JPH01310112A - Cogenerating plant using combustion engine - Google Patents
Cogenerating plant using combustion engineInfo
- Publication number
- JPH01310112A JPH01310112A JP481688A JP481688A JPH01310112A JP H01310112 A JPH01310112 A JP H01310112A JP 481688 A JP481688 A JP 481688A JP 481688 A JP481688 A JP 481688A JP H01310112 A JPH01310112 A JP H01310112A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- back pressure
- turbine
- exhaust
- recovery boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 11
- 238000011084 recovery Methods 0.000 claims description 27
- 239000007789 gas Substances 0.000 description 31
- 238000010248 power generation Methods 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ガスタービン、ディーゼル機関等の燃焼機関
(本明細書ではガスタービン、ディーゼル機関等を総称
して燃焼機関と呼ぶことにする)を用いた熱電併給プラ
ントに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to combustion engines such as gas turbines and diesel engines (in this specification, gas turbines, diesel engines, etc. are collectively referred to as combustion engines). Regarding a combined heat and power plant using.
従来ガスタービン熱電併給プラントでは、ガスタービン
と抽気復水蒸気タービンとの組合せは実在している。即
ち、ガスタービンの排気側に排熱回収ボイラが設置され
、その発生蒸気が抽気復水タービンへ導かれて発電を行
うと共に、上記抽気復水タービンとは別の熱負荷供給源
へ発生蒸気の供給を可能にしたシステムがある。In conventional gas turbine combined heat and power plants, combinations of gas turbines and extraction condensing steam turbines exist. That is, an exhaust heat recovery boiler is installed on the exhaust side of the gas turbine, and the generated steam is guided to the extraction condensation turbine to generate electricity, and the generated steam is also sent to a heat load supply source different from the extraction condensation turbine. There is a system that has made this supply possible.
上記従来の熱電併給システムのガスタービンと抽気復水
蒸気タービンとの組合せでは、蒸気タービンの他にコン
デンサー系統、海水循環系統等を含むためコストが高く
、小規模の熱電併給プラントにこれを採用する場合には
この点が弱点となり採用が困難であった。The combination of a gas turbine and an extraction-condensing steam turbine in the conventional combined heat and power system described above is expensive because it includes a condenser system, a seawater circulation system, etc. in addition to the steam turbine, and this is not recommended for small-scale combined heat and power plants. This point was a weakness and it was difficult to adopt it.
したがって、小規模の熱電併給プラントでは、これらの
系統を必要としない背圧蒸気タービンを組み合せ、コス
トを低減することが必要である。Therefore, in small-scale combined heat and power plants, it is necessary to reduce costs by combining back pressure steam turbines that do not require these systems.
また従来技術としては、チエンサイクルと称され、排ガ
スボイラで発生した蒸気をガスタービンへ導入し熱電バ
ランスを取るものもあるが、必要蒸気力高圧の場合には
、減圧してガスタービンへ導入するためロスが大きく効
率が悪くなる。また低圧の場合には、ガスタービンへ蒸
気が導入できないなどの排ガスボイラでの発生蒸気条件
により制約を受けることがある。In addition, there is a conventional technology known as a chain cycle in which steam generated in an exhaust gas boiler is introduced into a gas turbine to balance heat and electricity, but when the required steam power is at high pressure, the pressure is reduced and the steam is introduced into the gas turbine. This results in large losses and poor efficiency. Furthermore, in the case of low pressure, there may be restrictions due to the steam generation conditions in the exhaust gas boiler, such as the inability to introduce steam to the gas turbine.
本発明はこれらの問題点を解決することを課題とするも
のである。The present invention aims to solve these problems.
本発明は、ガスタービン、ディーゼル機関等を用いた熱
電併給プラントにおいて、コンデンサー系統、海水循環
系統等を必要とせず、かつ任意の蒸気条件に対応可能な
背圧蒸気タービンをガスタービンその他の燃焼機関発電
機と同軸に配置すると共に1上記燃焼機関の排気後流に
設けられた排熱回収ボイラ、同排熱回収ボイラの発生蒸
気を上記背圧蒸気タービンに導入するライン、上記背圧
蒸気タービン出口の蒸気を排熱回収ボイラ出口ダクトに
排出するライン及び上記排熱回収ボイラの発生蒸気を上
記背圧蒸気タービンとは別の熱負荷へ導入するラインを
備えるようにした。The present invention provides a back-pressure steam turbine that does not require a condenser system, a seawater circulation system, etc. and can handle any steam conditions in a combined heat and power plant using a gas turbine, diesel engine, etc. an exhaust heat recovery boiler disposed coaxially with the generator and provided downstream of the exhaust gas of the combustion engine; a line for introducing steam generated by the exhaust heat recovery boiler into the back pressure steam turbine; and an outlet of the back pressure steam turbine. A line for discharging the steam from the exhaust heat recovery boiler to an outlet duct of the exhaust heat recovery boiler and a line for introducing the steam generated by the exhaust heat recovery boiler to a heat load other than the back pressure steam turbine are provided.
本発明においては、排熱回収ボイラで発生した蒸気は、
電力負荷と他の熱負荷に応じて蒸、気タービン及び他の
熱負荷とに配分されるが、ガスタービン等の燃焼機関発
電機と同軸に配置した背圧蒸気タービンはコンデンサー
系統、海水循環系統、給水系統等を必要とせず安価なプ
ラントを構成することができる。また、上記背圧蒸気タ
ービンはガスタービン後流に設置された排熱回収ボイラ
の蒸気条件に応じて効率の良い設計のものを採用するこ
とができる。In the present invention, the steam generated in the exhaust heat recovery boiler is
The power load and other heat loads are distributed to steam, air turbines, and other heat loads, but the back pressure steam turbine, which is placed coaxially with a combustion engine generator such as a gas turbine, has a condenser system and a seawater circulation system. , an inexpensive plant can be constructed without requiring a water supply system or the like. Furthermore, the back pressure steam turbine can be designed to be highly efficient depending on the steam conditions of the exhaust heat recovery boiler installed downstream of the gas turbine.
また、更に背圧蒸気タービンでは排熱回収ボイラより導
入した蒸気のエネルギを十分に回収することができ、そ
の結果低圧となった排気は直接排熱回収ボイラ出口ダク
トに排出される。これによってプラントの熱効率を高め
装置を簡単にすることができる。Furthermore, the back pressure steam turbine can sufficiently recover the energy of the steam introduced from the heat recovery boiler, and the resulting low pressure exhaust gas is directly discharged to the outlet duct of the heat recovery boiler. This increases the thermal efficiency of the plant and simplifies the equipment.
本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.
5はガスタービ/でありて、燃焼用空気は圧縮機2の空
気入口部lより導入され、同圧縮機2で圧縮され、燃焼
器4へ至る。同時に燃料は燃焼器4に供給されて燃焼し
、高温・高圧燃焼ガスとなってガスタービン5に導かれ
て仕事を行い、同軸に連結された発電機6を回転させて
電気出力を得る。一方ガスタービン5を出た燃焼排ガス
は排熱回収ボイラ9に導かれここで熱交換を行う。Reference numeral 5 denotes a gas turbine, in which combustion air is introduced from the air inlet l of the compressor 2, compressed by the compressor 2, and then delivered to the combustor 4. At the same time, the fuel is supplied to the combustor 4 and combusted, becoming a high-temperature, high-pressure combustion gas that is guided to the gas turbine 5 to perform work and rotate the coaxially connected generator 6 to obtain electrical output. On the other hand, the combustion exhaust gas exiting the gas turbine 5 is led to an exhaust heat recovery boiler 9, where heat exchange is performed.
排熱回収ボイラ9は、第1図に示すように節炭器、蒸発
器及び過熱器を備え給水ポンプによって給水が供給され
、燃焼排ガスとの熱交換によって同排熱回収ボイラ9で
発生した蒸気は、熱電、Sランスに応じて、図示しない
熱負荷に連絡された熱源蒸気供給ライン11と発電用蒸
気2イン稔に配分される。この際、蒸気量を多く又は蒸
気温度を高くする目的でダクトノζ−す7において助燃
料8を燃焼するようkしてもよい。As shown in Fig. 1, the exhaust heat recovery boiler 9 is equipped with a energy saver, an evaporator, and a superheater, and is supplied with water by a water supply pump. is distributed to a heat source steam supply line 11 connected to a heat load (not shown) and a power generation steam 2-inch line according to the thermoelectric and S lances. At this time, the auxiliary fuel 8 may be combusted in the duct nozzle 7 for the purpose of increasing the amount of steam or increasing the steam temperature.
背圧蒸気タービン13はガスタービン発電機6と同軸に
設置され、また、上記発電用蒸気ライン12は同背圧蒸
気タービン13に連絡されていて、排熱回収ボイラ9よ
りの蒸気は同背圧蒸気タービンに導入されて仕事を行い
、発電機6より電気出力を得る。低圧となった背圧蒸気
タービン13出口の蒸気は、蒸気排出ライン14を経て
排熱回収ボイラの排ガスダク)15に排出され、煙突1
6へ導かれる。The back pressure steam turbine 13 is installed coaxially with the gas turbine generator 6, and the power generation steam line 12 is connected to the back pressure steam turbine 13, so that the steam from the exhaust heat recovery boiler 9 is supplied with the same back pressure. It is introduced into a steam turbine and performs work, and an electric output is obtained from the generator 6. The low-pressure steam at the outlet of the back pressure steam turbine 13 is discharged through the steam exhaust line 14 to the exhaust gas duct 15 of the exhaust heat recovery boiler, and then to the chimney 1.
Leads to 6.
なお、上記した背圧蒸気タービン13と他の熱負荷とへ
の蒸気の配分は、必要とする電力負荷と他の熱負荷との
値によって決定され、その制御は例えば背圧蒸気タービ
ン13のガバナによる蒸気量の調整によって行うことが
できる。Note that the distribution of steam between the back pressure steam turbine 13 and other heat loads described above is determined by the values of the required electric power load and other heat loads, and is controlled by, for example, the governor of the back pressure steam turbine 13. This can be done by adjusting the amount of steam.
本実施例は以上の通り、ガスタービンの排気を利用して
排熱回収ボイラ9において蒸気を発生させてこれを発電
及び他の熱負荷用として利用するが、コンデンサー系統
、海水循環系統、給水系統等を必要としない背圧蒸気タ
ービン13を発電機6と同軸に配置することによって、
安価なプラントを構成することができる。As described above, in this embodiment, the exhaust gas of the gas turbine is used to generate steam in the exhaust heat recovery boiler 9 and this is used for power generation and other heat loads. By arranging the back pressure steam turbine 13 coaxially with the generator 6, which does not require
An inexpensive plant can be constructed.
また、背圧蒸気タービン13においては排熱回収ボイラ
9の発生蒸気が十分に利用されて排気が低圧となり、ま
たこのようにして低圧となった排気を直接排熱回収ボイ
ラ9の排出ダクト15に排出することによって装置が簡
単となり建設コストを下げることができる。Furthermore, in the back pressure steam turbine 13, the steam generated by the exhaust heat recovery boiler 9 is fully utilized to lower the pressure of the exhaust gas, and the exhaust gas thus reduced in pressure is directly sent to the exhaust duct 15 of the exhaust heat recovery boiler 9. By discharging it, the equipment becomes simpler and construction costs can be lowered.
また、更に、背圧蒸気タービン13は、ガスタービン5
の排気を受ける排熱回収ボイラの蒸気条件に応じて効率
の良いものを採用することができ、プラントの熱効率を
向上させることができる。Furthermore, the back pressure steam turbine 13 includes a gas turbine 5
According to the steam conditions of the waste heat recovery boiler that receives the exhaust gas, a highly efficient one can be adopted, and the thermal efficiency of the plant can be improved.
本発明は以上説明したように、コンデンサー系統、海水
循環系統等を必要としない背圧蒸気タービンを利用して
いるために、安価なプラントが構成できると共に、排熱
回収ボイラの発生蒸気条件に適した背圧蒸気タービンを
設置することができ、かつ排熱回収ボイラの蒸気は十分
背圧蒸気タービンで利用されて低圧となり、これが排熱
回収ボイラの出口ダクトに排出するようにしているので
装置が簡単で高効率のプラントを構成することができる
。As explained above, the present invention uses a back-pressure steam turbine that does not require a condenser system, a seawater circulation system, etc., so it is possible to construct an inexpensive plant and is suitable for the steam conditions generated by an exhaust heat recovery boiler. In addition, the steam from the heat recovery boiler is sufficiently utilized by the back pressure steam turbine to become low pressure, which is then discharged to the outlet duct of the heat recovery boiler, so that the equipment is A simple and highly efficient plant can be constructed.
第1図は本発明の一実施例としてのガスタービン発電機
を用いた熱電併給プラントの系統図である。
2・・・圧縮機、 5・・・ガスタービン、6
・・・発電機、 7・・・ダクトバーナ、9・
・・排熱回収ボイラ、11・・・熱源蒸気ライン、12
・・・発電用蒸気ライン、13・・・背圧蒸気タービン
、14・・・蒸気排出ライン、
15・・・排熱回収ボイラの排ガスダクト、16・・・
煙突。FIG. 1 is a system diagram of a combined heat and power plant using a gas turbine generator as an embodiment of the present invention. 2... Compressor, 5... Gas turbine, 6
... Generator, 7... Duct burner, 9.
...Exhaust heat recovery boiler, 11...Heat source steam line, 12
...Steam line for power generation, 13...Back pressure steam turbine, 14...Steam exhaust line, 15...Exhaust gas duct of exhaust heat recovery boiler, 16...
chimney.
Claims (1)
気タービン、上記燃焼機関の排気後流に設けられた排熱
回収ボイラ、同排熱回収ボイラの発生蒸気を上記背圧蒸
気タービンに導入するライン、上記背圧蒸気タービン出
口の蒸気を排熱回収ボイラ出口ダクトに排出するライン
及び上記排熱回収ボイラの発生蒸気を上記背圧蒸気ター
ビンとは別の熱負荷へ導入するラインを備えたことを特
徴とする燃焼機関を用いた熱電併給プラント。A combustion engine generator, a back pressure steam turbine arranged coaxially with the generator, an exhaust heat recovery boiler installed in the wake of the exhaust of the combustion engine, and the steam generated by the exhaust heat recovery boiler is transferred to the back pressure steam turbine. A line for introducing the steam at the outlet of the back pressure steam turbine to an outlet duct of the exhaust heat recovery boiler, and a line for introducing the steam generated by the exhaust heat recovery boiler to a heat load different from the back pressure steam turbine. A combined heat and power plant that uses a combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP481688A JPH01310112A (en) | 1988-01-14 | 1988-01-14 | Cogenerating plant using combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP481688A JPH01310112A (en) | 1988-01-14 | 1988-01-14 | Cogenerating plant using combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01310112A true JPH01310112A (en) | 1989-12-14 |
Family
ID=11594257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP481688A Pending JPH01310112A (en) | 1988-01-14 | 1988-01-14 | Cogenerating plant using combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01310112A (en) |
-
1988
- 1988-01-14 JP JP481688A patent/JPH01310112A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6644011B2 (en) | Advanced Cheng Combined Cycle | |
EP1044321B1 (en) | Gas turbine engines connected in series | |
US6715294B2 (en) | Combined open cycle system for thermal energy conversion | |
EP1164254A3 (en) | Optimized steam turbine peaking cycles utilizing steam bypass and related process | |
DE59208086D1 (en) | Combined gas / steam power plant | |
JPH10184315A (en) | Gas turbine generating device | |
EP0900921A3 (en) | Hydrogen burning turbine plant | |
EP1285151B1 (en) | Method and apparatus for power augmentation for gas turbine power cycles | |
EP0902168A2 (en) | Method and arrangement for a combi power plant | |
WO1997031184A1 (en) | Hydrogen fueled power plant with recuperation | |
RU2199020C2 (en) | Method of operation and design of combination gas turbine plant of gas distributing system | |
RU2747704C1 (en) | Cogeneration gas turbine power plant | |
RU2727274C1 (en) | Cogeneration gas-turbine power plant | |
JPH01310112A (en) | Cogenerating plant using combustion engine | |
JP2004169696A (en) | Composite power generation facility | |
RU2076929C1 (en) | Peak power generation process and combined-cycle plant for its implementation | |
JP2002242700A (en) | Ultra-turbine | |
JPH10325336A (en) | Gas turbine power generating system | |
RU2139430C1 (en) | Combined-cycle plant | |
JPS6332110A (en) | Hydrogen and oxygen fired steam turbine plant | |
JP2751837B2 (en) | Two-fluid cycle gas turbine | |
JPH066908B2 (en) | Cogeneration facility | |
RU2272914C1 (en) | Gas-steam thermoelectric plant | |
RU2775732C1 (en) | Oxygen-fuel power plant | |
RU2259485C1 (en) | Main electric and heating line with closed thermal system |