JPH01245779A - Film image pickup device - Google Patents
Film image pickup deviceInfo
- Publication number
- JPH01245779A JPH01245779A JP7363588A JP7363588A JPH01245779A JP H01245779 A JPH01245779 A JP H01245779A JP 7363588 A JP7363588 A JP 7363588A JP 7363588 A JP7363588 A JP 7363588A JP H01245779 A JPH01245779 A JP H01245779A
- Authority
- JP
- Japan
- Prior art keywords
- light
- glass plate
- transparent glass
- reflected
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/11—Scanning of colour motion picture films, e.g. for telecine
Landscapes
- Color Television Image Signal Generators (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明はネガアナライザ(カラーアナライザとも言う
)等に使用されるフィルム撮像装置の改良に関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to improvements in film imaging devices used in negative analyzers (also referred to as color analyzers) and the like.
「従来の技術」
写真や映画のフィルムの現像所では客の持ち込んだネガ
フィルムよりポジの写真とかポジフィルムを作成して納
品する。その際プリントロスを減らすため、プリント前
にネガをネガアナライザにかけて、それに付属のカラー
モニタ(ビデオモニタとも言う)上にポジ像を出し、そ
の再生映像が最も良くなる様に赤色、緑色及び青色それ
ぞれの濃さを変化させるツマミを調節し、そのときのツ
マミの位置変化より得られたデーターを基にして、ポジ
写真やポジフィルムの焼き付は時間が調節される。``Conventional technology'' At a photo or movie film processing laboratory, positive photographs or positive films are created from negative films brought in by customers and then delivered. At that time, in order to reduce print loss, the negative is run through a negative analyzer before printing, and a positive image is displayed on the attached color monitor (also called a video monitor). The printing time for positive photographs and positive film is adjusted based on the data obtained from the changes in the position of the knob.
現像所ではこの方法を採用することにより試めし焼きと
いうプリントを減らすことができる。By adopting this method in the photo lab, it is possible to reduce the number of test prints.
さて、このネガアナライザ(カラーアナライザ)の飛点
走査光源には普通、フライングスポット用ブラウン管が
使用される。このブラウン管は残光の短い螢光体が使用
され、テレビのブラウン管と同じ様に、光点が水平及び
垂直走査されて光源とされる。この光をレンズにより集
束させて、ネガフィルムに当て、そのフィルム上の映像
情報が透過光として取り出される。その光は効率よく集
められ、3色分解光学系、つまりダイクロイックミラー
により、R,G、Hの3原色に分解され、光電子増倍管
に送られる。そこで光情報はビデオ信号に変換され、そ
の後適当なプロセス回路を経て、カラーモニタ上にポジ
画像が形成される。Now, a flying spot cathode ray tube is normally used as the flying spot scanning light source of this negative analyzer (color analyzer). This cathode ray tube uses a phosphor with a short afterglow, and the light spot is scanned horizontally and vertically as a light source, similar to the cathode ray tube of a television. This light is focused by a lens and applied to a negative film, and the image information on the film is extracted as transmitted light. The light is efficiently collected and separated into the three primary colors of R, G, and H by a three-color separation optical system, that is, a dichroic mirror, and sent to a photomultiplier tube. There, the optical information is converted into a video signal, which then passes through appropriate processing circuitry to form a positive image on a color monitor.
上記の飛点走査光源の光をフィルムに照射して三色光を
得、それぞれの光を専用の光電子増倍管に入射させるま
での装置をフィルム撮像装置と称する。A device that irradiates a film with the light from the flying spot scanning light source to obtain three-color light and inputs each light into a dedicated photomultiplier tube is called a film imaging device.
従来のフィルム撮像装置を図面を参照して説明しよう。A conventional film imaging device will be explained with reference to the drawings.
第4図に示すように、飛点走査光源1から出射される光
(走査光と言い、次に述べる参照光は除かれる) So
はプリズム2ではソ直角に反射され、結像レンズ3を介
してフィルム4に入射される。フィルム4を透過した光
(信号光と呼ぶ)Sは集光レンズ6を介して反射鏡7に
入射されて直角に反射され、集光レンズ8及び収束レン
ズ9を順次弁してダイクロイックミラー10に入射され
る。この入射された光は同ミラー10で3原色の光、つ
まり赤色光SR,緑色光SG及び青色光SBに分解され
、それぞれの光はレンズ11を介して光電子増倍管12
に入射される。As shown in FIG. 4, light emitted from the flying spot scanning light source 1 (referred to as scanning light, excluding the reference light described below) So
is reflected at a right angle by the prism 2 and is incident on the film 4 via the imaging lens 3. The light S (referred to as signal light) that has passed through the film 4 is incident on the reflecting mirror 7 via the condensing lens 6 and is reflected at right angles. It is incident. This incident light is decomposed by the same mirror 10 into three primary color lights, that is, red light SR, green light SG, and blue light SB, and each light is passed through a lens 11 to a photomultiplier tube 12.
is incident on the
飛点走査光源1(水平走査方向を]aで示しである)の
各ラスターの初めの部分から出射される光(参照光と言
5)Uはプリズム20で直角に反射され、更に反射鏡2
1で直角に反射された後収束レンズ22を介してダイク
ロイックミラー23に入射され、三色光UR; Uo、
UBに分解され、それぞれの光は反射鏡24で直角に
反射され、凸レンズ25を経由した後反射鏡26で再た
び反射され、NDにュートラル、デンシティ)フィルタ
27で光量を小さくおとされて(参照光Uはフィルム4
を通らないので一般に光量が大きい)、光電子増倍管1
2に入射される。The light (reference light 5) emitted from the beginning of each raster of the flying spot scanning light source 1 (horizontal scanning direction is indicated by a) is reflected at right angles by a prism 20, and is further reflected by a reflecting mirror 2.
1 and then enters the dichroic mirror 23 via the converging lens 22, and the trichromatic light UR; Uo;
Decomposed into UB, each light is reflected at a right angle by a reflecting mirror 24, passes through a convex lens 25, is reflected again by a reflecting mirror 26, and is reduced in light intensity by an ND (neutral, density) filter 27. Reference light U is film 4
photomultiplier tube 1)
2.
それぞれの光電子増倍管12において、入射された信号
光及び参照光が光電変換されて、電気信号(ビデオ信号
) IR,IG 、 IBがそれぞれ出力される。In each photomultiplier tube 12, the input signal light and reference light are photoelectrically converted and electrical signals (video signals) IR, IG, and IB are output, respectively.
ダイクロイックミラー10及び23としては1個の大形
ミラーを共通に使用し、間に遮蔽板を入れて2つに区分
している。One large mirror is commonly used as the dichroic mirrors 10 and 23, and is divided into two by inserting a shielding plate between them.
ネガアナライザでは第5図に示すように、例えば赤用の
光電子増倍管12より出力されたビデオ信号IRはビデ
オ増幅器30で増幅されて、参照光分離回路31に供給
される(第6図A)。同回路31では別途与えられるゲ
ートパルス(第6図B)により、参照光による電気信号
(参照光信号と言う)TJ’の一部が抜き取られ、サジ
プルホールドされてその参照光信号のレベルを示す信号
(参照光レベル表示信号と言5)Lu(第6図C)が比
較器32の一方の入力端子に与えられる。また参照光分
解回路31ではビデオ増幅器30の出力(第6図A)よ
り参照光信号U′が消去されて赤色のビデオ信号がカラ
ーモニタ34に供給される。In the negative analyzer, as shown in FIG. 5, for example, the video signal IR output from the red photomultiplier tube 12 is amplified by the video amplifier 30 and supplied to the reference light separation circuit 31 (FIG. 6A). ). In the same circuit 31, a part of the electric signal (referred to as a reference optical signal) TJ' caused by the reference light is extracted by a separately applied gate pulse (Fig. 6B), and the level of the reference optical signal is adjusted by pulling and holding the electrical signal TJ'. A signal shown (referred to as a reference light level display signal 5) Lu (FIG. 6C) is applied to one input terminal of the comparator 32. Further, in the reference light decomposition circuit 31, the reference light signal U' is deleted from the output of the video amplifier 30 (FIG. 6A), and a red video signal is supplied to the color monitor 34.
比較器32では参照光レベル表示信号Luが基準電圧E
Oと比較され、両室圧の差に対応した制御信号が高圧発
生回路(光電子増倍管12に高圧を供給する回路)35
に供給され、参照光レベル表示信号Luが基準電圧EO
に等しくなるように、高圧発生回路35の出力電圧が制
御される。In the comparator 32, the reference light level display signal Lu is set to the reference voltage E.
0, and a control signal corresponding to the difference in pressure between the two chambers is sent to the high pressure generation circuit (circuit that supplies high pressure to the photomultiplier tube 12) 35.
The reference light level display signal Lu is supplied to the reference voltage EO.
The output voltage of the high voltage generation circuit 35 is controlled so that it becomes equal to .
光電子増倍管12は非常に感度が良く、またその利得が
印加直流電圧(高圧)を僅かに変化させるだけで容易に
変えられる。その反面、僅かの電源変動等があると、ビ
デオ信号のレベルがスフ変動する。また飛点走査光源l
のブラウン管の劣化や汚れ、光学系の汚れ、ビデオ増幅
器30の変動等のために、カラーモニタ34に供給され
るビデオ信号のレベルが変動する。上記の参照光信号を
利用した帰還系は、その変動を小さく抑えるために必要
なものである。The photomultiplier tube 12 is very sensitive, and its gain can be easily changed by slightly changing the applied DC voltage (high voltage). On the other hand, if there is a slight fluctuation in the power supply, the level of the video signal fluctuates rapidly. Also, flying point scanning light source l
The level of the video signal supplied to the color monitor 34 fluctuates due to deterioration or dirt on the cathode ray tube, dirt on the optical system, fluctuations in the video amplifier 30, and the like. The feedback system using the above-mentioned reference optical signal is necessary to suppress the fluctuation.
上記では赤色の帰還系を例として説明したが、緑色及び
青色それぞれの帰還系についても同様である。Although the red feedback system has been described above as an example, the same applies to the green and blue feedback systems.
「発明が解決しようとする課−」
従来のフィルム撮像装置では、ダイクロイックミラー及
びその入出力側の光学系を結像系と参照光系とでそれぞ
れ別個に設けねばならず、そのための部品点数が多くな
り高価になる欠点があった。"Problem to be solved by the invention" In a conventional film imaging device, a dichroic mirror and its input/output optical system must be provided separately for the imaging system and the reference optical system, which requires a large number of parts. It has the disadvantage of being expensive and expensive.
この発明の目的は、上記の欠点を解決してより経済的な
フィルム撮像装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and provide a more economical film imaging device.
「課題を解決するkめの手段」
従来の技術で述べたように、フィルム撮像装置では、飛
点走査光源よりの光をフィルムに透過し、その透過光を
ダイクロイックミラーに入射して、三色光に分解するが
、この発明では、上記フィルムとダイクロイックミラー
との間の光路に透明ガラス板が挿入され、上記飛点走査
光源の参照光領域からの参照光が上記透明ガラス板に入
射されて、その反射光が上記ダイクロイックミラーに入
射される。``The kth means to solve the problem'' As mentioned in the conventional technology, in film imaging devices, light from a flying spot scanning light source is transmitted through a film, and the transmitted light is incident on a dichroic mirror to produce three-color light. In this invention, a transparent glass plate is inserted in the optical path between the film and the dichroic mirror, and the reference light from the reference light area of the flying spot scanning light source is incident on the transparent glass plate, The reflected light is incident on the dichroic mirror.
「実施例」
この発明の実施例を第1図に、第4図と対応する部分に
は同じ符号を付けて示し、重複説明は省略する。この発
明ではフィルム4とダイクロイックミラー10との間の
光路、例えば集光レンズ8と収束レンズ9との間の光路
に、透明ガラス板4を45度傾けて配置し、信号光Sは
低損失で透過させる。(透過光は入射光のはゾ92%に
相当し、僅か0.8 dBの損失となる。)一方、プリ
ズム20より反射する参照光Uは必要に応じレンズ42
゜43を順次弁して透明ガラス板41に、信号光5の光
路に対して直角に入射させる。その入射された参照光U
のはソ92%は透明ガラス板41を透過するが、はソ8
%が収束レンズ9方向に反射し、それ以後信号光S用の
光学系が共通に利用される。Embodiment An embodiment of the present invention is shown in FIG. 1, with the same reference numerals attached to parts corresponding to those in FIG. 4, and redundant explanation will be omitted. In this invention, a transparent glass plate 4 is arranged at an angle of 45 degrees in the optical path between the film 4 and the dichroic mirror 10, for example, in the optical path between the condensing lens 8 and the converging lens 9, so that the signal light S can be transmitted with low loss. Transmit. (The transmitted light corresponds to 92% of the incident light, resulting in a loss of only 0.8 dB.) On the other hand, the reference light U reflected from the prism 20 is transmitted through the lens 42 as necessary.
43 in order to make the signal light 5 enter the transparent glass plate 41 at right angles to the optical path of the signal light 5. The incident reference light U
92% of the rays pass through the transparent glass plate 41, but 80% of the rays pass through the transparent glass plate 41.
% is reflected in the direction of the converging lens 9, and thereafter the optical system for the signal light S is commonly used.
詳しく説明すると、第2図に示すように、透明ガラス板
41に入射した信号光Sまたは参照光Uはそのガラス表
面で一部が反射され、残部がガラス板中に入射される。To explain in detail, as shown in FIG. 2, part of the signal light S or reference light U incident on the transparent glass plate 41 is reflected by the glass surface, and the remaining part is incident into the glass plate.
そのガラス板中に入射した入射光がそのガラス板の裏面
側でガラス媒体から空気中に抜は出す時に、一部がガラ
ス媒体中に反射され、残部が空気中に抜は出て透過光と
なる。When the incident light that enters the glass plate is extracted from the glass medium into the air on the back side of the glass plate, part of it is reflected into the glass medium, and the remaining part is extracted into the air and becomes transmitted light. Become.
このように透明ガラス板41に入射した光は、その表面
及び裏面で2回反射される。それぞれの反射光の入射光
に対する光量の比は
D−(nl−n2)2 (1)
n1+nz
で与えられる。ここで、nlはガラスの屈折率ではソ1
.5に等しく、n2は空気の屈折率で1であるので、D
=0.04(4%つとなる。即ち、入射光はガラスの表
面及び裏面でそれぞれその4%、従って合計8係が反射
されて反射光となり、残りの92係が透過光となる。The light incident on the transparent glass plate 41 in this manner is reflected twice on the front and back surfaces thereof. The ratio of the amount of each reflected light to the incident light is D-(nl-n2)2 (1)
It is given by n1+nz. Here, nl is So1 in the refractive index of glass.
.. 5 and n2 is the refractive index of air and is 1, so D
= 0.04 (4%). That is, 4% of the incident light is reflected on the front and back surfaces of the glass, so a total of 8 parts are reflected and become reflected light, and the remaining 92 parts become transmitted light.
以上の説明から明らかなように、透明ガラス板41に入
射した信号光Sの92%が透過してダイクロイックミラ
ー10に向うのに対して、参照光Uの8%が反射してダ
イクロイックミラー10に向うことになる。As is clear from the above description, 92% of the signal light S incident on the transparent glass plate 41 is transmitted and directed toward the dichroic mirror 10, while 8% of the reference light U is reflected and directed toward the dichroic mirror 10. I'll be heading there.
信号光Sは透明ガラス板41で0.8 dB程度の損失
を受けるが、その値は僅かであるので問題にならない。Although the signal light S suffers a loss of about 0.8 dB at the transparent glass plate 41, the loss is so small that it does not pose a problem.
また、ミラー10方向に向う参照光Uは、透明ガラス板
41に入射した参照光Uの8%であるが、もともと、参
照光Uはフィルム4を通らないので光量が大きく、従来
はNDミラー27で減衰させていたものである。この発
明の場合には、NDフィルタ27を用いる必要はなく、
その8%の反射光そのまメで信号光Sと程よ(バランス
が保たれる。Further, the reference light U directed toward the mirror 10 is 8% of the reference light U incident on the transparent glass plate 41, but since the reference light U does not pass through the film 4, the amount of light is large. It was attenuated by In the case of this invention, there is no need to use the ND filter 27,
The 8% reflected light is just the same as the signal light S (balance is maintained).
なお、第1図において飛点走査光源1を図の上方に向け
て、第3図に示すように、プリズム2を省略シ、結像レ
ンズ3を介してフィルム4に入射させ、一方、プリズム
20で直角に反射された参照光Uを反射鏡44で再度直
角に反射させて、レンズ32等を介して透明ガラス板4
1に入射させるようにすることもできる。In addition, in FIG. 1, the flying spot scanning light source 1 is directed upward in the figure, and as shown in FIG. The reference light U reflected at a right angle is reflected at a right angle again at a reflecting mirror 44, and is then reflected at a right angle through a lens 32 etc. to a transparent glass plate 4.
It is also possible to make the light incident on 1.
「発明の効果」
この発明によれば、フィルム4とダイクロイックミラー
10との間の光路に透明ガラス板41が挿入され、信号
光Sの大部分がそのガラス板41を透過し、参照光Uの
一部がそのガラス板41でダイクロイックミラー10方
向に反射して、それ以後、信号光用の光学系が共通に利
用される。従って、従来用いていた参照光用のダイクロ
イックミラー23及び各色毎に必要な反射鏡24,26
、凸レンズ25、NDフィルタ27等の多くの部品を縮
減できる。一方、透明ガラス板41等は安価に得られる
ものであるので、全体として大幅な経済化が可能となる
。"Effects of the Invention" According to the present invention, a transparent glass plate 41 is inserted in the optical path between the film 4 and the dichroic mirror 10, most of the signal light S is transmitted through the glass plate 41, and the reference light U is A portion of the light is reflected by the glass plate 41 in the direction of the dichroic mirror 10, and thereafter the signal light optical system is commonly used. Therefore, the conventionally used dichroic mirror 23 for reference light and the reflecting mirrors 24 and 26 required for each color.
, convex lens 25, ND filter 27, and many other parts can be reduced. On the other hand, since the transparent glass plate 41 and the like can be obtained at low cost, it is possible to significantly reduce the overall cost.
第1図はこの発明のフィルム撮像装置の実施例を示すブ
ロック系統図、第2図A及びBはそれぞれ第1図の透明
ガラス板41に信号光または参照光が入射した場合の入
射光、反射光及び透過光を示すための図、第3図はこの
発明の他の実施例の要部を示すためのブロック系統図、
第4図は従来のフィルム撮像装置のブロック系統図、第
5図はカラーアナライザにおいて、参照光を利用してビ
デオ信号のレベル変動を抑圧するための制御回路のブロ
ック図、第6図は第5図の要部の信号波形を示す図であ
る。
特許出願人 株式会社 イマジカFIG. 1 is a block diagram showing an embodiment of the film imaging device of the present invention, and FIGS. 2A and 2B show incident light and reflection when signal light or reference light is incident on the transparent glass plate 41 of FIG. 1, respectively. A diagram showing light and transmitted light; FIG. 3 is a block system diagram showing main parts of another embodiment of the present invention;
FIG. 4 is a block diagram of a conventional film imaging device, FIG. 5 is a block diagram of a control circuit for suppressing level fluctuations in a video signal using a reference light in a color analyzer, and FIG. It is a figure which shows the signal waveform of the principal part of a figure. Patent applicant Imagica Co., Ltd.
Claims (1)
透過光をダイクロイックミラーに入射して、三色光に分
解するフィルム撮像装置において、上記フィルムとダイ
クロイックミラーとの間の光路に透明ガラス板が挿入さ
れ、上記飛点走査光源の参照光領域からの参照光が上記
透明ガラス板に入射されて、その反射光が上記ダイクロ
イックミラーに入射されてなるフィルム撮像装置。(1) In a film imaging device that transmits light from a flying spot scanning light source through a film, and enters the transmitted light into a dichroic mirror to separate it into three-color light, a transparent glass is used in the optical path between the film and the dichroic mirror. A film imaging device in which a plate is inserted, reference light from a reference light area of the flying spot scanning light source is incident on the transparent glass plate, and reflected light thereof is incident on the dichroic mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63073635A JP2556726B2 (en) | 1988-03-28 | 1988-03-28 | Film imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63073635A JP2556726B2 (en) | 1988-03-28 | 1988-03-28 | Film imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01245779A true JPH01245779A (en) | 1989-09-29 |
JP2556726B2 JP2556726B2 (en) | 1996-11-20 |
Family
ID=13523963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63073635A Expired - Lifetime JP2556726B2 (en) | 1988-03-28 | 1988-03-28 | Film imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556726B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51139725A (en) * | 1975-05-28 | 1976-12-02 | Canon Inc | Optical system for t.v. camera with automatic adjusting devices |
JPS5321938A (en) * | 1976-08-12 | 1978-02-28 | Information Int Inc | Film reader |
JPS5661871A (en) * | 1979-10-24 | 1981-05-27 | Canon Inc | Television camera |
-
1988
- 1988-03-28 JP JP63073635A patent/JP2556726B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51139725A (en) * | 1975-05-28 | 1976-12-02 | Canon Inc | Optical system for t.v. camera with automatic adjusting devices |
JPS5321938A (en) * | 1976-08-12 | 1978-02-28 | Information Int Inc | Film reader |
JPS5661871A (en) * | 1979-10-24 | 1981-05-27 | Canon Inc | Television camera |
Also Published As
Publication number | Publication date |
---|---|
JP2556726B2 (en) | 1996-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2106070C1 (en) | Projection system for projection of color video picture and conversion lenses for said system | |
JPH0527345A (en) | Projection type display device | |
HU212690B (en) | Method and device for producing color picture points of a television picture | |
US4481414A (en) | Light collection apparatus for a scanner | |
JPH0713103A (en) | Optical device | |
EP0750822B1 (en) | Beam combiner for lcd projector | |
US6975337B2 (en) | Projection type image display device | |
JPH0628461B2 (en) | Projection display device | |
US5805244A (en) | Liquid crystal projector using a monochromatic liquid crystal display | |
US5621551A (en) | Immersed dichroic system for single projection lens liquid crystal video projector | |
US3624272A (en) | Trichromatic optical separator system using concave dichroic mirrors | |
JPS6175318A (en) | Apparatus for processing optical image with different wavelength | |
US3560647A (en) | Automatic focusing system | |
US4703360A (en) | Electronic slide projector providing chroma and luma inversion of a composite video signal | |
JPH0628460B2 (en) | Projection display device | |
JPH01245779A (en) | Film image pickup device | |
US2912488A (en) | Recording of color television programs | |
US4878111A (en) | Process and apparatus for the preparation of photographic images from transparent masters | |
JP2982990B2 (en) | Display device and optical unit | |
JPS63220681A (en) | Liquid crystal display device projector system | |
JPS6319601A (en) | Three-color separating optical device | |
US6829036B1 (en) | Modular removable digital image apparatus | |
JPS63231479A (en) | Projection type display device | |
JPH0527343A (en) | Projection type display device | |
JPH05183850A (en) | Liquid crystal video projector |