silicon compound that is liquid at room temperature, an organic compound that is liquid at room temperature that has a functional group and generates carbon when heated, and a boron compound that is in solution or liquid at room temperature and/or a solution or liquid at room temperature. An aluminum compound is mixed with a polymerization or crosslinking catalyst that uniformly dissolves at least the organic compound, and the mixture contains silicon, oxygen, carbon, boron, and/or aluminum obtained by a polymerization or crosslinking reaction. A method for producing easily sinterable silicon carbide powder, characterized by using a precursor substance. 2. The method for producing easily sinterable silicon carbide powder according to claim 1, wherein the silicon compound is obtained by acid decomposition or dealkalization of an aqueous alkali silicate solution. 3. Claim 1, wherein the silicon compound is an ester of an organic compound having a hydroxyl group and silicic acid.
A method for producing easily sinterable silicon carbide powder as described in . 4. The method for producing easily sinterable silicon carbide powder according to claim 1, wherein the silicon compound is an ester obtained by reacting a hydrolyzable silicon compound with an organic compound or an organometallic compound. 5. Easily sinterable carbonization according to claim 1, wherein the polymerization or crosslinking reaction is a polymerization reaction or crosslinking reaction using the catalyst of an organic compound that has a functional group and is liquid at room temperature and generates carbon when heated. Method for manufacturing silicon powder. 6. A patent claim in which the polymerization or crosslinking reaction is a polymerization reaction or crosslinking reaction using the catalyst of an organic compound that has a functional group with the silicon compound, boron compound, or aluminum compound and is liquid at room temperature and generates carbon when heated. A method for producing easily sinterable silicon carbide powder according to item 1.
JP59164154A 1984-08-03 1984-08-03 Manufacture of easily sinterable silicon carbide powder Granted JPS6197125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164154A JPS6197125A (en) 1984-08-03 1984-08-03 Manufacture of easily sinterable silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164154A JPS6197125A (en) 1984-08-03 1984-08-03 Manufacture of easily sinterable silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS6197125A JPS6197125A (en) 1986-05-15
JPH0137324B2 true JPH0137324B2 (en) 1989-08-07

Family

ID=15787761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164154A Granted JPS6197125A (en) 1984-08-03 1984-08-03 Manufacture of easily sinterable silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS6197125A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168514A (en) * 1985-01-17 1986-07-30 Bridgestone Corp Production of easily sinterable silicon carbide
NL1028692C2 (en) 2005-04-04 2006-10-09 Pagter & Partners Int Bv Water-filling holder for flowers.
JP2007297086A (en) * 2006-04-28 2007-11-15 Tokyo Electric Power Co Inc:The Container for coating
JP2007307536A (en) * 2006-05-19 2007-11-29 Koyo Engineering Co Ltd Coating material container for application
JP5152654B2 (en) * 2008-05-30 2013-02-27 独立行政法人物質・材料研究機構 Aluminum silicon carbide powder and method for producing the same
CN108840681B (en) * 2018-08-16 2022-01-14 景德镇陶瓷大学 Nano boron carbide and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520268A (en) * 1978-07-31 1980-02-13 Kagaku Gijutsucho Mukizai Producing silicon carbide powder easy to be sintered
JPS5899112A (en) * 1981-12-09 1983-06-13 Onoda Cement Co Ltd Manufacture of high purity fine silicon carbide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520268A (en) * 1978-07-31 1980-02-13 Kagaku Gijutsucho Mukizai Producing silicon carbide powder easy to be sintered
JPS5899112A (en) * 1981-12-09 1983-06-13 Onoda Cement Co Ltd Manufacture of high purity fine silicon carbide

Also Published As

Publication number Publication date
JPS6197125A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US4818732A (en) High surface area ceramics prepared from organosilane gels
Li et al. Synthesis of SiC precursors by a two-step sol–gel process and their conversion to SiC powders
JP2584589B2 (en) Monolith of carbon-containing black glass
US5242866A (en) Carbon-containing black glass monoliths
JPS5918183A (en) Manufacture of silicon carbide product
CA1146598A (en) Sintered ceramic body and process for production thereof
CN110467467B (en) Bulk silicon carbide polymer precursor ceramic and blending and cracking preparation method
US5120689A (en) Coked product containing domains of oxides
Preiss et al. Thermal treatment of binary carbonaceous/zirconia gels and formation of Zr (C, O, N) solid solutions
JPH0137324B2 (en)
KR102149834B1 (en) A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process
Narisawa et al. Synthesis of ultrafine SiC powders from carbon-silica hybridized precursors with carbothermic reduction
US4742029A (en) Process for producing a sintered cubic silicon carbide
JP4234800B2 (en) Method for producing silicon carbide powder
JPH0142886B2 (en)
JPH0662286B2 (en) Method for producing silicon carbide
JPS61132509A (en) Production of silicon carbide
JPS638069B2 (en)
JPS61168514A (en) Production of easily sinterable silicon carbide
JPS61168515A (en) Production of silicon carbide
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPS62212213A (en) Production of beta-silicon carbide
JPH05254945A (en) Production of reaction-sintered ceramic
JP2567041B2 (en) Method for producing ultrafine aluminum nitride particles
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term