[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01214085A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01214085A
JPH01214085A JP3895388A JP3895388A JPH01214085A JP H01214085 A JPH01214085 A JP H01214085A JP 3895388 A JP3895388 A JP 3895388A JP 3895388 A JP3895388 A JP 3895388A JP H01214085 A JPH01214085 A JP H01214085A
Authority
JP
Japan
Prior art keywords
layer
substrate
conductivity type
semiconductor
uppermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3895388A
Other languages
Japanese (ja)
Inventor
Kazuki Tatsuoka
一樹 立岡
Masahiro Kume
雅博 粂
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3895388A priority Critical patent/JPH01214085A/en
Publication of JPH01214085A publication Critical patent/JPH01214085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a high output and long life semiconductor laser device in which a residual stress can be relieved by a method wherein a stripe type uppermost layer is provided directly above the position of a trench in a blocking layer and a layer beneath the blocking layer has a stripe type mesa directly below the uppermost layer. CONSTITUTION:On a one conductivity type compound semiconductor substrate 1, a layer 2 which has a conductivity type opposite to that of the substrate 1 and has a V-trench whose bottom reaches the substrate 1 is provided and an active layer 4 sandwiched between semiconductor layers 5 and 3 with larger forbidden band widths is provided on it. The semiconductor layer 3 closer to the substrate 1 has a conductivity type same as that of the substrate 1 and the other semiconductor layer 5 has a conductivity type opposite to that of the substrate 1. Further, an uppermost layer 6 with a conductivity type opposite of that of the substrate 1 is provided and its lower layer 5 form a protrusion above the trench. For instance, the uppermost n-type GaAs layer 6 and the n-type Ga0.55Al0.45As layer 5 under the layer 6 form a mesa at the position corresponding to the trench provided in the blocking layer 2 and the mesa relieves a stress in the active layer 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光デイスクメモリ、レーザプリンタ。[Detailed description of the invention] Industrial applications The present invention relates to an optical disk memory and a laser printer.

直接光通信などの高出力光源として用いられる半導体レ
ーザ装置に関するものである。
The present invention relates to a semiconductor laser device used as a high-output light source for direct optical communication and the like.

従来の技術 近年、半導体レーザば、光デイスク用光源を中心として
需要が増してきておシ、とりわけより高出力の半導体レ
ーザがディスクへの書き込み、消去速度の高速化のため
に要望されてhる。一方、半導体レーザは高出力化に伴
う−C1長時間動作のとき劣化が激しくなる傾向があシ
、高出力・長寿命の半導体レーザの開発は大きな課題と
なっている。劣化の原因については既にいくつか明らか
にされているが、その一つに、発光部である活性層内の
残留応力がある。第3図は、従来の構造の半導体レーザ
の断面図であるが、このレーザについて活性層4内の応
力分布を計算した結果を第4図に示す。溝の肩の部分に
おいて大きな応力の集中がみられ、これは劣化した素子
の非発光部が多く見られる場所と一致してお夛、残留応
力が素子の劣化の大きな原因であることがわかる。
BACKGROUND OF THE INVENTION In recent years, the demand for semiconductor lasers has been increasing, mainly as light sources for optical disks, and in particular, semiconductor lasers with higher output power are required for faster writing and erasing speeds on disks. . On the other hand, as semiconductor lasers increase in output, -C1 tends to deteriorate more severely when operated for long periods of time, and the development of high-output, long-life semiconductor lasers has become a major challenge. Several causes of deterioration have already been clarified, one of which is residual stress within the active layer, which is the light emitting part. FIG. 3 is a cross-sectional view of a semiconductor laser having a conventional structure, and FIG. 4 shows the results of calculating the stress distribution within the active layer 4 for this laser. A large concentration of stress can be seen at the shoulder of the groove, which coincides with the location where many non-light-emitting parts of a deteriorated element are seen, indicating that residual stress is a major cause of element deterioration.

発明が解決しようとする課題 残留応力は、長時間動作時に結晶転位の増殖をまねき、
発光効率の低下、動作電流の増大をひきおこす。そして
、残留応力はレーザ構造、材料組成に依存するが、本発
明は応力を低減することができる新しい構造の半導体レ
ーザ装置を提供するものである。
Problems to be Solved by the Invention Residual stress leads to the proliferation of crystal dislocations during long-term operation.
This causes a decrease in luminous efficiency and an increase in operating current. Although residual stress depends on the laser structure and material composition, the present invention provides a semiconductor laser device with a new structure that can reduce stress.

課題を解決するための手段 本発明の半導体レーザ装置は、ブロック層の溝の位置の
直上部にストライプ状の最上層があり、かつその下の層
は前記最上層の直下にストライプ状の凸部を有して構成
されている。
Means for Solving the Problems The semiconductor laser device of the present invention has a striped top layer directly above the groove position of the block layer, and a layer below the striped top layer has a striped convex portion directly below the top layer. It is configured with

作用 この場合の応力を計算した結果が第2図である。action Figure 2 shows the results of calculating the stress in this case.

溝の上部に設けたメサの効果で、活性層内の応力ii:
1X1oPa(パスカル)以下に低減されている。
Due to the effect of the mesa provided on the top of the groove, the stress in the active layer ii:
It is reduced to 1×1oPa (Pascal) or less.

実施例 第1図に本発明の実施例による半導体レーザ装置の断面
図を示す。第3図に示す従来例と異なるところは、最上
層のn −GaAs 6と、その下のn−Gaα55ム
Eα45ムS5が、ブロック層2に設けた溝と同じ位置
でメサを形成している点である。このメサが活性層4内
の応力を緩和する働きをしていることは、第2図に示す
計算結果を見れば明らかである。各層の組戎は第1図に
示す通りであり、各層の膜厚は−n−GaAs層2が1
7zm 、 p −GaムJA8層3が0.2μm %
GILAJAI層4が0.05 μm −n −GaA
AtAs N5がメサのない部分でI Q l1m、n
−GaAs層6が10μm、メサの高さが3.0μmで
ある。溝は、幅が7μm、深さが1.5μmである。素
子はメサを形成したG!LAS基板1上に2回の液相エ
ピタキシャル法で作製し、n −GaAji!A!!層
6のメサ形成、電翫7.8の蒸着後エビ成長面を下にし
てヒートシンク上にマウントする。
Embodiment FIG. 1 shows a sectional view of a semiconductor laser device according to an embodiment of the present invention. The difference from the conventional example shown in FIG. 3 is that the top layer of n-GaAs 6 and the n-Gaα55μEα45μS5 below form a mesa at the same position as the groove provided in the block layer 2. It is a point. It is clear from the calculation results shown in FIG. 2 that this mesa functions to relieve stress within the active layer 4. The structure of each layer is as shown in Figure 1, and the thickness of each layer is -n-GaAs layer 2 is 1
7zm, p-GaM JA8 layer 3 is 0.2 μm%
GILAJAI layer 4 is 0.05 μm −n −GaA
AtAs N5 is I Q l1m, n in the part without mesa
-The GaAs layer 6 is 10 μm, and the mesa height is 3.0 μm. The groove has a width of 7 μm and a depth of 1.5 μm. The element is G which formed a mesa! Fabricated on LAS substrate 1 by twice liquid phase epitaxial method, n -GaAji! A! ! After forming the mesa of layer 6 and depositing the wires 7 and 8, the shrimp is mounted on a heat sink with the growth side facing down.

第6図に本発明による半導体レーザと、従来の半導体レ
ーザを、70tl: 、5αlの条件で連続通電動作さ
せた結果を示す。従来のレーザに比べ寿命の延びは明ら
かであり、応力の緩和により劣化が抑制されていること
がわかる。
FIG. 6 shows the results of continuous energization operation of the semiconductor laser according to the present invention and the conventional semiconductor laser under conditions of 70 tl: and 5αl. It is clear that the lifespan is longer than that of conventional lasers, and deterioration is suppressed by stress relaxation.

発明の効果 本発明の半導体レーザは、高出力で高信頼性を有してい
るため、光ディスクや通信用として実用上火なる効果を
有する。
Effects of the Invention Since the semiconductor laser of the present invention has high output and high reliability, it has practical effects for use in optical discs and communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザの断面図、第2図は活性
層内の応力計算結果を示す図、第3図は従来の半導体レ
ーザの断面図、第4図はその活性層内応力計算結果を示
す図、第5図は連続通電試験の結果を示す図である。 1・・・・・・7−Gaム3基板、2I・・・・・n 
−GaAs層、3・・・・・・p −GILAJAg層
、4・・・・・・G&ム1111層、6・・・・・・n
 −GaAlAs層、 6 ・−・−−−n −GaJ
k1層。 代理人の氏名 弁理士中 尾 敏 男 ほか1名第 2
 図 XtOCβiフ 斗 /−F−Q山AS基板 2−−− n−QoLASy”1 3−−− P −(mo、ss Alo4s AS層4
−−−6a−o、B5 、l)o、tsAs層S −−
−n−(r(tO,5sA〕o、 as A 5層6−
−− yt−(to−AS層 第3図    7−Aa−Cre Ni/Att 9.
脹8 −−−  Cr Pt A 、L’LX!を第4
図 XLO7Chl −21(工高) 第5図 vJff−v次 時間ζもにr)
FIG. 1 is a cross-sectional view of the semiconductor laser of the present invention, FIG. 2 is a diagram showing the stress calculation results in the active layer, FIG. 3 is a cross-sectional view of the conventional semiconductor laser, and FIG. 4 is the stress calculation in the active layer. FIG. 5 is a diagram showing the results of a continuous current test. 1...7-Ga 3 board, 2I...n
-GaAs layer, 3...p -GILAJAg layer, 4...G&M1111 layer, 6...n
-GaAlAs layer, 6 ·-·---n -GaJ
k1 layer. Name of agent: Patent attorney Toshio Nakao and one other person No. 2
Figure
---6a-o, B5, l)o, tsAs layer S --
-n-(r(tO,5sA)o, as A 5 layers 6-
--yt-(to-AS layer Fig. 3 7-Aa-Cre Ni/Att 9.
Swelling 8 --- Cr Pt A, L'LX! The fourth
Fig.

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する化合物半導体基板上に、前記基板まで
達する深さのV形状の溝を有する前記基板と反対導電型
の層があり、その上に、より大きな禁制帯幅の半導体層
に上下からはさまれた薄い活性層があり、前記活性層の
両側の半導体層の導電型は、前記基板と近い方が基板と
同じ導電型で、池の方は反対の導電型であり、更に前記
基板と反対の導電型の最上層があり、前記最上層とその
下層が前記溝上で凸部を形成していることを特徴とする
半導体レーザ装置。
On a compound semiconductor substrate of one conductivity type, there is a layer of the opposite conductivity type to the substrate, which has a V-shaped groove deep enough to reach the substrate, and on top of that, a semiconductor layer with a larger forbidden band width is formed from above and below. There is a thin active layer sandwiched between the semiconductor layers, and the conductivity type of the semiconductor layers on both sides of the active layer is the same conductivity type as that of the substrate on the side closer to the substrate, and the opposite conductivity type on the side closer to the substrate. A semiconductor laser device characterized in that there is an uppermost layer of a conductivity type opposite to that of the uppermost layer, and the uppermost layer and the lower layer form a convex portion on the groove.
JP3895388A 1988-02-22 1988-02-22 Semiconductor laser device Pending JPH01214085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3895388A JPH01214085A (en) 1988-02-22 1988-02-22 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3895388A JPH01214085A (en) 1988-02-22 1988-02-22 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01214085A true JPH01214085A (en) 1989-08-28

Family

ID=12539563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3895388A Pending JPH01214085A (en) 1988-02-22 1988-02-22 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01214085A (en)

Similar Documents

Publication Publication Date Title
GB1385818A (en) Semiconductor double heterostructure diode laser
JPH077183A (en) Semiconductor light emitting device and fabrication thereof
KR101021988B1 (en) Semiconductor light emitting device
JPS61242093A (en) Improved simiconductor laser device
JPS609355B2 (en) Manufacturing method of semiconductor light emitting device
JPS60149156U (en) Semiconductor light source with laser and photodetector
US4740978A (en) Integrated quantum well lasers having uniform thickness lasing regions for wavelength multiplexing
JPH01214085A (en) Semiconductor laser device
JP2003218469A (en) Nitride system semiconductor laser device
JPS5932910B2 (en) semiconductor laser
JPS63258092A (en) Reverse channel substrate planar semiconductor laser
JPH01286479A (en) Semiconductor laser device
JP2002280674A (en) Semiconductor light emitting device and its manufacturing method
JP2002185037A (en) Light-emitting device
JPH01155678A (en) Semiconductor light emitting device
JPH03203282A (en) Semiconductor laser diode
JPH04192483A (en) Semiconductor laser array device
JPH10284756A (en) Light-emitting diode
JPS6333889A (en) Semiconductor laser device
JPS58162086A (en) Semiconductor laser
JPS63124489A (en) Self oscillation type semiconductor laser device
JPS60154587A (en) Semiconductor laser element
JPH01196889A (en) Semiconductor laser device
JPS62144380A (en) Manufacture of semiconductor laser device
JPH0438880A (en) Semiconductor light emitting element