[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01306431A - Production of substrate for composite material consisting of polybenzoxazole fiber - Google Patents

Production of substrate for composite material consisting of polybenzoxazole fiber

Info

Publication number
JPH01306431A
JPH01306431A JP13555588A JP13555588A JPH01306431A JP H01306431 A JPH01306431 A JP H01306431A JP 13555588 A JP13555588 A JP 13555588A JP 13555588 A JP13555588 A JP 13555588A JP H01306431 A JPH01306431 A JP H01306431A
Authority
JP
Japan
Prior art keywords
composite material
fibers
groups
polybenzoxazole
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13555588A
Other languages
Japanese (ja)
Inventor
Hideaki Tamaya
玉屋 英昭
Kunio Kondo
近土 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13555588A priority Critical patent/JPH01306431A/en
Publication of JPH01306431A publication Critical patent/JPH01306431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain the subject substrate, excellent in adhesion to matrix resins and capable of providing a composite material excellent in strength, etc., by treating the surface of a polybenzoxazole fiber or molded product thereof with a plasma, then applying and reacting a surface treating agent consisting of a specific compound therewith. CONSTITUTION:The surface of a polybenzoxazole fiber (preferably containing >=80wt.% recurring units expressed by formula I or II) or a molded product thereof is treated with a plasma and then a surface treating agent consisting of a compound (e.g., glycidyl methacrylate) having a group (preferably mercapto group) reactive with the above-mentioned fiber surface or a compound having a group (preferably amino group, etc.,) reactive with an epoxy resin which is a matrix resin is applied and reacted therewith (preferably by heating). The unreacted surface treating agent is preferably removed by washing with water, etc., to afford the objective substrate, excellent in elastic modulus, water and fatigue resistance, etc., and capable of providing a composite material suitable as sports tools, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エポキシ樹脂をマトリックスとする複合材料
に用いられるポリベンゾオキサゾール系繊維から成る複
合材料用基材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a base material for a composite material made of polybenzoxazole fibers used in a composite material having an epoxy resin as a matrix.

〔従来の技術〕[Conventional technology]

工業的に実用化されている複合材料用基材としては、ガ
ラス繊維、アラミド系繊維、炭素繊維等があり、スポー
ツ用品、航空機、自動車、船舶等の分野等に用いられて
いる。又、航空機、宇宙産業分野に代表されるような先
端複合材料分野では、更に複合材料の強度、弾性率、耐
熱性、耐衝撃性、耐疲労性等を向上°させるために、こ
れら従来の材料だけでなく、新しい素材の研究も行なわ
れている。
Examples of substrates for composite materials that have been put into practical use industrially include glass fibers, aramid fibers, and carbon fibers, which are used in fields such as sporting goods, aircraft, automobiles, and ships. In addition, in the field of advanced composite materials, such as those in the aircraft and space industries, these conventional materials are used to further improve the strength, modulus of elasticity, heat resistance, impact resistance, fatigue resistance, etc. of composite materials. In addition, research into new materials is also being conducted.

このような状況にあって、強度、弾性率、耐熱性等に優
れ、且つ軽量である複素環式芳香族系繊維は、先端複合
材料用基材として期待されている。
Under these circumstances, heterocyclic aromatic fibers, which have excellent strength, elastic modulus, heat resistance, etc., and are lightweight, are expected to be used as base materials for advanced composite materials.

中でも、ポリベンゾオキサゾール系繊維は、高、7度と
いう点で優れている。ポリベンゾオキサゾール系繊維の
製造方法としては、特開昭61−501452号公報に
複素環式芳香族系繊維の一種として開示されている。
Among them, polybenzoxazole fibers are excellent in terms of high and 7 degrees. A method for producing polybenzoxazole fiber, which is a type of heterocyclic aromatic fiber, is disclosed in Japanese Patent Application Laid-Open No. 61-501452.

その複合材料用の表面処理としては、米国特許4.58
1.437号に、特定の酸素雰囲気下で熱処理するとい
う方法がある。
As a surface treatment for the composite material, U.S. Patent No. 4.58
1.437, there is a method of heat treatment in a specific oxygen atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

−iに複合材料では、基材とマトリックス樹脂との接着
性の良否が、両者から成る複合材料の強度、弾性率、耐
疲労性、耐水性等の物性に大きく影響する。従って、複
合材料のこれらの物性を改良するためには、基材と樹脂
との接着性を向上させることがきわめて重要であると言
われている。
-i In the case of composite materials, the quality of adhesion between the base material and the matrix resin greatly influences the physical properties of the composite material including the two, such as strength, elastic modulus, fatigue resistance, and water resistance. Therefore, in order to improve these physical properties of composite materials, it is said to be extremely important to improve the adhesiveness between the base material and the resin.

しかしながら、米国特許4,58L437号に記載され
ているように、ポリベンゾオキサゾール系繊維は、熱硬
化性樹脂に対する接着性が悪く、比較的接着性の良いエ
ポキシ樹脂を用いても充分とは言い難い。そのために、
繊維のもつ優れた特徴が複合材料としての物性にあまり
反映されていない。
However, as described in U.S. Pat. No. 4,58L437, polybenzoxazole fibers have poor adhesion to thermosetting resins, and even the use of epoxy resins, which have relatively good adhesion, is not sufficient. . for that,
The excellent characteristics of fibers are not well reflected in the physical properties of composite materials.

又1、当該特許公報に記載されている酸素雰囲気下で熱
処理する方法では、確かに接着性は向上するが、複合材
料としての物性を著しく改良するところまでには至って
いない。
1. Although the method of heat treatment in an oxygen atmosphere described in the patent publication does improve adhesion, it has not reached the point where the physical properties of the composite material are significantly improved.

そこで、本発明者らは、エポキシ樹脂をマトリックスと
する複合材料の強度、弾性率、耐水性、耐疲労性等の物
性を向上させるために、ポリベンゾオキサゾール系繊維
から成る複合材料用基材の製造法について鋭意検討を重
ねた結果、本発明を完成するに至った。
Therefore, in order to improve the physical properties of composite materials using epoxy resin as a matrix, such as strength, elastic modulus, water resistance, and fatigue resistance, the present inventors developed a composite material base material made of polybenzoxazole fibers. As a result of extensive research into manufacturing methods, the present invention has been completed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ポリベンゾオキサゾール系繊維又はその成形
品をプラズマ表面処理した後に、改質された繊維表面と
反応可能な基及びエポキシ樹脂と反応可能な基の両方を
分子内に有する化合物を表面処理剤として付与して反応
させることを特徴とするポリベンゾオキサゾール系繊維
から成る複合材料用基材の製造方法である。
The present invention involves subjecting polybenzoxazole fibers or molded products thereof to plasma surface treatment, and then surface-treating the surface with a compound that has both a group capable of reacting with the modified fiber surface and a group capable of reacting with an epoxy resin in its molecule. This is a method for producing a base material for a composite material made of polybenzoxazole fibers, which is characterized in that the polybenzoxazole fibers are applied as an agent and reacted.

本発明の方法により得られる基材は、特にエポキシ樹脂
をマトリックスとする複合材料で顕著な効果を発揮する
The base material obtained by the method of the present invention exhibits a remarkable effect particularly on composite materials having an epoxy resin as a matrix.

本発明におけるポリベンゾオキサゾール系繊維(以下、
PBO繊維という)は、下記の構造式I、■、■で示さ
れる繰り返し単位のうち、1種又は2種以上を有し、且
つこれらの繰り返し単位が全体の80重量%以上を占め
る重合体及びこれらの共重合体から成る繊維であり、周
知の方法で重合、紡糸して得ることができるが、高強度
、高弾性率の繊維が得られるという点で1.特開昭61
−501452号公報に記載の方法であることが好まし
い。
Polybenzoxazole fiber in the present invention (hereinafter referred to as
(referred to as PBO fiber) is a polymer having one or more types of repeating units represented by the following structural formulas I, ■, and ■, in which these repeating units account for 80% by weight or more of the total weight. Fibers made of these copolymers can be obtained by polymerization and spinning using well-known methods, and they have 1. high strength and high modulus of elasticity. Unexamined Japanese Patent Publication 1986
The method described in JP-A-501452 is preferred.

又、本発明に、おいては、高強度、高弾性率という点で
、下記の構造式■又は■を主成分としたPBO繊維が好
ましく用いられる。
Further, in the present invention, PBO fibers having the following structural formula (1) or (2) as a main component are preferably used in terms of high strength and high elastic modulus.

ポリベンゾオキサゾールの構造式 上記繊維の成形品としては、例えば不織布、織布、チョ
ツプドストランド等が挙げられる。又、成形品は2種類
以上のPBO繊維から構成されていてもよく、PBO繊
維以外の複合材用補強材、例えば炭素繊維、ガラス繊維
、アルミナ繊維、アラミド系繊維、複素環式芳香族系繊
維等が含まれていてもよい。しかしながら、軽くて強い
というPBO繊維の特徴を生かすという点で、PBO繊
維以外の補強材の含有量は基材に対して30%以下であ
ることが好ましい。又、電気回路配線板用途にPBO繊
維以外の補強材を含む成形品を使用するにあたっては、
それらの絶縁性、誘電率等の電気特性についても考慮す
る必要がある。
Structural formula of polybenzoxazole Examples of molded products of the above fibers include nonwoven fabrics, woven fabrics, chopped strands, and the like. Furthermore, the molded product may be composed of two or more types of PBO fibers, and reinforcing materials for composite materials other than PBO fibers, such as carbon fibers, glass fibers, alumina fibers, aramid fibers, and heterocyclic aromatic fibers, may also be used. etc. may be included. However, in order to take advantage of the light and strong characteristics of PBO fibers, the content of reinforcing materials other than PBO fibers is preferably 30% or less based on the base material. In addition, when using molded products containing reinforcing materials other than PBO fibers for electrical circuit wiring board applications,
It is also necessary to consider their electrical properties such as insulation and dielectric constant.

本発明において、プラズマ表面処理は、基材の表面を清
浄化、エツチングによる表面積の増加、表層部の架橋も
さることながら、次の工程において付与する表面処理剤
と化学的に結合できる表面に改質するために行なうもの
である。プラズマ処理は公知の方法で行なうことができ
る。雰囲気ガスとしては、例えば空気、窒素、水素、二
酸化炭素、アルゴン、ヘリウム、アンモニア、−酸化炭
素、メタン、エタン、プロパン、メチルアミン等のガス
及びそれらの混合ガス等が挙げられる。しかしながら、
01917表面処理装置の腐食、重合物での汚染等によ
る操作性の低下が少ない、■プラズマの安定性が良い、
および0次に行なう表面処理剤との反応性が増加する、
という理由により雰囲気ガスはアルゴン、ヘリウム、窒
素、空気、及びそれらの混合ガスを主成分とすることが
好ましい。圧力は通常0.02〜5 torr、好まし
くは、0.05〜l torrである。放電電源は安定
したプラズマ状態が得られればよ(、高周波電源でも低
周波電源でもよい。放電電力(放電電圧×電流)は通常
10〜1000ワツトであるが、PBO繊維の物性を損
なうことなく表面を活性化するという点で、好ましくは
10〜300ワツトである。プラズマ照射時間はガスの
種類、放電電力、圧力等の条件によって選択する必要が
あり、通常5秒〜10分である。プラズマ装置は特に規
定するものではなく、バッチ式でも連続式でもよい。
In the present invention, plasma surface treatment not only cleans the surface of the substrate, increases the surface area by etching, and crosslinks the surface layer, but also modifies the surface so that it can chemically bond with the surface treatment agent applied in the next step. This is done to ask questions. Plasma treatment can be performed by a known method. Examples of the atmospheric gas include gases such as air, nitrogen, hydrogen, carbon dioxide, argon, helium, ammonia, -carbon oxide, methane, ethane, propane, and methylamine, and mixed gases thereof. however,
01917 Less deterioration in operability due to corrosion of surface treatment equipment, contamination with polymers, etc. ■Good plasma stability;
and the reactivity with the zero-order surface treatment agent increases.
For this reason, it is preferable that the atmospheric gas contains argon, helium, nitrogen, air, or a mixed gas thereof as a main component. The pressure is usually 0.02 to 5 torr, preferably 0.05 to 1 torr. The discharge power source can be a high frequency power source or a low frequency power source as long as it can provide a stable plasma state.The discharge power (discharge voltage x current) is usually 10 to 1000 watts, but it can be used to The plasma irradiation time is preferably 10 to 300 watts in terms of activating the plasma.The plasma irradiation time needs to be selected depending on conditions such as the type of gas, discharge power, pressure, etc., and is usually 5 seconds to 10 minutes.Plasma device is not particularly specified, and may be a batch type or a continuous type.

本発明において、プラズマ表面処理に引き続き、改質さ
れた繊維表面と反応可能な基及びエポキシ樹脂と反応可
能な基の両方を分子内に有する化合物をPBO繊維又は
その成形品に付与して反応させる。その結果、繊維表面
と反応可能な基がプラズマ表面処理によって活性化され
た基材と反応するが、エポキシ樹脂と反応可能な基は未
反応のまま残るので、複合材料としたとき7トリツクス
樹脂と化学結合して、その結果として複合材料の物性を
向上する。
In the present invention, following plasma surface treatment, a compound having in its molecule both a group capable of reacting with the modified fiber surface and a group capable of reacting with an epoxy resin is applied to the PBO fiber or a molded product thereof, and reacted. . As a result, the groups that can react with the fiber surface react with the base material activated by the plasma surface treatment, but the groups that can react with the epoxy resin remain unreacted. chemically bond and, as a result, improve the physical properties of the composite material.

ここで繊維表面と反応可能な基としては、例えばマレイ
ミド基、ビニル基、スチリル基、メタクリル基、アリル
基、アセチレン基等の不飽和基、メルカプト基、アミノ
基、イミダゾール基等の不飽和基と反応できる基等が挙
げられる。基材表面との反応という点では、スチリル基
、メタクリル基、メルカプト基が好ましく、中でも重合
性の少ないメルカプト基が最良である。
Examples of groups that can react with the fiber surface include unsaturated groups such as maleimide groups, vinyl groups, styryl groups, methacrylic groups, allyl groups, and acetylene groups; unsaturated groups such as mercapto groups, amino groups, and imidazole groups; Examples include groups that can react. In terms of reaction with the surface of the base material, styryl groups, methacrylic groups, and mercapto groups are preferred, and among them, mercapto groups with low polymerizability are the best.

エポキシ樹脂と反応可能な基としては、例えばアミノ基
、イミダゾール基、エポキシ基、フェノール性水酸基、
酸無水物骨格を有する基等が挙げられる。エポキシ基と
の反応性、反応によって形成される結合の加水分解とい
う点では、アミノ基、イミダゾール基、エポキシ基が好
ましい。このような化合物としては、例えばグリシジル
メタクリレート、5−、メルカプト−2−アミノ−1,
3゜4トリアゾール、2−メルカプトイミダゾール、2
−メルカプトエチルアミン、及びそれらの塩等があり、
又、グリシジルメタクリレートとアンモニアとの反応生
成物、グリシジルメタクリレートとジアミノジフェニル
メタンとの反応生成物、p−ビニルベンジルクロライド
とn−ブチルアミンとの反応生成物、p−ビニルベンジ
ルクロライドとベンジルアミンとの反応生成物等もある
Groups that can react with epoxy resins include, for example, amino groups, imidazole groups, epoxy groups, phenolic hydroxyl groups,
Examples include groups having an acid anhydride skeleton. In terms of reactivity with epoxy groups and hydrolysis of bonds formed by the reaction, amino groups, imidazole groups, and epoxy groups are preferred. Examples of such compounds include glycidyl methacrylate, 5-, mercapto-2-amino-1,
3゜4 triazole, 2-mercaptoimidazole, 2
-Mercaptoethylamine and their salts, etc.
Also, reaction products of glycidyl methacrylate and ammonia, reaction products of glycidyl methacrylate and diaminodiphenylmethane, reaction products of p-vinylbenzyl chloride and n-butylamine, reaction products of p-vinylbenzyl chloride and benzylamine. There are also things.

官能基として繊維表面と反応可能な基を少なくとも1以
上有し、且つエポキシ樹脂と反応可能な基を少なくとも
1以上有する化合物であれば、これらの官能基を3種類
以上有し7ていてもよい。複数の化合物を混合して用い
てもよく、さらに他のラジカル重合性の化合物、例えば
スチレン、メタクリル酸メチル、アクリロニトリル、ア
クリルアミド、フマル酸、マレイン酸、無水マレイン酸
、マレイミド等を混合して用いてもよい。しかしながら
、表面処理剤と基材とを効果的に結合させるという点で
、これらのラジカル重合性化合物の混合比率は50重景
%以下であることが好ましい。
As long as the compound has at least one group capable of reacting with the fiber surface as a functional group and has at least one group capable of reacting with an epoxy resin, it may have three or more types of these functional groups. . A plurality of compounds may be used as a mixture, and other radically polymerizable compounds such as styrene, methyl methacrylate, acrylonitrile, acrylamide, fumaric acid, maleic acid, maleic anhydride, maleimide, etc. may be used as a mixture. Good too. However, from the viewpoint of effectively bonding the surface treatment agent and the base material, the mixing ratio of these radically polymerizable compounds is preferably 50% or less.

これらの化合物を付与する方法としては、例えば気体状
又は水溶液、有機溶剤若しくは、エマルジョン溶液の形
態で付与する方法がある。工業的にみて安価で容易にで
き、且つ処理ムラを少なくするという点では、水溶液が
優れる。例えば、2−メルカプトエチルアミン、その塩
等の水溶性の表面処理剤が好ましく用いられる。
Methods for applying these compounds include, for example, methods in which they are applied in the form of a gas, an aqueous solution, an organic solvent, or an emulsion solution. From an industrial perspective, an aqueous solution is superior in that it is inexpensive, easy to produce, and reduces unevenness in processing. For example, water-soluble surface treating agents such as 2-mercaptoethylamine and its salts are preferably used.

表面処理剤の付与量は格別限定されないが、基材に対し
て、0.5重量%以下が好ましく、0.01〜0.3重
量%がより好ましい。
The amount of the surface treatment agent applied is not particularly limited, but is preferably 0.5% by weight or less, more preferably 0.01 to 0.3% by weight, based on the base material.

基材表面と表面処理剤との反応は加熱、紫外線照射、電
子線照射等の常法で行なうことができる。
The reaction between the surface of the substrate and the surface treatment agent can be carried out by conventional methods such as heating, irradiation with ultraviolet rays, irradiation with electron beams, and the like.

しかしながら、工業的には溶液を用いた付与が有利であ
り、この場合溶剤の乾燥工程で加熱されるので、この時
に反応させることが好ましい。
However, industrially, it is advantageous to apply the solution using a solution, and in this case, since the solvent is heated during the drying process, it is preferable to carry out the reaction at this time.

上述のように表面処理剤の付与・反応を行なった基材は
複合材料の機械的物性を向上させるものであるが、さら
に、複合材料の熱又は温熱履歴に対する物性などを向上
させるためには、未反応の表面処理剤を取り除くことが
好ましい。付与した表面処理剤のすべてが反応して基材
表面にグラフト化されるわけではないので、単に付着し
たたけのものは基材表面に残る。これがグラフト化した
表面処理剤とマトリックス樹脂との反応を阻害し、基材
−樹脂間の接着性を低下させる。その結果、複合材のS
械的物性ではあまり顕著な効果は見られないが、複合材
の熱又は温熱履歴に対する物性、例えば吸湿後の層間接
着性、耐熱衝撃性1、耐湿熱サイクル性等の物性を低下
させる。このような障害を防ぐために未反応の表面処理
剤を取り除くのである。その方法としては、例えば水、
洗剤水溶液、有機溶剤等での洗浄(湿式法)、真空乾燥
、加熱等での揮発(乾式法)によって行なうことができ
る。、しかしながら、除去効率、グラフト部の分解等を
考慮すると湿式法の方が好ましく、さらには、工業的に
容易であるということから、水又は水溶液を用いること
が好ましい。
The base material to which the surface treatment agent has been applied and reacted as described above improves the mechanical properties of the composite material, but in order to further improve the physical properties of the composite material against heat or thermal history, It is preferable to remove unreacted surface treatment agent. Since not all of the applied surface treatment agent reacts and is grafted onto the surface of the substrate, the amount that has simply adhered remains on the surface of the substrate. This inhibits the reaction between the grafted surface treatment agent and the matrix resin, and reduces the adhesion between the base material and the resin. As a result, the S of the composite material
Although it does not have a very significant effect on mechanical properties, it does reduce the physical properties of the composite material against heat or thermal history, such as interlayer adhesion after moisture absorption, thermal shock resistance 1, and heat-and-moisture cycling resistance. To prevent such problems, unreacted surface treatment agents are removed. For example, water,
This can be carried out by washing with an aqueous detergent solution, organic solvent, etc. (wet method), vacuum drying, volatilization by heating, etc. (dry method). However, in consideration of removal efficiency, decomposition of the graft portion, etc., a wet method is preferable, and furthermore, it is preferable to use water or an aqueous solution because it is industrially easy.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に説明するが、本発明
は実施例によって限定されるものでない。
Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited by the Examples.

なお、本実施例においては、ポリベンゾオキサゾール繊
維として、下記の構造式で示されるポリマーから成る熱
処理系を用いた。
In this example, a heat treatment system made of a polymer represented by the following structural formula was used as the polybenzoxazole fiber.

ポリマーの構造式 この繊維は特開昭61−501452号公報の記載をも
とに作成したので、以下、該公報中に記載の実施例番号
を挙げて説明する。
Structural Formula of Polymer This fiber was prepared based on the description in Japanese Patent Application Laid-Open No. 61-501452, and will be explained below by citing the example numbers described in that publication.

重合は、ポリマー濃度が11重量%になるように、モノ
マー仕込み量を調整して、該公報中の実施例13に従っ
て行なった。得られたポリマーの固有粘度は204! 
/ gであった。紡糸は、該公報中の実施例119を参
考にして、紡口(孔径o、25atφ、孔数5)、ドー
プ温度120”C1紡糸時の延伸比を13/1で行なっ
た。得られた繊維の熱処理は500℃の窒素雰囲気中で
、2g/dの引張張力下、1分間行なった。熱処理系の
単糸物性は、強度32 g/d、弾性率1290g/d
、伸度2.6 % T: アッタ。尚、単糸物性は、 
ASTM−D−3379に基づいて、測定した。
Polymerization was carried out according to Example 13 in the publication, adjusting the amount of monomer charged so that the polymer concentration was 11% by weight. The intrinsic viscosity of the obtained polymer was 204!
/g. The spinning was carried out with reference to Example 119 in the publication, using a spinneret (pore diameter o, 25 at φ, number of holes 5), dope temperature 120'', and a drawing ratio during spinning of C1 of 13/1.The obtained fiber The heat treatment was performed in a nitrogen atmosphere at 500°C for 1 minute under a tensile force of 2 g/d.The physical properties of the single yarn in the heat treatment system were as follows: strength: 32 g/d, elastic modulus: 1290 g/d
, elongation 2.6% T: Atta. In addition, the physical properties of the single yarn are
Measured based on ASTM-D-3379.

実施例1及び比較例 ポリベンゾオキサゾールからなる熱処理系を、0、05
 mm11gのアルゴンガス雰囲気下、5 KHzの周
波数、100Wの放電電力で、プラズマ表面処理を5分
間行ない、3g/lのメルカプトエチルアミン塩酸塩の
水溶液に浸漬してゴムロールで絞り、120℃の熱風乾
燥機で10分間乾燥した。次いで、室温の水で15分間
流水洗した。
Example 1 and Comparative Example The heat treatment system consisting of polybenzoxazole was heated to 0.05
Plasma surface treatment was performed for 5 minutes at a frequency of 5 KHz and a discharge power of 100 W in an argon gas atmosphere of 11 g of mm, immersed in an aqueous solution of 3 g/l of mercaptoethylamine hydrochloride, squeezed with a rubber roll, and dried in a hot air dryer at 120 °C. and dried for 10 minutes. Then, it was washed with running water at room temperature for 15 minutes.

得られた熱処理系を、100部のエピコート604(シ
ェル化学社製エポキシ樹脂)、40部の4,4゛−ジア
ミノジフェニルスルホン、1部の三フッ化ホウ素モノエ
チルアミン錯体、50部のメチルエチルケトンから成る
溶液に含浸し、シリコーンをコート離型紙を予め巻きつ
けたドラム上に一定の間隔で巻きとった。ドラムから離
型紙ごと取り外し、乾燥層中70℃にて30分間乾燥を
行ない、樹脂含有量40容量%のプリプレグを作成した
The resulting heat treatment system was made of 100 parts of Epikote 604 (an epoxy resin manufactured by Shell Chemical Co., Ltd.), 40 parts of 4,4'-diaminodiphenylsulfone, 1 part of boron trifluoride monoethylamine complex, and 50 parts of methyl ethyl ketone. The solution was impregnated and the silicone was wound at regular intervals onto a drum pre-wrapped with a coated release paper. The release paper was removed from the drum and dried in a drying layer at 70° C. for 30 minutes to produce a prepreg with a resin content of 40% by volume.

得られたプリプレグを一方向に積層し、圧力4kg/I
11”、、温度140℃で2時間硬化させて、一方向性
複合材料を作成した。
The obtained prepregs were laminated in one direction and the pressure was 4 kg/I.
11'', was cured at a temperature of 140° C. for 2 hours to create a unidirectional composite material.

このようにして得られた複合材料から、長さ7011、
巾25關、厚み2.7鰭のテストピースを作成して、オ
ートグラフを用いて、スパン間距離43龍、クロスヘツ
ドスピード3m/分の条件で、繊維方向の曲げ試験を行
なった、又、耐水性の試験として、圧力容器を用いて、
120’Cの水蒸気中に50時間暴露したもの(’P 
C−50hr)も同様に曲げ試験を行なった。その試験
結果を表1に示す。尚、比較例は本発明の方法を行なわ
ない熱処理系での結果を示している。
From the composite material thus obtained, length 7011,
A test piece with a width of 25 mm and a thickness of 2.7 fins was prepared, and a bending test in the fiber direction was conducted using an autograph under the conditions of a span distance of 43 mm and a crosshead speed of 3 m/min. As a water resistance test, using a pressure vessel,
Those exposed to water vapor at 120'C for 50 hours ('P
C-50hr) was also subjected to a bending test in the same manner. The test results are shown in Table 1. Note that the comparative example shows the results of a heat treatment system in which the method of the present invention was not performed.

この結果より、複合材料の物性において、本発明の方法
が効果的であることがわかる。特に、吸湿後の物性にお
いて顕著な効果を示す。
This result shows that the method of the present invention is effective in improving the physical properties of composite materials. In particular, it shows remarkable effects on physical properties after moisture absorption.

実施例2及び比較例 ポリベンゾオキサゾールからなる熱処理系を、0.05
龍11gのアルゴンガス雰囲気下、5KII2の周波数
、100Wの放電電力で9.プラズマ表面処理を5分間
行ない、3g/βのメルカプトエチルアミン塩酸塩の水
溶液に浸漬してゴムロールで絞り、120℃の熱風乾燥
機で10分間乾燥した。
Example 2 and Comparative Examples The heat treatment system consisting of polybenzoxazole was heated to 0.05
9. Under argon gas atmosphere of 11g of dragon, frequency of 5KII2, discharge power of 100W. Plasma surface treatment was performed for 5 minutes, immersed in an aqueous solution of 3 g/β mercaptoethylamine hydrochloride, squeezed with a rubber roll, and dried in a hot air dryer at 120° C. for 10 minutes.

得られた熱処理系を、100部のエピコート604(シ
ェル化学社製エポキシ樹脂)、40部の4,4゛−ジア
ミノジフエニルスルホン、1部の三フッ化ホウ素モノエ
チルアミン錯体、50部のメチルエチルケトンから成る
溶液に含浸し、シリコーンをコートした離型紙を予め巻
きつけたドラム上に一定の間隔で巻きとった。ドラムか
ら離型紙ごと取り外し、乾燥皿中70℃にて30分間乾
燥を行ない、樹脂含有量40容量%のプリプレグを作成
した。得られたプリプレグを一方向に積層し、圧力4k
g/龍2、温度140℃で2時間硬化して、一方向性複
合材料を作成した。
The resulting heat treatment system was prepared from 100 parts of Epikote 604 (an epoxy resin manufactured by Shell Chemical Co., Ltd.), 40 parts of 4,4'-diaminodiphenylsulfone, 1 part of boron trifluoride monoethylamine complex, and 50 parts of methyl ethyl ketone. A release paper impregnated with a solution containing silicone and coated with silicone was wound onto a pre-wound drum at regular intervals. The release paper was removed from the drum and dried in a drying dish at 70°C for 30 minutes to produce a prepreg with a resin content of 40% by volume. The obtained prepregs were laminated in one direction and the pressure was 4k.
g/Ryu 2 and cured at a temperature of 140° C. for 2 hours to create a unidirectional composite material.

このようにして得られた複合材料から、長さ70鶴、巾
25龍、厚み2.7Hのテストピースを作成して、オー
トグラフを用いて、スパン間距離43鶴、クロスヘッド
スピード311/分の条件で、繊維方向の曲げ試験を行
なった。又、耐水性の試験として、圧力容器を用いて、
120℃の水蒸気中に50時間暴露したもの(PC−5
0hr)も同様に曲げ試験を行なった。その試験結果を
表2に示す。尚、比較例は本発明の方法を行なわない熱
処理系での結果を示している。
A test piece with a length of 70 mm, a width of 25 mm, and a thickness of 2.7 H was prepared from the composite material thus obtained, and using an autograph, the distance between spans was 43 mm, and the crosshead speed was 311/min. A bending test in the fiber direction was conducted under the following conditions. In addition, as a water resistance test, using a pressure vessel,
Those exposed to water vapor at 120°C for 50 hours (PC-5
0 hr) was similarly subjected to a bending test. The test results are shown in Table 2. Note that the comparative example shows the results of a heat treatment system in which the method of the present invention was not performed.

この結果より、本発明の方法が、複合材料の基材として
効果的であることがわかる。特に、吸湿後の物性におい
て顕著な効果を発揮する。
This result shows that the method of the present invention is effective as a base material for composite materials. In particular, it exhibits remarkable effects on physical properties after moisture absorption.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により製造される複合材料用基材は、エポ
キシ樹脂をマトリックスとする複合材料の用途で、下記
の点で優れている。
The base material for a composite material produced by the method of the present invention is excellent in the following points when used as a composite material having an epoxy resin as a matrix.

(1)基材とエポキシ樹脂マトリックス間を化学的に結
合するので、複合材としての機械的物性、1体的には曲
げ強度、弾性率、耐水性、耐熱サイクル性、耐熱衝撃性
、耐環境性等を向上することができる。
(1) Since the base material and the epoxy resin matrix are chemically bonded, the mechanical properties of the composite material are improved, such as bending strength, elastic modulus, water resistance, heat cycle resistance, thermal shock resistance, and environmental resistance. It is possible to improve sexual performance, etc.

(2)近年、複合材ネミ1の物性向上のために、補強材
の複合化、例えばアラミド系繊維とガラス繊維、アラミ
ド系繊維と炭素繊維等が研究されているが、本発明では
、基材表面の活性化をプラズマ表面処理で行なうので、
ポリベンゾオキサゾール系繊維以外の基材も同時に活性
化することができる。そのために、炭素繊維、アラミド
系繊維、ガラス繊維等とポリベンゾオキサゾール系繊維
との交織織物等の基材の表面処理としても有効である。
(2) In recent years, in order to improve the physical properties of the composite material Nemi 1, research has been conducted on the use of composite reinforcing materials, such as aramid fibers and glass fibers, aramid fibers and carbon fibers, etc. In the present invention, the base material Since the surface is activated by plasma surface treatment,
Base materials other than polybenzoxazole fibers can also be activated at the same time. Therefore, it is also effective as a surface treatment for base materials such as woven fabrics of carbon fibers, aramid fibers, glass fibers, etc. and polybenzoxazole fibers.

(3)ポリベンゾオキサゾール系繊維の絶縁性、低い誘
電率、負の熱膨張係数、低吸水性等を生かしたプリント
電気回路配線板用途において、欠点である吸湿後の熱衝
撃による層間剥離に対する耐性(ハンダ耐熱性)を向上
する。特に、この効果は、本発明の方法において、さら
に未反応表面処理剤の除去を行なった場合に顕著士ある
(3) Resistance to delamination due to thermal shock after moisture absorption, which is a disadvantage in printed electrical circuit wiring board applications that take advantage of the insulation properties, low dielectric constant, negative coefficient of thermal expansion, and low water absorption of polybenzoxazole fibers. (soldering heat resistance). This effect is particularly noticeable when the unreacted surface treatment agent is further removed in the method of the present invention.

本発明の方法により製造される複合材料用基材は、例え
ば、スポーツ用具、レジャー用具、各種器具、部品等を
始め、軽くて強度、弾性率、耐熱性等に優れた特性を要
求される航空機、宇宙産業分野、自動車、船舶に用いる
複合材料において効果がある。
The composite material substrate produced by the method of the present invention can be used, for example, in sports equipment, leisure equipment, various appliances, parts, etc., as well as aircraft that require lightness and excellent properties such as strength, elastic modulus, and heat resistance. It is effective in composite materials used in the space industry, automobiles, and ships.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims]  ポリベンゾオキサゾール系繊維又はその成形品をプラ
ズマ表面処理した後に、改質された繊維表面と反応可能
な基及びエポキシ樹脂と反応可能な基の両方を分子内に
有する化合物を表面処理剤として付与して反応させるこ
とを特徴とするポリベンゾオキサゾール系繊維から成る
複合材料用基材の製造方法
After subjecting polybenzoxazole fibers or molded products thereof to plasma surface treatment, a compound having in the molecule both a group capable of reacting with the modified fiber surface and a group capable of reacting with an epoxy resin is applied as a surface treatment agent. A method for producing a base material for a composite material made of polybenzoxazole fibers, characterized by reacting the polybenzoxazole fibers with
JP13555588A 1988-06-03 1988-06-03 Production of substrate for composite material consisting of polybenzoxazole fiber Pending JPH01306431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13555588A JPH01306431A (en) 1988-06-03 1988-06-03 Production of substrate for composite material consisting of polybenzoxazole fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13555588A JPH01306431A (en) 1988-06-03 1988-06-03 Production of substrate for composite material consisting of polybenzoxazole fiber

Publications (1)

Publication Number Publication Date
JPH01306431A true JPH01306431A (en) 1989-12-11

Family

ID=15154539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13555588A Pending JPH01306431A (en) 1988-06-03 1988-06-03 Production of substrate for composite material consisting of polybenzoxazole fiber

Country Status (1)

Country Link
JP (1) JPH01306431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064737A1 (en) * 2002-01-28 2003-08-07 Toyo Boseki Kabushiki Kaisha Polybenzazole fiber and production method therefor
WO2012100997A3 (en) * 2011-01-28 2013-02-07 Siemens Aktiengesellschaft Fibre reinforced plastics material and method for the production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064737A1 (en) * 2002-01-28 2003-08-07 Toyo Boseki Kabushiki Kaisha Polybenzazole fiber and production method therefor
WO2012100997A3 (en) * 2011-01-28 2013-02-07 Siemens Aktiengesellschaft Fibre reinforced plastics material and method for the production thereof
US9416236B2 (en) 2011-01-28 2016-08-16 Siemens Aktiengesellschaft Fiber reinforced plastics material and method for production thereof

Similar Documents

Publication Publication Date Title
US4664936A (en) Aromatic polyamide fiber-based composite prepreg
US8399064B2 (en) Process for improving the adhesion of carbon fibres with regard to an organic matrix
EP0192510A1 (en) A method for the preparation of a laminate
JP3003521B2 (en) Carbon fiber and method for producing the same
JP2658308B2 (en) Surface-modified inorganic fiber, method for producing the same, and method for reinforcing resin using the same
JPH01306431A (en) Production of substrate for composite material consisting of polybenzoxazole fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
JPH09208838A (en) Resin composition, prepreg, and production or prepreg
JPS6335630A (en) Production of composite material base comprising aramid fiber
JPH01306432A (en) Production of substrate for composite material consisting of polybenzoxazole fiber
JP2709337B2 (en) Aramid polymer bonding method
JPS63165583A (en) Method for improving adhesiveness of para type aramid fiber
JP3104026B2 (en) Carbon fiber phenol triazine resin finish
US4687681A (en) Method of making a chemically bonded coating on a fibrous or filamentous substrate
JP2024501071A (en) Prepreg and carbon fiber reinforced composites
JPS6259637A (en) Improvement of adhesiveness
JPS63215737A (en) Production of surface-modified molding
JP3557686B2 (en) Carbon fiber and method for producing the same
JPS62225539A (en) Production of modified aramid material
JPH01320147A (en) Fiber reinforced resin compound material
JPH0360854B2 (en)
JPH09194613A (en) Glass fiber textile and its manufacture
CN118325283A (en) Continuous fiber reinforced composite material and preparation method thereof
JPH01315430A (en) Substrate for electroless plating
CN114427168A (en) Continuous treatment method for improving surface performance of carbon fiber