[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01155678A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH01155678A
JPH01155678A JP31457787A JP31457787A JPH01155678A JP H01155678 A JPH01155678 A JP H01155678A JP 31457787 A JP31457787 A JP 31457787A JP 31457787 A JP31457787 A JP 31457787A JP H01155678 A JPH01155678 A JP H01155678A
Authority
JP
Japan
Prior art keywords
layer
light emitting
active layer
ingaasp
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31457787A
Other languages
Japanese (ja)
Inventor
Tatsuo Yokozuka
横塚 達男
Tadashi Narisawa
成沢 忠
Minoru Mihara
三原 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31457787A priority Critical patent/JPH01155678A/en
Publication of JPH01155678A publication Critical patent/JPH01155678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain light rays sufficient in intensity without degrading an active layer in crystalline quality by a method wherein a layer or layers separate from each other which are several Angstrom - several hundred Angstrom in thickness and doped with light emitting impurity 10<19>/cm<3> or more in doses are formed in an active layer section. CONSTITUTION:A semiconductor laser is composed of a p-electrode 1, a p-InP cap layer 2, a p-InGaAsP layer 3, a blocking layers 4 and 5, an n-InGaAsP layer 6, an n-substrate 7, and an n-electrode 8. An active layer is composed of such a structure that layer which are 20Angstrom thick and doped with erbium 10<20>/cm<3> and InGaAsP layers (150Angstrom ) coincided with the substrate 7 in lattice constant are alternately laminated. By these processes, the light emitting impurity contained in the active layer is made to be 10<19>/cm<3> or more in average concentration and a light emitting output power grows to be 10mW or more. And, a device of this design can be oscillated in a single frequency independently of an external environment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体発光装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a semiconductor light emitting device.

従来の技術 半導体レーザ、発光ダイオードの発光は従来半導体の固
有の電子状態を利用したものである。この種の発光装置
では他の原理を用いたものがある。
2. Description of the Related Art Semiconductor lasers and light emitting diodes emit light by utilizing the unique electronic state of conventional semiconductors. Some light emitting devices of this type use other principles.

それは活性層中に添加した希土類元素のイオンに由来す
る41電子の準位を利用した発光である。
This is light emission using the level of 41 electrons derived from rare earth element ions added to the active layer.

にこのレーザの構造を示す。shows the structure of this laser.

第3図は従来例のレーザ構造を示す。酸化膜ストライプ
形レーザーの一種である。P型InP(2)はP型電極
(1)との電気接触を良くするためのもので−あり、流
れ込んだ電流は酸化膜によって狭ばめられて活性層(6
)へと注入される。クラッド層((4)1(6))は屈
折率差により光のとじ込めをし、酸化層(3)によシ発
光部分を狭ばめ、全体としてしきい値電流を下げるよう
になっている。これらの構造はn+InP基板上ヴ)に
LPE法等を使用して作られる。
FIG. 3 shows a conventional laser structure. It is a type of oxide film stripe type laser. P-type InP (2) is used to improve electrical contact with the P-type electrode (1), and the current that flows into the active layer (6) is narrowed by the oxide film.
). The cladding layer ((4) 1(6)) confines light due to the difference in refractive index, and the oxide layer (3) narrows the light emitting area, lowering the threshold current as a whole. There is. These structures are fabricated on an n+InP substrate using the LPE method or the like.

まだ基板(7)の裏面にはダイオードのもう一方の電極
であるn型電極(8)がついている。活性層5はI n
GaAs P  であり、発光不純物としてエルビウム
(Er)が添加しである。エルビウムは■族元素の位置
に入シイオンとなり、イオン準位を形成し\発光に寄与
する。この原理を用いたレーザの特徴は単一波長発振が
容易なことである。またその発光波長は温度、製作条件
などに依存せずイオン固有の値になる。イオン種を変え
れば発光波長が変えられる。
The n-type electrode (8), which is the other electrode of the diode, is still attached to the back surface of the substrate (7). The active layer 5 is I n
It is GaAs P and is doped with erbium (Er) as a light-emitting impurity. Erbium becomes an ion at the position of the group ■ element, forms an ion level, and contributes to light emission. A feature of a laser using this principle is that single wavelength oscillation is easy. Furthermore, the emission wavelength does not depend on temperature, manufacturing conditions, etc., and is a value unique to the ion. By changing the ion species, the emission wavelength can be changed.

現在までこの原理を用いたレーザは液相エピタキシャル
成長法(LPE法)で成長をしている。
Until now, lasers using this principle have been grown by liquid phase epitaxial growth (LPE).

発光不純物は活性層の材料融液中に混入する事によシ添
加をしている。
Luminescent impurities are added by mixing them into the active layer material melt.

発明が解決しようとする問題点 現在実現されている発光不純物を用いたレーザではその
発光強度は実用上十分ではない。光強度を増大させるた
めには発光不純物の密度を増加すれば良い。しかし今ま
での結晶成長法であるLPE法では高濃度添加は無理で
ある。その理由はこのもう一つの問題点としては、不純
物を高密度に添加すると格子定数が変化するため活性層
と他の部分で格子不整合が起こる。格子不整合が存在す
ると、その上に成長する結晶中に転位が走る。そのため
良質の結晶が出きす、寿命の劣化などが起こる。
Problems to be Solved by the Invention Currently realized lasers using light-emitting impurities do not have sufficient luminous intensity for practical use. In order to increase the light intensity, it is sufficient to increase the density of luminescent impurities. However, it is impossible to add high concentrations using the LPE method, which is the conventional crystal growth method. Another problem is that when impurities are added at a high density, the lattice constant changes, causing lattice mismatch between the active layer and other parts. When lattice mismatch exists, dislocations run in the crystal that grows on top of it. As a result, good quality crystals are not produced and the lifespan is deteriorated.

本発明は上記従来技術に鑑み、格子不整合による結晶質
の劣化を解決するものである。
In view of the above-mentioned prior art, the present invention solves the problem of deterioration of crystal quality due to lattice mismatch.

問題点を解決するための手段 本発明は、活性層部に発光不純物として10” 9/l
yA以上添加した数Å〜数100への層を一層もしくは
離間して複数層形成する半導体発光装置である。
Means for Solving the Problems The present invention provides an active layer with a light-emitting impurity of 10"9/l.
This is a semiconductor light emitting device in which a single layer or a plurality of layers with a thickness of several Å to several 100 doped with yA or more are formed at a distance.

作  用 上記の4量電子をもつ希土類金属を発光不純物イオンと
してを含む層を持つ歪入り超格子構造を活性層とする発
光素子では、活性層の結晶質の低下をきたすことなく十
分な光強度が得られる素子構造を容易に形成するように
したものである。
Function: In a light-emitting device whose active layer is a strained superlattice structure having a layer containing the above-mentioned rare earth metal having 4 electrons as a light-emitting impurity ion, sufficient light intensity can be achieved without deteriorating the crystal quality of the active layer. It is possible to easily form an element structure that provides the following.

実施例 通常、LPE法に対して分子線エピタキシャル成長法(
MBE法)は超薄膜構造を容易に形成できる。発光不純
物を含んだ格子定数の異なる結晶でも、薄くしてゆけば
転位は走らないことが知られている。また薄い格子定数
の異なる結晶膜を基板結晶と同じ格子定数の結晶で交互
にはさんでも第1図は本発明の一実施例の半導体レーザ
ーの 4構造図である。1はP−電極、2はP −In
Pキャップ層、3はP −InGaAsP層、4,6は
プ07り層、6はn−InGaAsP層、7はn−基板
、8はn−電極である。第2図は第1図に示した半導体
し。
Examples Usually, molecular beam epitaxial growth method (
MBE method) can easily form an ultra-thin film structure. It is known that even in crystals with different lattice constants that contain light-emitting impurities, dislocations will not occur if the crystals are made thinner. Furthermore, thin crystal films having different lattice constants are alternately sandwiched between crystals having the same lattice constant as the substrate crystal. FIG. 1 shows four structural diagrams of a semiconductor laser according to an embodiment of the present invention. 1 is P-electrode, 2 is P-In
3 is a P cap layer, 3 is a P-InGaAsP layer, 4 and 6 are pulley layers, 6 is an n-InGaAsP layer, 7 is an n-substrate, and 8 is an n-electrode. FIG. 2 shows the semiconductor shown in FIG.

−ザの活性層領域即ち丸で囲んだ部分の拡大図である。- is an enlarged view of the active layer region, that is, the part surrounded by a circle.

活性層は発光不純物(エルビウム)を1020/−添加
した20入の層と基板と格子定数を合わせたInGaA
sP層(160人)を交互に積み重ねた構造となってい
る。これによシ活性層中の発光不純物の平均の濃度は1
o19/ctA以上となる。この様にして作製したレー
ザは発光出力10mW以上が得られる。しかも発光不純
物を用いているため、外部環境にかかわりなく単一波長
で発振をしまた波長変動もない。
The active layer is InGaA with a lattice constant matching that of the substrate and a 20 layer doped with a light emitting impurity (erbium) at 1020/-.
It has a structure in which sP layers (160 people) are stacked alternately. As a result, the average concentration of luminescent impurities in the active layer is 1
o19/ctA or higher. A laser manufactured in this manner can have a light emission output of 10 mW or more. Moreover, because it uses light-emitting impurities, it oscillates at a single wavelength regardless of the external environment, and there is no wavelength fluctuation.

発明の効果 本発明を利用した半導体レーザは高速・大容量通信の光
源として必要な高調波変調時の単一波長発振が可能とな
り、しかも温度による波長変動がないという特徴を有す
る。
Effects of the Invention A semiconductor laser using the present invention is capable of single-wavelength oscillation during harmonic modulation, which is necessary as a light source for high-speed, large-capacity communication, and has the feature that there is no wavelength fluctuation due to temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザの構造図、第
2図の活性層部分の拡大図、第3図は従来例のレーザの
構造図である。 1・・・・・・P−電極、2・・・・・・P −InP
13・・・・・・P−InGaAsP、 4−−−−−
・n−InP、、−5−・−P −I n P、 6−
・・・n−I nGaAs P、了・・・・・・n、−
M板、8・−・・・・n−を極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (r
FIG. 1 is a structural diagram of a semiconductor laser according to an embodiment of the present invention, FIG. 2 is an enlarged view of the active layer portion, and FIG. 3 is a structural diagram of a conventional laser. 1...P-electrode, 2...P-InP
13...P-InGaAsP, 4------
・n-InP, -5-・-P -I n P, 6-
...n-I nGaAs P, completed...n, -
M plate, 8...n- is the pole. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (r

Claims (2)

【特許請求の範囲】[Claims] (1)活性層部分に量電子を持つ原子を発光不純物とし
て10^1^9/cm^3以上添加した数Å〜数百Åの
層を1層もしくは間隔をおいて2層以上備えることを特
徴とする半導体発光装置。
(1) The active layer should be provided with one layer or two or more layers spaced apart from each other with a thickness of several Å to several hundred Å to which 10^1^9/cm^3 or more of atoms with quantum electrons are added as light-emitting impurities. Characteristic semiconductor light emitting device.
(2)発光不純物としてエルビウムを用いたことを特徴
とする特許請求の範囲第1項記載の半導体発光装置。
(2) The semiconductor light emitting device according to claim 1, characterized in that erbium is used as a light emitting impurity.
JP31457787A 1987-12-11 1987-12-11 Semiconductor light emitting device Pending JPH01155678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31457787A JPH01155678A (en) 1987-12-11 1987-12-11 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31457787A JPH01155678A (en) 1987-12-11 1987-12-11 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH01155678A true JPH01155678A (en) 1989-06-19

Family

ID=18054965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31457787A Pending JPH01155678A (en) 1987-12-11 1987-12-11 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH01155678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238428B2 (en) 2007-04-17 2012-08-07 Qualcomm Incorporated Pixel-by-pixel weighting for intra-frame coding
US8428133B2 (en) 2007-06-15 2013-04-23 Qualcomm Incorporated Adaptive coding of video block prediction mode
US8571104B2 (en) 2007-06-15 2013-10-29 Qualcomm, Incorporated Adaptive coefficient scanning in video coding
US10623774B2 (en) 2016-03-22 2020-04-14 Qualcomm Incorporated Constrained block-level optimization and signaling for video coding tools
US11323748B2 (en) 2018-12-19 2022-05-03 Qualcomm Incorporated Tree-based transform unit (TU) partition for video coding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238428B2 (en) 2007-04-17 2012-08-07 Qualcomm Incorporated Pixel-by-pixel weighting for intra-frame coding
US8406299B2 (en) 2007-04-17 2013-03-26 Qualcomm Incorporated Directional transforms for intra-coding
US8488672B2 (en) 2007-04-17 2013-07-16 Qualcomm Incorporated Mode uniformity signaling for intra-coding
US8428133B2 (en) 2007-06-15 2013-04-23 Qualcomm Incorporated Adaptive coding of video block prediction mode
US8488668B2 (en) 2007-06-15 2013-07-16 Qualcomm Incorporated Adaptive coefficient scanning for video coding
US8571104B2 (en) 2007-06-15 2013-10-29 Qualcomm, Incorporated Adaptive coefficient scanning in video coding
US8619853B2 (en) 2007-06-15 2013-12-31 Qualcomm Incorporated Separable directional transforms
US10623774B2 (en) 2016-03-22 2020-04-14 Qualcomm Incorporated Constrained block-level optimization and signaling for video coding tools
US11323748B2 (en) 2018-12-19 2022-05-03 Qualcomm Incorporated Tree-based transform unit (TU) partition for video coding

Similar Documents

Publication Publication Date Title
US5345462A (en) Semiconductor surface emitting laser having enhanced polarization control and transverse mode selectivity
EP0155152B1 (en) A semiconductor laser
KR910003465B1 (en) Opto-electronic device
KR940005764B1 (en) Laser diode array and manufacturing method thereof
JPS6286883A (en) Semiconductor laser
JPH01155678A (en) Semiconductor light emitting device
KR20110093839A (en) Surface-emitting semiconductor laser component having a vertical emission direction
US4759025A (en) Window structure semiconductor laser
JPH02125670A (en) Light-emitting element
JP2757633B2 (en) Surface emitting semiconductor laser
JPS61168981A (en) Semiconductor laser device
US4517674A (en) Zinc-diffused narrow stripe AlGaAs/GaAs double heterostructure laser
JPH1056200A (en) Light emitting diode and its manufacture
JP2679974B2 (en) Semiconductor laser device
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
JP2893990B2 (en) Semiconductor laser and manufacturing method thereof
JPH0572118B2 (en)
JPS6035590A (en) Planar type semiconductor light emitting device
JPH0728093B2 (en) Semiconductor laser device
JPH0438880A (en) Semiconductor light emitting element
JPS6350874B2 (en)
JPS607789A (en) Planar semiconductor light emitting device
JPS60134489A (en) Semiconductor laser device
JPH0114716B2 (en)
JPH054833B2 (en)