[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6259637A - Improvement of adhesiveness - Google Patents

Improvement of adhesiveness

Info

Publication number
JPS6259637A
JPS6259637A JP19959685A JP19959685A JPS6259637A JP S6259637 A JPS6259637 A JP S6259637A JP 19959685 A JP19959685 A JP 19959685A JP 19959685 A JP19959685 A JP 19959685A JP S6259637 A JPS6259637 A JP S6259637A
Authority
JP
Japan
Prior art keywords
molecular weight
treatment
high molecular
ultra
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19959685A
Other languages
Japanese (ja)
Inventor
Taku Tokita
時田 卓
Teiichi Shiomi
塩見 禎一
Hiroshi Iwasaki
博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP19959685A priority Critical patent/JPS6259637A/en
Publication of JPS6259637A publication Critical patent/JPS6259637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To obtain a drawn product which is excellent in adhesion to a polar material and can give a composite material excellent in mechanical strength, by graft-polymerizing an unsaturated carboxylic acid (derivative) onto the surface of a drawn super-MW polyolefin subjected to plasma discharge or the like treatment. CONSTITUTION:A drawn super-MW polyolefin such as a high-modulus high- tensile strength super-MW PE obtained by drawing super-MW PE of an intrinsic viscosity of, for example, 5dl/g or above at a draw ratio of as high as 10 or above, is subjected to plasma discharge treatment or electron beam irradiation treatment, and is brought into contact with an unsaturated carboxylic acid (derivative), e.g., (meth)acrylic acid, dissolved in a solvent such as water or an alcohol in an inert gas atmosphere such as N2 and the monomer is graft- polymerized thereonto at 0-80 deg.C for 1-120min. This is infiltrated into or added to an inorganic or organic polar material such as cement, ceramics or a thermoplastic resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超高分子量ポリオレフィン延伸物の接着性を改
良する方法に関する。更に詳しくは、超高分子量ポリオ
レフィン延伸物にプラズマ放電処理等を施した後、該延
伸物の表面に所定のモノマーをグラフト重合することに
より接着性を改良する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for improving the adhesion of drawn ultra-high molecular weight polyolefin products. More specifically, the present invention relates to a method of improving adhesion by subjecting a stretched product of ultra-high molecular weight polyolefin to plasma discharge treatment or the like and then graft polymerizing a predetermined monomer onto the surface of the stretched product.

〔従来の技術〕[Conventional technology]

繊維強化プラスチックは強度、剛性に優れるため自動車
用部品、電気器具部品ハウジング、工業材料、小型船舶
、スポーツ用品、医療材料、土木材料、建築材料等、広
範囲に亙って使用されている。しかしながらそれに使用
されている繊維補強材はその殆んどがガラス繊維である
ので、得られる複合材料は未強化のプラスチックに比べ
て重くなるという欠点を有しており、軽量で且つ良好な
機械的強度を有する複合材料が望まれている。
Fiber-reinforced plastics have excellent strength and rigidity, so they are used in a wide range of applications, such as automobile parts, appliance parts housings, industrial materials, small ships, sporting goods, medical materials, civil engineering materials, and building materials. However, since most of the fiber reinforcement materials used in it are glass fibers, the resulting composite material has the disadvantage of being heavier than unreinforced plastic, and has the disadvantage of being lightweight and having good mechanical properties. Composite materials with strength are desired.

一方、高密度ポリエチレン等のポリオレフィン、中でも
超高分子量ポリエチレンを極めて高倍率で延伸したフィ
ラメントは高弾性、高強度で且つ軽量であるので、複合
材料の軽量化に好適な繊維補強材料として期待されてい
る。しかしながら、周知の如(ポリオレフィンは他の極
性材料との接着に劣るため、補強材料として用いるため
には接着性を改良することが必須である。その一つの手
段としてポリオレフィン成形品をプラズマ放電処理とし
てマトリックス材との接着性を改良する方法(特公昭5
3−794号公報、特開昭57−1770327703
2号公報れている。同様に放電処理するものとしてU 
S P 、344041Bが知られている。特に特開昭
57−177032号公報には成形品をプラズマ放電処
理する前にmクロム酸カリウム溶液で処理することも提
案されている。かかる方法を採用することにより、ポリ
オレフィン補強材とマトリックス樹脂との接着性はかな
り改善されているが、構造材料(建築材料、舟艦、タン
ク、車両、航空機など)やレジャー用品、スポーツ用品
、医療材料、音響材料等、用途によっては未だ十分では
な(、更なる改良が望まれている。なお、ポリアラミド
繊維にm合モノマ〜を含むプラズマ処理を施し、あるい
はプラズマ処理後に重合性七ツマ−に晒す態様がケミカ
ルアブストラクト95巻(1981) 、63359に
、同様にポリオレフィン等のポリマー物質の表面に所定
の放電処理を施したのち、エチレン不飽和モノマーをグ
ラフトさせる方法がUSP3600122に記載されて
いる。しかし、前者は比較的高価でかつ重いポリアラミ
ド繊維を用いる点で本発明と異なる。さらに前者は本来
極性材料等との接着性が比較的よいものを更に接着性を
改善するものに関するものであるのに対し、本発明は接
着性が著しく乏しいポリオレフィンを材料ポリマーとす
る点で大きく異なる。また、後者は超高分子量ポリオレ
フィン延伸物を用いたもので材料自体の強度や弾性率に
劣りたとえ繊維状であっても、処理物の繊維補強材とし
ての性能は著しく劣るものである。さらに延伸物でない
ためプラズマ等による処理的高価が小さく、従って、本
発明と同様の処理を行ったものを極性材料の補強材料と
して用いても、接着性が十分改良されないので曲げ強度
や曲げ弾性率等の機械的強度の改善も充分なされないの
である。
On the other hand, polyolefins such as high-density polyethylene, especially filaments made by drawing ultra-high molecular weight polyethylene at extremely high magnification, have high elasticity, high strength, and are lightweight, so they are expected to be suitable fiber reinforcing materials for reducing the weight of composite materials. There is. However, as is well known (polyolefin has poor adhesion with other polar materials, it is essential to improve its adhesion in order to use it as a reinforcing material. One way to do this is to treat polyolefin molded products with plasma discharge treatment. Method for improving adhesion with matrix material
Publication No. 3-794, JP 57-1770327703
Publication No. 2 is published. Similarly, U
S P , 344041B is known. In particular, JP-A-57-177032 proposes treating a molded article with a potassium chromate solution before plasma discharge treatment. By adopting such a method, the adhesion between the polyolefin reinforcement and the matrix resin has been considerably improved. Materials, acoustic materials, etc. are still insufficient depending on the intended use (further improvement is desired. However, it is possible to perform plasma treatment on polyaramid fibers containing m-polymer monomers, or to apply polymerizable monomers to polyaramid fibers after plasma treatment. The exposure method is described in Chemical Abstracts Vol. 95 (1981), 63359, and US Pat. The former differs from the present invention in that relatively expensive and heavy polyaramid fibers are used.Furthermore, the former is concerned with improving the adhesion of a material that originally has relatively good adhesion to polar materials, etc. On the other hand, the present invention is significantly different in that the material polymer is polyolefin, which has extremely poor adhesion.Also, the latter uses a stretched ultra-high molecular weight polyolefin, and the material itself has poor strength and elastic modulus, even if it is fibrous. However, the performance of the treated material as a fiber reinforcing material is significantly inferior.Furthermore, since it is not a stretched material, the processing cost with plasma etc. is low, and therefore, the treated material is used as a reinforcing material for polar materials. Even when used as a material, the adhesion is not sufficiently improved, and mechanical strengths such as flexural strength and flexural modulus are not sufficiently improved.

また後者に類似する技術として特開昭59−43010
号公報にはポリオレフィンのフィルムを使用する態様が
示されている。しかしこれも上記U S P 3600
122と同様の問題がある。
Also, as a technology similar to the latter, Japanese Patent Application Laid-Open No. 59-43010
The publication discloses an embodiment in which a polyolefin film is used. However, this also applies to the above USP 3600.
There is a problem similar to 122.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、超高分子量ポリオレフィン延伸物にプラズマ
放電処理もしくは電子線処理を施した後、該超高分子量
ポリオレフィン延伸物の表面に不飽和カルボン酸もしく
はその誘導体をグラフト重合させることを特徴とする超
高分子量ポリオレフィン延伸物の接着性を改良する方法
を提供するものである。
The present invention is an ultrahigh molecular weight polyolefin drawn product, which is characterized by subjecting the ultrahigh molecular weight polyolefin drawn product to plasma discharge treatment or electron beam treatment, and then graft polymerizing an unsaturated carboxylic acid or a derivative thereof onto the surface of the ultrahigh molecular weight polyolefin drawn product. The present invention provides a method for improving the adhesion of a stretched product of high molecular weight polyolefin.

〔作 用〕[For production]

本発明の方法を用いるポリオレフィン延伸物は、ポリエ
チレン、ポリプロピレン、ポリ1〜ブテン、ポリ4−メ
チル−1−ペンテン、あるいは異なるα−オレフィン同
志、例えばエチレン、プロピレン、1−ブテン、1−ヘ
キサン、1−オクテン、4−メチル−1−ペンテンなど
を共重合した共重合体等で高結晶性の熱可塑性樹脂を種
々公知の方法により延伸成形加工した材料である。これ
らポリオレフィン延伸物の中では、押出延伸することに
より得られる弾性率が高いモノフィラメント、テープ等
の配向物が軽量補強材料として好ましく、中でもデカリ
ン溶媒中135度で測定した極限粘度〔η〕が5a/g
以上、さらにはフないし30dl1gの範囲の超高分子
量ポリエチレンを10倍以上の高倍率で延伸することに
よって得られる高弾性、高引張強度の超高分子量ポリエ
チレン延伸物を用いると、軽量性に冨んだ複合材料が得
られるので好ましい。6・かる高弾性、高引張強度を有
する超高分子量ポリオレフィン延伸物を得る方法は、特
開昭56−15408号公報、特開昭58−5228号
公報、特開昭59−130313号公報、特開昭59−
187614号公報等に詳述されている如く、超高分子
量ポリエチレンを稀薄溶液にするかあるいは超高分子量
ポリエチレンに低分子量化合物を添加して超高分子量ポ
リエチレンの延伸性を改良して高倍率に延伸する方法を
例示することができる。
The polyolefin drawn product using the method of the present invention can be polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, or different α-olefins such as ethylene, propylene, 1-butene, 1-hexane, 1 It is a material obtained by stretch-molding a highly crystalline thermoplastic resin such as a copolymer of -octene, 4-methyl-1-pentene, etc. using various known methods. Among these drawn polyolefin products, oriented products such as monofilaments and tapes with high elastic modulus obtained by extrusion drawing are preferable as lightweight reinforcing materials, and among them, the intrinsic viscosity [η] measured at 135 degrees in decalin solvent is 5a/ g
Furthermore, by using a stretched ultra-high molecular weight polyethylene with high elasticity and high tensile strength obtained by stretching ultra-high molecular weight polyethylene in the range of F to 30 dl/g at a high magnification of 10 times or more, it is extremely lightweight. This is preferable because a composite material can be obtained. 6. Methods for obtaining drawn ultra-high molecular weight polyolefin products having high elasticity and high tensile strength are disclosed in JP-A-56-15408, JP-A-58-5228, JP-A-59-130313, and JP-A-59-130313. 1977-
As detailed in Japanese Patent No. 187614, etc., ultra-high molecular weight polyethylene is made into a dilute solution or a low molecular weight compound is added to ultra-high molecular weight polyethylene to improve the drawability of ultra-high molecular weight polyethylene and stretch it to a high ratio. An example of how to do this can be given.

前記超高分子量ポリオレフィン延伸物としては、引張弾
性率が20GPa以上、好ましくは50GPa引張強度
が1.2GPa以上、好ましくは1 、5GPa以上の
ものが軽量且つ高剛性、高引張強度であるので、補強材
料として、本発明の超高分子量ポリオレフィン延伸物と
して最も好適である。又、かかる延伸物を複合材料とし
て用いる際には、延伸物がフイラメント状であればロー
プ、ネット、クロスシート、不織物、紙に加工して後述
の極性材料に含浸あるいは積層して用いる方法、テープ
状のものであればクロスシーI・、ロープ等加工して後
述の極性材料に含浸あるいは積層して用いる方法あるい
はフィラメント、テープを適宜カットして繊維状補強材
として極性材料に含浸させる方法などを採り得る。
The ultra-high molecular weight polyolefin stretched product has a tensile modulus of 20 GPa or more, preferably 50 GPa, and a tensile strength of 1.2 GPa or more, preferably 1.5 GPa or more, since it is lightweight, has high rigidity, and high tensile strength, so it can be reinforced. As a material, it is most suitable as a stretched ultra-high molecular weight polyolefin product of the present invention. In addition, when such a stretched product is used as a composite material, if the stretched product is in the form of a filament, it can be processed into a rope, net, cloth sheet, non-woven fabric, or paper and impregnated with or laminated with a polar material as described below. If it is in the form of a tape, it can be used by processing it into a rope or the like and impregnating or laminating it with a polar material as described below, or by cutting the filament or tape as appropriate and impregnating it with a polar material as a fibrous reinforcing material. can be taken.

本発明におけるプラズマ放電処理としては、例えば高周
波放電、マイクロ波放電、グロー放電などの処理が挙げ
られ、又、処理する気体としては空気、窒素、酸素、ア
ルゴン、ヘリウム等が挙げられる。これらの気体は単独
で用いてもよいし、任意の割合で混合して用いることも
できる。好ましい処理条件としては、出力20〜100
ワツト、より好ましくは50ないし100ワツト、真空
度10−″ないし10Torr、より好ましくは10 
 ないし5 Torrs処理気体として窒素、空気、酸
素、アルゴンなどを用い、処理時間工ないし1800秒
、好ましくは10ないし300秒間である。
Examples of the plasma discharge treatment in the present invention include high frequency discharge, microwave discharge, and glow discharge, and examples of the gas to be treated include air, nitrogen, oxygen, argon, helium, and the like. These gases may be used alone or in a mixture at any ratio. Preferred processing conditions include an output of 20 to 100
Watts, more preferably 50 to 100 Watts, degree of vacuum 10-'' to 10 Torr, more preferably 10
Nitrogen, air, oxygen, argon, etc. are used as the processing gas at 5 Torrs, and the processing time is 1800 seconds, preferably 10 to 300 seconds.

処理後は、通常空気に触れることもなく窒素ガス等の不
活性ガス雰囲気下で不飽和カルボン酸もしくはその誘導
体をグラフトさせる。
After the treatment, the unsaturated carboxylic acid or its derivative is grafted under an inert gas atmosphere such as nitrogen gas, usually without exposure to air.

本発明における電子線照射処理としては、例えば口新ハ
イボルテージ株式会社製のエリアビーム形電子線照射装
置キュアトロpの如き装置により行う。処理条件は、加
速電圧100ないし100OKV、好ましくは200な
いし400KV、電子流1ないし10a+A、好ましく
は2ないし8mA、とくに好ましくは3ないし7mAで
、照射線量0.1ないし10メガラツド、好ましくは0
.5ないし5メガラツドである。
The electron beam irradiation treatment in the present invention is carried out using, for example, an area beam type electron beam irradiation device Curetro P manufactured by Kuushin High Voltage Co., Ltd. The processing conditions are an accelerating voltage of 100 to 100 KV, preferably 200 to 400 KV, an electron current of 1 to 10 a+A, preferably 2 to 8 mA, particularly preferably 3 to 7 mA, and an irradiation dose of 0.1 to 10 megarads, preferably 0.
.. 5 to 5 megarads.

処理後は後処理時までそのまま放置しておいてもよいが
、好ましくは一50度程度の低温でサンプルを保持する
ことが好ましい。処理物を不飽和カルボン酸もしくはそ
の誘導体溶液及び分散液に含浸してグラフトする際、通
常、空気に触れさせても良いが、特には窒素等不活性ガ
ス雰囲気下で、全ての操作を行うことが好ましい。
After the treatment, the sample may be left as it is until post-treatment, but it is preferable to hold the sample at a low temperature of about 150 degrees Celsius. When grafting the treated product by impregnating it with a solution or dispersion of an unsaturated carboxylic acid or its derivative, it is usually possible to expose it to air, but all operations should especially be performed under an atmosphere of an inert gas such as nitrogen. is preferred.

本発明の方法に用いる不飽和カルボン酸もしくはその誘
導体としては、具体的には、例えばアクリル酸、メタク
リル酸、マレイン酸、フマール酸、テトラヒドロフタル
酸、イタコン酸、シトラコン酸、クロトン酸、イソクロ
トン酸、ナジック−(エンドシス−ビシクロ(2,2,
1)ヘプト−1−エン−2,3−ジカルボン酸)など不
飽和モノおよびジカルボン酸、またはその誘導体、例え
ば酸ハライド、アミド、イミド、無水物、エステルなど
が挙げられ、具体的には、塩化マレニル、マレイミド、
無水マレイン酸、無水シトラコン酸、マレイン酸モノメ
チル、マレイン酸ジメチル、グリシジルマレニー1・な
どが例示される。
Specific examples of unsaturated carboxylic acids or derivatives thereof used in the method of the present invention include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, nagic-(endosys-bicyclo(2,2,
1) unsaturated mono- and dicarboxylic acids such as hept-1-ene-2,3-dicarboxylic acid, or derivatives thereof, such as acid halides, amides, imides, anhydrides, esters, etc. Specifically, chlorinated malenyl, maleimide,
Examples include maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, and glycidyl maley 1.

これらの中では、アクリル酸、メタクリル酸、マレイン
酸、などの不飽和モノおよびジカルボン酸が好ましい。
Among these, unsaturated mono- and dicarboxylic acids such as acrylic acid, methacrylic acid, maleic acid, etc. are preferred.

なお、これらは二種以上を混合して用いてもよい。In addition, these may be used in combination of two or more types.

グラフトa合させる方法としては、前述のプラズマ処理
または電子線照射処理した超高分子量ポリオレフィン延
伸物を、前述の如く窒素等の不活性ガス雰囲気下で不飽
和カルボン酸もしくはその誘導体と接触させればよい。
As a method for grafting a, the above-mentioned plasma-treated or electron-beam irradiated stretched ultra-high molecular weight polyolefin is brought into contact with an unsaturated carboxylic acid or its derivative under an inert gas atmosphere such as nitrogen as described above. good.

接触させる方法としては、導常不飽和カルボン酸等を適
当な溶媒、たとえば水、アルコール等の溶液とするかあ
るいは炭化水素系溶剤などの分散液とし、該溶液あるい
は分散液と接触させる方法が好ましいが、これに限られ
ない。前記溶媒としては水を用いた場合が好ましい。反
応条件は前段の処理および用いるモノマー程度にもよる
が、通常、0℃ないし80℃好ましくは室温ないし60
℃にて1ないし120分、好ましくは5ないし60分間
反応させる。
As for the method of contacting, it is preferable to make the unsaturated carboxylic acid, etc. into a solution in a suitable solvent such as water or alcohol, or make it into a dispersion in a hydrocarbon solvent, and then contact it with the solution or dispersion. However, it is not limited to this. It is preferable to use water as the solvent. The reaction conditions depend on the previous treatment and the degree of monomer used, but are usually 0°C to 80°C, preferably room temperature to 60°C.
The reaction is allowed to take place at a temperature of 1 to 120 minutes, preferably 5 to 60 minutes.

反応後は処理延伸物を通常水洗し、未反応モノマー及び
、生成するホモポリマーを除去する。
After the reaction, the treated stretched product is usually washed with water to remove unreacted monomers and produced homopolymers.

前記方法で処理して得られる超高分子量ポリオレフィン
延伸物と接着あるいは成形材料を含浸させる極性材料と
しては、ポルトランドセメンI・、アルミナセメント等
のセメント、AJLz O3、S i OL%B今Cs
 TtB工、ZrBz等のセラミックス等の無機損性材
料、フェノール樹脂、エポキシ樹脂、不飽和ポリエステ
ル樹脂、ジアリルフタレート樹脂、ウレタン樹脂、メラ
ミン樹脂、ユリア樹脂等の熱硬化性樹脂、ナイロン、ポ
リエステル、ポリカーボネ−ト、ポリアセクール、ポリ
塩化ビニル、セルロース系樹脂、ポリスチレン、アクリ
ロニトリル−スチレン共重合体等の熱可塑性樹脂等の有
機極性材料等が挙げられ、これら極性材料としては、硬
化温度あるいは成形温度が超高分子量ポリオレフィン延
伸物の軟化点未満のものであれば両者を該軟化点以下で
加熱して接着が行える。一方、超高分子量ポリオレフィ
ン延伸物の軟化点を越える極性材料は有機溶媒等に極性
材料を溶解させた溶液に該延伸物を含浸させた後、有機
溶媒を除去乾燥する方法を採り得る。
Examples of the polar materials to be bonded to the stretched ultra-high molecular weight polyolefin obtained by the above method or impregnated with the molding material include cements such as Portland cement I and alumina cement, AJLz O3, S i OL%B, and Cs.
Inorganic loss materials such as ceramics such as TtB and ZrBz, thermosetting resins such as phenolic resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, urethane resin, melamine resin, and urea resin, nylon, polyester, and polycarbonate. Organic polar materials such as polyacecool, polyvinyl chloride, cellulose resins, polystyrene, thermoplastic resins such as acrylonitrile-styrene copolymers, etc. are used. If the polyolefin stretched product has a temperature below the softening point, the two can be bonded by heating below the softening point. On the other hand, for polar materials exceeding the softening point of the ultra-high molecular weight polyolefin stretched product, a method may be adopted in which the stretched product is impregnated with a solution in which the polar material is dissolved in an organic solvent or the like, and then the organic solvent is removed and dried.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、処理して得られる超高分子量ポリ
オレフィン延伸物は極性材料との接着性が著しく改良さ
れるので、例えば高弾性、高引張強度の超高分子量ポリ
オレフィン延伸物をの処理物を強化繊維として用いて、
ラケット、スキー、釣竿、ゴルフクラブ、竹刀等のスポ
ーツ用品、ヨツト、ボート、サーフィンボード等のレジ
ャー用品、人工関節、義歯台等の医療材料等の複合材を
作製した場合、未処理品に比べて、曲げ強度、曲げ弾性
率等の機械的強度が著しく改善される。
By the method of the present invention, the adhesiveness of the ultra-high molecular weight polyolefin stretched product obtained by the treatment with the polar material is significantly improved. Used as reinforcing fiber,
When manufacturing composite materials such as sporting goods such as rackets, skis, fishing rods, golf clubs, and bamboo swords, leisure goods such as yachts, boats, and surfing boards, and medical materials such as artificial joints and denture stands, the , mechanical strength such as flexural strength and flexural modulus is significantly improved.

〔実施例〕〔Example〕

実施例1 ■サムコインターナショナル研究所製の高周波プラズマ
処理装置を用いて、引張強度1.6GPa、引張弾性率
75GPa 、 Iji度150デニールの超高分子量
ポリエチレンモノフィラメントを出力50W、真空度2
 X 10−’ Torr、処理気体として窒素を用い
、処理時間90秒で処理する。これを、空気に触れさせ
ることなく、窒素バブリングによって十分脱気した50
(重量)%のアクリル酸水溶液に浸漬し、これを50℃
に加熱して、30分間放置する。後処理(重合)後、約
3時間水洗いして、生成したホモポリマー及び未反応モ
ノマーを洗浄し、終了後、約24時間減圧乾燥する。こ
れを試料としエポキシ樹脂(三井石油化学エポキシ製品
エボミツクR−1,40/Q−640= 100/60
)に埋め込み80℃で2時間硬化した後、引抜試験を行
った。試験方法はJIS、L、1017 r化学繊維ク
イヤコード試験方法の接着力A法(Tテスト)」に準じ
た。結果を表1に示す。
Example 1 ■Using a high-frequency plasma processing device manufactured by Samco International Laboratories, ultra-high molecular weight polyethylene monofilament with a tensile strength of 1.6 GPa, a tensile modulus of elasticity of 75 GPa, and an Iji degree of 150 denier was produced at an output of 50 W and a vacuum degree of 2.
The treatment is performed at X 10-' Torr, using nitrogen as the treatment gas, and for a treatment time of 90 seconds. This was thoroughly degassed by nitrogen bubbling without being exposed to air.
(by weight)% acrylic acid aqueous solution, and then heated at 50°C.
Heat to and leave for 30 minutes. After the post-treatment (polymerization), the product is washed with water for about 3 hours to wash away the produced homopolymer and unreacted monomers, and then dried under reduced pressure for about 24 hours. This was used as a sample and epoxy resin (Mitsui Petrochemicals epoxy product Ebomic R-1,40/Q-640 = 100/60
) and cured at 80° C. for 2 hours, then a pull-out test was conducted. The test method was in accordance with JIS, L, 1017r "Adhesion Strength A Method (T Test) of Test Methods for Chemical Fiber Curtain Cord". The results are shown in Table 1.

実施例2 実施例1と同様の超高分子量ポリエチレンモノフィラメ
ントを実施例1と同じ条件でプラズマ処理した後、窒素
バブリングによって十分脱気した50(重量)%のメタ
クリル酸水溶液に浸漬し、これを50℃に加熱して、3
0分間置く。水洗乾燥したものを試料とし、実施例1と
同じ(引抜く試験を行った。結果を表1に示す。
Example 2 The same ultra-high molecular weight polyethylene monofilament as in Example 1 was plasma treated under the same conditions as in Example 1, and then immersed in a 50% (by weight) aqueous methacrylic acid solution that had been sufficiently degassed by nitrogen bubbling. Heat to 3℃
Leave for 0 minutes. The sample was washed and dried and subjected to the same pull-out test as in Example 1. The results are shown in Table 1.

比較例1 実施例1と同様の超高分子量ポリエチレンモノフィラメ
ントをそのまま試料とし、実施例1と同じく引抜試験を
行った。結果を表1に示す。
Comparative Example 1 The same ultra-high molecular weight polyethylene monofilament as in Example 1 was used as a sample, and a drawing test was conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例2 実施例1と同様の超高分子量ポリエチレンモノフィラメ
ントを実施例1と同じ条件でプラズマ処理し、これを試
料として、引抜試験を行った。
Comparative Example 2 The same ultra-high molecular weight polyethylene monofilament as in Example 1 was plasma-treated under the same conditions as in Example 1, and a drawing test was conducted using this as a sample.

結果を表1に示す。The results are shown in Table 1.

実施例3 日新ハイボルテージ株式会社製の電子線照射装置を用い
て、実施例1と同様の超高分子量ポリエチレンモノフィ
ラメントを、加速電圧200KV、電子流6mAで照射
線量5メガラツドの条件で電子線照射処理する。これを
実施例1と同様に後処理し試料として、引を友試験を行
った。結果を表1に示す。
Example 3 Using an electron beam irradiation device manufactured by Nisshin High Voltage Co., Ltd., the same ultra-high molecular weight polyethylene monofilament as in Example 1 was irradiated with an electron beam under the conditions of an acceleration voltage of 200 KV, an electron current of 6 mA, and an irradiation dose of 5 megarads. Process. This was post-treated in the same manner as in Example 1 and used as a sample to perform a pull test. The results are shown in Table 1.

比較例3 実施例1と同様の超高分子量ポリエチレンモノフィラメ
ントに実施例2と同じ条件で電子線照射処理する。これ
を試料として引抜試験を行った。
Comparative Example 3 The same ultra-high molecular weight polyethylene monofilament as in Example 1 was subjected to electron beam irradiation treatment under the same conditions as in Example 2. A pullout test was conducted using this as a sample.

結果を表1に示す。The results are shown in Table 1.

表    1 実施例4 引張弾性率2.46GPa 、引張強度70GPa 、
フィラメント数120本及び繊度1000デニールの超
高分子量ポリエチレンマルチフィラメントに、実施例1
と同様の処理を施した。これを、2主のエポキシ樹脂(
EPO旧#p−3on+go及びR−140、三井石油
化学工業株式会社■製)、ジシアノジアミド、3−(P
−クロロフェニル) −1,1−ジメチルウレア及びジ
メチルホルムアミドをそれぞれ87.5/30/ 5 
/ 5 /25の重量比で混合した樹脂に含浸し、10
0℃で30分間乾燥さプリプレグを調製し、これを積層
した後、100℃で1時間プレス成形し、一方向積層板
を作製した。次いで、該積層板の曲げ強度、及び曲げ弾
性率(JIS K 691 ) 、層間せん耐強度(A
STM D 2&44 )を測定と7た。結果を表2に
示す。
Table 1 Example 4 Tensile modulus 2.46GPa, tensile strength 70GPa,
Example 1 was applied to an ultra-high molecular weight polyethylene multifilament having 120 filaments and a fineness of 1000 denier.
The same treatment was applied. This is combined with two main epoxy resins (
EPO old #p-3on+go and R-140, manufactured by Mitsui Petrochemical Industries, Ltd.), dicyanodiamide, 3-(P
-chlorophenyl) -1,1-dimethylurea and dimethylformamide at 87.5/30/5, respectively.
/ 5 / 25 weight ratio, impregnated with resin mixed with 10
Prepregs were prepared by drying at 0° C. for 30 minutes, and after being laminated, press molding was performed at 100° C. for 1 hour to produce a unidirectional laminate. Next, the bending strength, bending elastic modulus (JIS K 691), and interlaminar shear strength (A
STM D 2 & 44) was measured. The results are shown in Table 2.

比較例4 実施例4と同様の超高分子量ポリエチレンマルチフィラ
メントに何の処理も施さず、実施例4と同様にして試料
を作製し、同様の評価を行った。
Comparative Example 4 A sample was prepared in the same manner as in Example 4 without performing any treatment on the same ultra-high molecular weight polyethylene multifilament as in Example 4, and the same evaluation was performed.

結果を表2に示す。The results are shown in Table 2.

比較例5 実施例4と同様の超高分子量ポリエチレンマルチフィラ
メントに実施例1において行ったプラズマ処理を施し、
実施例4と同様にして試料を作製し、同様の評価を行っ
た。結果を表2に示す。
Comparative Example 5 The same ultra-high molecular weight polyethylene multifilament as in Example 4 was subjected to the plasma treatment in Example 1,
A sample was prepared in the same manner as in Example 4, and the same evaluation was performed. The results are shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] (1)超高分子量ポリオレフィン延伸物にプラズマ放電
処理もしくは電子線照射処理を施した後、該超高分子量
ポリオレフィン延伸物の表面に不飽和カルボン酸もしく
はその誘導体をグラフト重合させることを特徴とする超
高分子量ポリオレフィン延伸物の接着性を改良する方法
(1) Ultra-high molecular weight polyolefin drawn product is subjected to plasma discharge treatment or electron beam irradiation treatment, and then an unsaturated carboxylic acid or a derivative thereof is graft-polymerized on the surface of the ultra-high molecular weight polyolefin drawn product. A method for improving the adhesion of a drawn product of high molecular weight polyolefin.
JP19959685A 1985-09-11 1985-09-11 Improvement of adhesiveness Pending JPS6259637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19959685A JPS6259637A (en) 1985-09-11 1985-09-11 Improvement of adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19959685A JPS6259637A (en) 1985-09-11 1985-09-11 Improvement of adhesiveness

Publications (1)

Publication Number Publication Date
JPS6259637A true JPS6259637A (en) 1987-03-16

Family

ID=16410481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19959685A Pending JPS6259637A (en) 1985-09-11 1985-09-11 Improvement of adhesiveness

Country Status (1)

Country Link
JP (1) JPS6259637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300718A2 (en) * 1987-07-17 1989-01-25 Mitsui Petrochemical Industries, Ltd. Process for producing modified ultrahigh-molecular-weight polyolefins
WO1989011500A1 (en) * 1988-05-17 1989-11-30 Commonwealth Scientific And Industrial Research Or Hydrophilic non-swelling multilayer polymeric materials and process for their manufacture
US6494446B1 (en) 1999-03-24 2002-12-17 Nec Corporation Paper feeder
US20170158920A1 (en) * 2014-06-25 2017-06-08 Nok Corporation Thermoplastic adhesive sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600122A (en) * 1966-03-11 1971-08-17 Surface Aviat Corp Method of grafting ethylenically unsaturated monomer to a polymeric substrate
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS5943010A (en) * 1982-09-03 1984-03-09 Kanebo Ltd Hydrophilic film and its production
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600122A (en) * 1966-03-11 1971-08-17 Surface Aviat Corp Method of grafting ethylenically unsaturated monomer to a polymeric substrate
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS5943010A (en) * 1982-09-03 1984-03-09 Kanebo Ltd Hydrophilic film and its production
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300718A2 (en) * 1987-07-17 1989-01-25 Mitsui Petrochemical Industries, Ltd. Process for producing modified ultrahigh-molecular-weight polyolefins
WO1989011500A1 (en) * 1988-05-17 1989-11-30 Commonwealth Scientific And Industrial Research Or Hydrophilic non-swelling multilayer polymeric materials and process for their manufacture
US6494446B1 (en) 1999-03-24 2002-12-17 Nec Corporation Paper feeder
US20170158920A1 (en) * 2014-06-25 2017-06-08 Nok Corporation Thermoplastic adhesive sheet

Similar Documents

Publication Publication Date Title
JP2541567B2 (en) Fiber material for reinforcement
US5183701A (en) Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
KR910000813B1 (en) Polyolefins of ultrahigh molecular weight process for their manufacture and their use
JP3027225B2 (en) Manufacturing method of prepreg
CA2671842C (en) Process for improving the adhesion of carbon fibres with regard to an organic matrix
JPWO2018168554A1 (en) Adhesive composite of thermoplastic resin fiber reinforced composite material and metal member and method for producing the same
EP0175484A2 (en) Sized fibres
US4606930A (en) Method for treating fibers
US4952361A (en) Surface treatment of polyolefin objects
JPS6259637A (en) Improvement of adhesiveness
EP0311989B1 (en) Surface treatment of polyethylene fibers
JPS61276830A (en) Production of polyolefin product
JPS6387228A (en) Manufacture of composite body
JP2521696B2 (en) Method for producing polyolefin molded article with improved adhesion
JPH01156538A (en) Combination of polyolefin filament or yarn of low humidity and low bonding force, and filament or yarn of high humidity and high bonding strength
JPH01139866A (en) Fluorine type fiber for composite material
JPS6245634A (en) Improvement of adhesion
JPH01156531A (en) Combination of filaments having different damping responses to mechanical vibration in matrix and use thereof
Rakutt et al. The Toughness and Morphology Spectrum of
US20240067787A1 (en) Improved surface modification of materials
JPS62263376A (en) Fiber for composte material and production of composite material
JPH01260060A (en) Ultrahigh-molecular-weight polyolefin fiber and production thereof
JPH02194033A (en) Production of polyolefin molding of improved adhesiveness
JPH01221573A (en) Polypropylene nonwoven fabric modified with unsaturated carboxylic acid
JPH0571039A (en) Woven fabric for producing formed product and formed product