[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01219693A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH01219693A
JPH01219693A JP63046172A JP4617288A JPH01219693A JP H01219693 A JPH01219693 A JP H01219693A JP 63046172 A JP63046172 A JP 63046172A JP 4617288 A JP4617288 A JP 4617288A JP H01219693 A JPH01219693 A JP H01219693A
Authority
JP
Japan
Prior art keywords
radiation
sensor
opening
semiconductor
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046172A
Other languages
Japanese (ja)
Inventor
Masahiro Deguchi
出口 昌宏
Hiromasa Funakoshi
裕正 船越
Toshiyuki Kawahara
俊之 河原
Yoshiyuki Yoshizumi
嘉之 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63046172A priority Critical patent/JPH01219693A/en
Publication of JPH01219693A publication Critical patent/JPH01219693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To reduce a cross talk to an adjacent sensor by a construction wherein a semiconductor radiation sensor is covered with a radiation shield having an opening so that an incident radiation may be incident on and absorbed by the central part of a sensitive part of the semiconductor radiation sensor. CONSTITUTION:A radiation detector is provided with a shield 4 having an opening 4a for the incidence of an X-ray 1, above a split-type electrode of an electrode 3 provided on the opposite sides of a radiation sensor array 2, i.e. an electrode on the side in the direction of the incidence of the X-ray. The widths l1 and l2 of the opening 4a of this shield 4 are set to be smaller than the corresponding widths n1 and n2 of the radiation-sensitive part of a semiconductor radiation sensor, respectively. Therefore part of the incident X-ray is cut and it falls only on an X-ray-sensitive incidence area 5, which is a hatched part. This constitution makes it possible to reduce an escape peak of a characteristic X-ray due to a material of the radiation, to reduce a cross talk and to improve the precision in measurement.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は放射線エネルギーをスペクトル分析できる微小
放射線センサ、診断用X線透過像癲影装置及び非破壊検
査装置に用いられる最小放射線センサアレイから構成さ
れた放射線検出器に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention consists of a micro radiation sensor capable of spectral analysis of radiation energy, a minimum radiation sensor array used in a diagnostic X-ray transmission imaging device, and a non-destructive inspection device. It relates to radiation detectors.

従来の技術 まず第7図を用いて放射線の光電効果による吸収原理を
示す。
Prior Art First, the principle of absorption of radiation by the photoelectric effect will be shown using FIG.

入射放射線71が原子72に入射すると、殻外軌道電子
のうちに殻電子73に主として吸収され、K殻電子が励
起電子74として殻外に放出される。
When the incident radiation 71 enters the atom 72, it is mainly absorbed by the shell electrons 73 among the extra-shell orbital electrons, and the K-shell electrons are emitted outside the shell as excited electrons 74.

この励起成子74が半導体の中で成子−正孔対を生じさ
せ、その電子−正孔対により生じる電流もしくは電圧を
パルス計測することにより放射線の光子数の検出が可能
となる。このに殻電子の無くなった状態は、より外殻の
電子かに殻軌道に入ることによりおぎなわれる。この外
殻電子かに殻に遷移すると、軌道エネルギー差のエネル
ギーをに膜特性X線76として放出する。このに膜特性
X線7eも原子に吸収されると同様に電子放出を生じ、
電子−正孔対を生じさせ電流もしくは電圧のパルスとし
て計測することができる。
The excited electrons 74 generate electron-hole pairs in the semiconductor, and the number of photons of radiation can be detected by pulse-measuring the current or voltage generated by the electron-hole pairs. This state where there are no outer shell electrons can be achieved by the electrons in the outer shell entering the shell orbit. When this outer shell electron transits to the crab shell, the energy of the orbital energy difference is emitted as membrane characteristic X-rays 76. In addition, when the film characteristic X-ray 7e is also absorbed by atoms, electrons are emitted in the same way,
Electron-hole pairs are generated and can be measured as pulses of current or voltage.

この現象を半導体放射線センサ内の現象として表わした
のが第8図である。第8図に示した半導体放射線センサ
は全空乏層型のセンサである。半導体放射線センサ76
内で放射線が吸収されると、励起電子74とに膜特性X
線76とを生じ励起電子74は半導体結晶中でエネルギ
ーを失い電子−正孔対を生じるが、K殻特性X線76は
結晶表面近傍で生じた場合は結晶外に放射される場合が
ある。この結晶外に出る現象をに殻特性X線エスケープ
77と呼び、この現象が生じると検出器から出力される
電荷量は減少し、用カパルスの波高値が小さくなる。こ
の現象を出力パルス波高値で示したのが第9図である。
FIG. 8 shows this phenomenon as a phenomenon within a semiconductor radiation sensor. The semiconductor radiation sensor shown in FIG. 8 is a fully depleted layer type sensor. Semiconductor radiation sensor 76
When radiation is absorbed in the film, the excited electrons 74 and the film properties
The excited electrons 74 that generate the rays 76 lose energy and generate electron-hole pairs in the semiconductor crystal, but when the K-shell characteristic X-rays 76 are generated near the crystal surface, they may be emitted outside the crystal. This phenomenon of the radiation exiting the crystal is called shell characteristic X-ray escape 77, and when this phenomenon occurs, the amount of charge output from the detector decreases, and the peak value of the optical coupler decreases. FIG. 9 shows this phenomenon using output pulse peak values.

なお、第8図において、了8は放射線半導体センサの電
極を示す。第9図aは単一エネルギーの入射放射線のエ
ネルギーと光子数の関係を示したものである。このよう
な単一エネルギーEの放射線が入射した場合、半導体放
射線センサからの出力パルス波高分布を実測すると第9
図すのようになる。すなわち、入射エネルギーEに対応
した波高のパルスと、エネルギーE−Ei(E、:に殻
電子の束縛エネルギー)に対応した波高のパルスの2つ
のパルス群に分かれることになる。
In FIG. 8, reference numeral 8 indicates an electrode of the radiation semiconductor sensor. FIG. 9a shows the relationship between the energy of monoenergetic incident radiation and the number of photons. When such radiation with a single energy E is incident, the actual measurement of the output pulse height distribution from the semiconductor radiation sensor results in the 9th
It will look like the diagram. That is, it is divided into two groups of pulses: a pulse with a wave height corresponding to the incident energy E and a pulse with a wave height corresponding to the energy E-Ei (E: binding energy of shell electrons).

発明が解決しようとする課題 上記のごとく、入射する単一の放射線エネルギーに対し
て、出力パルス波高は、入射放射線エネルギーに対応し
た大きさのパルス群と、K膜特性X線エスケープにより
生じる入射放射線エネルギーよう低いエネルギーに対応
した大きさのパルス群の2つのエネルギー群に分かれる
という問題があり、混在する複数の放射線エネルギー群
における測定においては、大きな測定誤差を生じること
となる。またセンサアレイにおいて、K膜特性X線が、
隣接するセンサに入射し吸収された場合は、信号の隣接
センサへのクロストークとなシ問題となる。
Problems to be Solved by the Invention As mentioned above, for a single incident radiation energy, the output pulse height is divided into a group of pulses with a size corresponding to the incident radiation energy and the incident radiation generated by the K film characteristic X-ray escape. There is a problem that the radiation energy is divided into two energy groups, a pulse group having a size corresponding to a low energy, and a large measurement error occurs when measuring a plurality of mixed radiation energy groups. In addition, in the sensor array, K film characteristic X-rays
If the signal is incident on and absorbed by an adjacent sensor, there will be a problem of crosstalk of the signal to the adjacent sensor.

上記問題を解決するためには、光電効果により発生する
に膜特性X線の半導体放射線センサ76外へのに殻特性
X線エスケープ77を減らし、半導体放射線センサ75
内ですべての入射エネルギーが吸収されるようにすれば
よい。
In order to solve the above problem, it is necessary to reduce the escape 77 of the membrane characteristic X-rays to the outside of the semiconductor radiation sensor 76 of the membrane characteristic X-rays generated by the photoelectric effect, and to
It is sufficient that all the incident energy is absorbed within.

本発明は上記の観点にもとづいて、X線エスケープによ
る測定誤差が生じない放射線検出器を提供することを目
的とするものである。
Based on the above-mentioned viewpoint, the present invention aims to provide a radiation detector that does not cause measurement errors due to X-ray escape.

課題を解決するための手段 上記目的を達成するために本発明の放射線検出器は、半
導体放射線センサを開口部を有する放射線遮蔽体で覆い
、入射放射線が半導体放射線センサの有感部分の中央部
分に入射し、中央部分で吸収されるようにし、生じたに
膜特性X線が半導体放射線センサの表面近傍に到達する
以前、また隣接するセンサに入射する以前に再吸収され
るようにしたものである。
Means for Solving the Problems In order to achieve the above object, the radiation detector of the present invention covers a semiconductor radiation sensor with a radiation shielding member having an opening, so that incident radiation is directed to the central part of the sensitive part of the semiconductor radiation sensor. It is designed so that the X-rays incident on the semiconductor radiation sensor are absorbed in the central part, and the resulting film characteristic X-rays are reabsorbed before they reach the vicinity of the surface of the semiconductor radiation sensor or before they are incident on adjacent sensors. .

作  用 上記構成により、半導体放射線センサ内で発生するX線
の大半を半導体放射線センサ内で再吸収させることによ
り、出力パルス波高分布は入射エネルギーに対応した分
布となり、特性X線エスケープによる信号成分を減らし
、隣接センサへのクロストークを減らすことが可能とな
る。
Effect With the above configuration, by reabsorbing most of the X-rays generated within the semiconductor radiation sensor, the output pulse height distribution becomes a distribution corresponding to the incident energy, and the signal component due to characteristic X-ray escape is suppressed. This makes it possible to reduce crosstalk to adjacent sensors.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。第1図は本発明の放射線検出器の一実施例の構成
を示す斜視図である。矢印a方向からのX線1の入射に
対し、対射線センサアレイ2の両面にもうけた電極′3
の分割型電極すなわちX線入射方向側の電極の上方に、
X線に対する開口部4aを有する遮蔽体4をもうける。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the structure of an embodiment of the radiation detector of the present invention. In response to the incidence of X-rays 1 from the direction of arrow a, electrodes '3 provided on both sides of the radiation sensor array 2
Above the split electrode, that is, the electrode on the side of the X-ray incident direction,
A shield 4 is provided having an opening 4a for X-rays.

この遮蔽体4の開口部4aの各幅11,12は夫々半導
体放射線センサの放射線有感部分の対応する各幅n1゜
n2より小さく設定されている。このため入射するX線
の一部がカットされ、第1図の斜線部であるX線有感入
射面積6のみに入射する。すなわちセンサの周端部分お
よび隣接するセンサとの境界部分へのX線の入射が遮蔽
される。この第1図に示した放射線検出器の断面図を第
2図に示す。入射X線1は遮蔽体4により遮蔽されて、
斜線で示すX線有感体積6aに入射する。X線有感体積
5a内でX線が吸収されると、K膜特性X線6が発生し
、一部が斜線部分であるX線有感体積6aの外へ出るも
のが存在する。遮蔽体4で遮蔽された部分も放射線に対
して有感部分であるが、この各センサ毎の遮蔽幅dが設
けられているために、センサ7内で発生したに膜特性X
線6は隣のセンサ7aに到達せず、大半がセンサ7内で
再び吸収され、センサ7の電極から出力されるパルスの
高さは、K膜特性X線エスケープのないパルス出カドな
る。
The widths 11 and 12 of the opening 4a of the shield 4 are set smaller than the corresponding widths n1 and n2 of the radiation sensitive portion of the semiconductor radiation sensor. Therefore, a part of the incident X-rays are cut off and are incident only on the X-ray sensitive incident area 6, which is the shaded area in FIG. That is, the incidence of X-rays on the peripheral edge portion of the sensor and the boundary portion with an adjacent sensor is blocked. A sectional view of the radiation detector shown in FIG. 1 is shown in FIG. Incident X-rays 1 are blocked by a shielding body 4,
The light is incident on an X-ray sensitive volume 6a indicated by diagonal lines. When X-rays are absorbed within the X-ray sensitive volume 5a, K film characteristic X-rays 6 are generated, and some of them exit outside the X-ray sensitive volume 6a, which is the shaded area. The part shielded by the shielding body 4 is also a part sensitive to radiation, but since the shielding width d is provided for each sensor, the film characteristic X of the radiation generated in the sensor 7 is
The line 6 does not reach the neighboring sensor 7a, most of it is absorbed again in the sensor 7, and the height of the pulse output from the electrode of the sensor 7 is that of the pulse output without the K-film characteristic X-ray escape.

この遮蔽幅dは大きい程エスケープを防止できるが、セ
ンサアレイの場合には必要空間分解能などから1個のセ
ンサの大きさが決定されるため遮蔽+[dを大きくしす
ぎると各センサの放射線入射部が減少し、感度低下をき
たす。従ってに殻特性X線光子エネ〃ギーに対する半価
層幅が一つの目安となる。
The larger the shielding width d is, the better the escape can be prevented; however, in the case of a sensor array, the size of each sensor is determined based on the required spatial resolution, etc. This results in a decrease in sensitivity. Therefore, the half-value layer width for the shell characteristic X-ray photon energy can be used as a guideline.

第3図にセンサに遮蔽体を取シ付けた場合と遮蔽体をつ
けない場合との特性測定例を示す。第3図Aは遮蔽体の
ある場合のパルス波高分布、Bは遮蔽体のない場合のパ
ルス波高分布である。これらの分布A、Bから明らかな
ように遮蔽体の存在によりパルス数は減少したが、パル
ス高さの低い第2のピーク、すなわちに殻特性X線エス
ケープピークが、点すから点aのように減少しているこ
とが分かる。なお分布Aにおけるピークとの存在は電極
方向から放出したに膜特性X線によるものである。また
第1図、第2図におけるX線入射側の半導体センサアレ
イ2の分極型電極3の谷幅m1゜m2はX線の入射部の
有感体積5a外へ出たに膜特性X線6を有効に吸収する
ために、お互いの電極間干渉を起こさない範囲で大きい
ほど良い。従って電極3の谷幅m19m2は遮蔽体4の
開口部4aの対応する各幅11,12以上とするのが好
ましい。
FIG. 3 shows an example of measuring characteristics when a shield is attached to the sensor and when the shield is not attached. FIG. 3A shows the pulse height distribution with a shield, and FIG. 3B shows the pulse height distribution with no shield. As is clear from these distributions A and B, the number of pulses decreased due to the presence of the shielding body, but the second peak with a lower pulse height, that is, the shell characteristic X-ray escape peak, It can be seen that it has decreased. Note that the presence of a peak in distribution A is due to membrane characteristic X-rays emitted from the electrode direction. In addition, the valley width m1゜m2 of the polarized electrode 3 of the semiconductor sensor array 2 on the X-ray incident side in FIGS. In order to absorb effectively, the larger the electrode is, the better, as long as it does not cause interference between the electrodes. Therefore, it is preferable that the valley width m19m2 of the electrode 3 is greater than or equal to the corresponding widths 11 and 12 of the opening 4a of the shield 4.

ところで、ここまでは遮蔽体4の開口部4aの形状とし
て第4図aの四辺形のものについて説明したが、第4図
すの円形のものについてもその外形の設定にともなう作
用、効果については同様のことが言える。また開口部4
aは中空でなくても放射線透過物質で充填されていても
よいのは明らかである。
By the way, so far we have explained the quadrilateral shape of the opening 4a of the shielding body 4 shown in FIG. The same can be said. Also, the opening 4
It is clear that a may not be hollow or may be filled with radiolucent material.

第6図に本発明の他の実施例を示す。第1図。FIG. 6 shows another embodiment of the invention. Figure 1.

第2図の実施例において遮蔽体を設は半導体放射線セン
サにおける特性X線のエスケープを減少し、出力パルス
波高分布を入射エネルギーに対応した分布とし、隣接セ
ンサへのクロストークを減らす方法について述べた。し
かし高い空間分解能を必要とする場合には各半導体セン
サの形状が微小となり、充分な遮蔽体4の遮蔽@dがと
れず、またたとえ遮蔽幅dを十分とったとしても、その
針筒3図で述べた如く感度の劣化を招き、微小形状のセ
ンサでは致命的な欠点となる。第6図はこのような高空
間分解能を要求される複数個の半導体センサからなる半
導体センサアレイに好適な構成を示すものである。放射
線センサアレイ2には図面の上方から下方に向かって放
射線が入射する。放射線センサアレイ2には第1図、第
2図と同様に上下両面に電極が設けられ、放射線入射側
に分割型電極3を有している。放射線センサアレイ2の
上方(放射線入射方向側)には開口部4aを有する遮蔽
体4が設けられている。遮蔽体4の開口部4aの谷幅1
1,12は放射線センサアレイ2の各センサの放射線有
感部分の対応する谷幅n1;n2より小さく設定される
。また分割型電極3の谷幅は夫々対応する遮蔽体4の開
口部4aの各幅以上で各センサの放射線有感部分の各幅
以下である。
In the example shown in Fig. 2, a method was described in which a shield is provided to reduce the escape of characteristic X-rays in a semiconductor radiation sensor, to make the output pulse height distribution correspond to the incident energy, and to reduce crosstalk to adjacent sensors. . However, when high spatial resolution is required, the shape of each semiconductor sensor becomes minute, and sufficient shielding @d of the shielding body 4 cannot be achieved, and even if a sufficient shielding width d is provided, the needle barrel 3 As mentioned above, this leads to deterioration of sensitivity, which is a fatal drawback in micro-shaped sensors. FIG. 6 shows a configuration suitable for a semiconductor sensor array consisting of a plurality of semiconductor sensors that requires such high spatial resolution. Radiation enters the radiation sensor array 2 from the top to the bottom of the drawing. The radiation sensor array 2 is provided with electrodes on both upper and lower surfaces as in FIGS. 1 and 2, and has a split electrode 3 on the radiation incident side. A shielding body 4 having an opening 4a is provided above the radiation sensor array 2 (on the radiation incident direction side). Valley width 1 of opening 4a of shielding body 4
1 and 12 are set smaller than the corresponding valley width n1;n2 of the radiation sensitive portion of each sensor of the radiation sensor array 2. Further, the valley widths of the split electrodes 3 are greater than or equal to the widths of the openings 4a of the corresponding shields 4 and less than the widths of the radiation sensitive portions of the respective sensors.

第6図では放射線センサアレイ2の各センサは第1.2
図と異なり2列に交互に千鳥状に配列されている。従っ
て1列に配列した場合と違って隣接センサ1個分を遮蔽
部2dとすることができ、遮蔽体4の開口部4aの大き
さを遮蔽体がない場合のセンサの大きさに設定すること
ができる。第6図に本構成のセンサの出力特性を示す。
In FIG. 6, each sensor of the radiation sensor array 2 is
Unlike the figure, they are arranged alternately in two rows in a staggered manner. Therefore, unlike the case where they are arranged in one row, one adjacent sensor can be used as the shielding part 2d, and the size of the opening 4a of the shielding body 4 can be set to the size of the sensor when there is no shielding body. Can be done. FIG. 6 shows the output characteristics of the sensor with this configuration.

第6図Bは第3図Bと同様の遮蔽体のない場合のパルス
波高分布、Cは本構成のセンサのパルス波高分布である
。本構成のセンサ出力がパルス数は遮蔽体のない場合と
一致し、パルス高さの低いピークC1すなわちに殻特性
X線エスケープビークも第3図Aの特性のピークと同程
度に減少していることがわかる。ピークCの存在は第1
図、第2図の構成のものと同様に電極方向から放出した
に殻特性X線によるものである。第6図ではセンサを2
列に配列する方法について述べたが、2列以上の複数列
に配列することも可能である。
FIG. 6B shows the pulse height distribution without a shield similar to FIG. 3B, and C shows the pulse height distribution of the sensor with this configuration. In the sensor output of this configuration, the number of pulses matches that of the case without the shield, and the peak C1 with low pulse height, that is, the shell characteristic X-ray escape peak, has also decreased to the same extent as the characteristic peak in Figure 3A. I understand that. The presence of peak C is the first
This is due to shell characteristic X-rays emitted from the direction of the electrodes, similar to the configurations shown in FIGS. In Figure 6, the sensor is 2
Although the method of arranging in columns has been described, it is also possible to arrange in two or more columns.

以上放射線センサアレイについて述べたが、本発明は単
一の放射線センサに応用できるのは明白である。また上
述の説明において、特性X線をに殻についてのみ進めた
が、L、M等のよい外殻との光電効果により生じる特性
x4はエネルギーが小さく、特性X線エスケープの確率
は小さく問題にならないので省略した。
Although a radiation sensor array has been described above, it is clear that the present invention can be applied to a single radiation sensor. In addition, in the above explanation, the characteristic X-rays were discussed only for the crab shell, but the characteristic x4 produced by the photoelectric effect with good outer shells such as L and M has low energy, and the probability of characteristic X-ray escape is small and does not pose a problem. Therefore, I omitted it.

なお半導体放射線センサの半導体材料としてテルル化カ
ドミウム(CdTe)、シリコン(Si)。
Note that cadmium telluride (CdTe) and silicon (Si) are used as semiconductor materials for semiconductor radiation sensors.

ゲ7yマニウム(Go)、ヒ化ガ−リウム(GaAs)
Ge7y manium (Go), gallium arsenide (GaAs)
.

ヨウ化水銀(H9I)のいずれかを用いることができる
。また遮蔽体材料としてタングステン、鉛。
Either mercury iodide (H9I) can be used. Also tungsten and lead as shielding materials.

金、プラチナ等原子番号の高いものを用いれば効果的で
ある。
It is effective to use materials with high atomic numbers such as gold and platinum.

以上の説明においてはセンサの出力特性は入射放射線の
エネルギーに対応したパルス波高値を有するパルス数と
して説明したが、入射放射線のエネルギーに対応して発
生する電流又は電圧値(電荷量)を計測し、入射エネル
ギーに対応した出力を得る検出方法にも適用することが
できる。
In the above explanation, the output characteristics of the sensor were explained as the number of pulses having a pulse height value corresponding to the energy of the incident radiation. , it can also be applied to a detection method that obtains an output corresponding to the incident energy.

発明の効果 本発明によれば、放射線センサの放射線有感部分の谷幅
より狭い開口部を有する遮蔽体を設けることにより放射
線センサの材料に起因する特性X線の発生の大半を、放
射線センサ内で再吸収させ、特性X線のエスケープピー
クを減少させ、放射線センサのエネルギー分解能を向上
させることができる。また放射線センサアレイにおける
隣接センサ間のクロストークを減少し計測精度を向上す
ることが可能となる。
Effects of the Invention According to the present invention, most of the characteristic It is possible to reduce the escape peak of characteristic X-rays and improve the energy resolution of the radiation sensor. Furthermore, crosstalk between adjacent sensors in the radiation sensor array can be reduced and measurement accuracy can be improved.

また放射線センサアレイのセンサを複数列に配列するこ
とにより高空間分解能を持ち、感度の良い、特性x#!
エスケープの少ない放射線センサアレイを実現すること
が可能となる。
In addition, by arranging the sensors of the radiation sensor array in multiple rows, it has high spatial resolution and high sensitivity.
It becomes possible to realize a radiation sensor array with less escape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体放射線検出器の斜視
図、第2図はその断面図、第3図は遮蔽体の有無による
パルス波高の変化を示す特性図、第4図は遮蔽体の形状
を示す平面図、第5図は本発明の他の実施例の半導体セ
ンサアレイの平面図、第6図は第5図の構成によるセン
サのパルス波高特性図、第7図はに殻光電吸収の原理を
示す模式図、第8図は半導体放射線センサの原理を示す
断面図、第9図は単一エネルギーの入射に対する放射線
センサの出力パルス波高分布を示す特性図である。 2・・・・・・放射線センサアレイ、4・・・・・・遮
蔽体、4a・・・・・・開口部、6・・・・・・X線有
感入射面積。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
X線 ?−−−衣料衾果センブアレイ 3− 電板 4−−一遮蒼更る本 七−遮菊ン未の開口部 第1図 7   ″′ 第 2 図 第5図 第6図 ハ9ルス高さ 第7図 7S−−2牛1阜イ奉辰身丁をばセシブ第 8 図  
            77−にた乏丹/I生xiニ
スグー7゜713・−電層E I        ″
FIG. 1 is a perspective view of a semiconductor radiation detector according to an embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a characteristic diagram showing changes in pulse height depending on the presence or absence of a shield, and FIG. 5 is a plan view of a semiconductor sensor array according to another embodiment of the present invention; FIG. 6 is a pulse height characteristic diagram of the sensor having the configuration shown in FIG. 5; and FIG. 7 is a crab shell. FIG. 8 is a schematic diagram showing the principle of photoelectric absorption, FIG. 8 is a sectional view showing the principle of a semiconductor radiation sensor, and FIG. 9 is a characteristic diagram showing the output pulse height distribution of the radiation sensor with respect to incidence of a single energy. 2... Radiation sensor array, 4... Shielding body, 4a... Opening, 6... X-ray sensitive incident area. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
X-ray? ---Clothing result assembly array 3--Electric plate 4--A blue book 7--Opening of the screen Figure 1 7 ″' Figure 2 Figure 5 Figure 6 Figure 6 Hall height 7Figure 7S--2 Cow 1st position
77-Nitahotan/I life xi Nisgu 7゜713・-Electric layer E I''

Claims (2)

【特許請求の範囲】[Claims] (1)放射線光子に応答する半導体放射線センサと、こ
の半導体放射線センサの放射線入射側面に配設された電
極と、この電極の放射線入射側に配設された開口部を有
する放射線遮蔽体とを備え、前記放射線遮蔽体の開口部
の開口面積を対向する前記半導体放射線センサの放射線
有感部分の面積より小さくし、かつ前記電極の前記開口
部に対向する電極面積を前記開口部の開口面積より小さ
くすることを特徴とする放射線検出器。
(1) Comprising a semiconductor radiation sensor that responds to radiation photons, an electrode disposed on the radiation incident side of the semiconductor radiation sensor, and a radiation shield having an opening disposed on the radiation incident side of the electrode. , the opening area of the opening in the radiation shield is smaller than the area of the opposing radiation-sensitive portion of the semiconductor radiation sensor, and the area of the electrode facing the opening is smaller than the opening area of the opening. A radiation detector characterized by:
(2)半導体放射線センサ部を複数千鳥状に配列してな
る半導体センサアレイと、前記各センサ部毎にそれぞれ
放射線入射側に配設された電極と、前記各センサ部に対
応するように開口部が設けられた放射線遮蔽板とを備え
、前記放射線遮蔽体の開口部の開口面積を対向する前記
センサ部の放射線有感部分の面積より小さくしたことを
特徴とする放射線検出器。
(2) A semiconductor sensor array formed by arranging a plurality of semiconductor radiation sensor sections in a staggered manner, an electrode disposed on the radiation incident side for each of the sensor sections, and an opening corresponding to each of the sensor sections. A radiation shielding plate provided with a radiation shielding plate, wherein the opening area of the opening of the radiation shielding body is made smaller than the area of the radiation-sensitive portion of the opposing sensor unit.
JP63046172A 1988-02-29 1988-02-29 Radiation detector Pending JPH01219693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046172A JPH01219693A (en) 1988-02-29 1988-02-29 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046172A JPH01219693A (en) 1988-02-29 1988-02-29 Radiation detector

Publications (1)

Publication Number Publication Date
JPH01219693A true JPH01219693A (en) 1989-09-01

Family

ID=12739607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046172A Pending JPH01219693A (en) 1988-02-29 1988-02-29 Radiation detector

Country Status (1)

Country Link
JP (1) JPH01219693A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808334A1 (en) * 2000-04-27 2001-11-02 Commissariat Energie Atomique DETECTOR DEVICE FOR DETECTING IONIZING RADIATION
JP2003102714A (en) * 2001-09-26 2003-04-08 Ge Medical Systems Global Technology Co Llc X-ray ct system, gantry device, operation console and processing method therefor
JP2005322909A (en) * 2004-05-04 2005-11-17 General Electric Co <Ge> Solid X-ray detector with improved spatial resolution
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medicine diagnostic apparatus and radiation detection method in nuclear medicine diagnostic apparatus
JP2008089354A (en) * 2006-09-29 2008-04-17 Hitachi Ltd Semiconductor radiation detector and positron emission tomography system
JP2011089901A (en) * 2009-10-22 2011-05-06 Sumitomo Heavy Ind Ltd Detection result correction method, radiation detection device and program using the same, and recording medium for recording the program
CN105682553A (en) * 2013-10-22 2016-06-15 皇家飞利浦有限公司 X-ray system, in particular a tomosynthesis system and a method for acquiring an image of an object

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808334A1 (en) * 2000-04-27 2001-11-02 Commissariat Energie Atomique DETECTOR DEVICE FOR DETECTING IONIZING RADIATION
EP1156347A1 (en) * 2000-04-27 2001-11-21 Commissariat A L'energie Atomique An ionisation radiation detector holder
JP2003102714A (en) * 2001-09-26 2003-04-08 Ge Medical Systems Global Technology Co Llc X-ray ct system, gantry device, operation console and processing method therefor
JP2005322909A (en) * 2004-05-04 2005-11-17 General Electric Co <Ge> Solid X-ray detector with improved spatial resolution
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medicine diagnostic apparatus and radiation detection method in nuclear medicine diagnostic apparatus
JP2008089354A (en) * 2006-09-29 2008-04-17 Hitachi Ltd Semiconductor radiation detector and positron emission tomography system
JP2011089901A (en) * 2009-10-22 2011-05-06 Sumitomo Heavy Ind Ltd Detection result correction method, radiation detection device and program using the same, and recording medium for recording the program
CN105682553A (en) * 2013-10-22 2016-06-15 皇家飞利浦有限公司 X-ray system, in particular a tomosynthesis system and a method for acquiring an image of an object

Similar Documents

Publication Publication Date Title
JP4416318B2 (en) Method and apparatus for obtaining an image by plane beam radiography, and radiation detector
JP5162085B2 (en) Solid X-ray detector with improved spatial resolution
US6037595A (en) Radiation detector with shielding electrode
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
JP5457635B2 (en) Computerized tomography detector and method of manufacturing the same
US7734017B2 (en) Anti-scatter-grid for a radiation detector
JP2008311651A (en) Structure of semiconductor photomultiplier
JP7199455B2 (en) X-ray detector design
EP0293094B1 (en) Radiation detector
US6229877B1 (en) Radiation image recording and read-out method and apparatus
JPH0332371B2 (en)
JPH0634712Y2 (en) X-ray detector
US4996432A (en) Radiation detector
JPH01219693A (en) Radiation detector
EP1802998B1 (en) Detector for nuclear medicine
JP4388899B2 (en) X-ray inspection equipment
JPH03273687A (en) Radiation absorbent material and radiation detector
JP2000065933A (en) Radiation image detecting apparatus
JPS6276478A (en) Two-dimensional radiation detector
JP2561468B2 (en) Radiation detector
JP2733930B2 (en) Semiconductor radiation detector
TWI852249B (en) Method and system for performing diffractometry
JP3644306B2 (en) Radiation detector
JPS63117286A (en) Radiation detector
JPH02129969A (en) Semiconductor radiation detection element array