JPH0119266B2 - - Google Patents
Info
- Publication number
- JPH0119266B2 JPH0119266B2 JP14294681A JP14294681A JPH0119266B2 JP H0119266 B2 JPH0119266 B2 JP H0119266B2 JP 14294681 A JP14294681 A JP 14294681A JP 14294681 A JP14294681 A JP 14294681A JP H0119266 B2 JPH0119266 B2 JP H0119266B2
- Authority
- JP
- Japan
- Prior art keywords
- gaas
- capillary
- reaction apparatus
- heat treatment
- sample stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 28
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 12
- 238000010494 dissociation reaction Methods 0.000 claims description 10
- 230000005593 dissociations Effects 0.000 claims description 10
- -1 gallium arsenide (GaAs) compound Chemical class 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 150000001495 arsenic compounds Chemical class 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims 1
- 229910010271 silicon carbide Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 239000012535 impurity Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- LOPFACFYGZXPRZ-UHFFFAOYSA-N [Si].[As] Chemical compound [Si].[As] LOPFACFYGZXPRZ-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010581 sealed tube method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
本発明は化合物半導体の製造装置、より詳しく
は不純物をイオン注入したガリウム・ヒ素
(GaAs)半導体基板を活性化するための熱処理
装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor manufacturing apparatus, and more particularly to a heat treatment apparatus for activating a gallium arsenide (GaAs) semiconductor substrate into which impurities have been ion-implanted.
化合物半導体の一つであるGaAs半導体は、シ
リコン半導体に比べて電子移動度が大きいために
注目されており、すでに光半導体素子やマイクロ
波素子として実用化されている。かかるGaAs半
導体製造プロセスの中で行われる不純物ドーピン
グの技術としては、一般に良好な不純物分布が得
られることや再現性の良さからイオン注入法が利
用されているが、従来の方法による場合には、イ
オン注入後に基板を活性化させる必要があり、そ
のために800℃以上の高温で熱処理(アニール)
を行なわなければならない。しかしながら、
GaAs化合物は解離圧が大きいために、通常の炉
アニールを行なつたのではヒ素(As)が解離し
てしまい、また酸化などの問題も発生する。かか
る解離や酸化などを防止するために、従来技術に
おいてはアニールに種々の工夫をなしてきた。 GaAs semiconductors, which are a type of compound semiconductor, have attracted attention because of their higher electron mobility than silicon semiconductors, and have already been put into practical use as optical semiconductor devices and microwave devices. Ion implantation is generally used as an impurity doping technique in the GaAs semiconductor manufacturing process due to its ability to obtain a good impurity distribution and good reproducibility, but when using conventional methods, It is necessary to activate the substrate after ion implantation, which requires heat treatment (annealing) at a high temperature of 800°C or higher.
must be carried out. however,
GaAs compounds have a high dissociation pressure, so if normal furnace annealing is performed, arsenic (As) will dissociate, and problems such as oxidation will also occur. In order to prevent such dissociation and oxidation, various improvements have been made to annealing in the prior art.
例えば、保護膜を利用して行う保護膜アニール
の方法においては、不純物イオン注入後のGaAs
基板上にシリコン酸化物(SiO2)、シリコン窒化
物(Si3N4)などの保護膜を形成し、しかる後に
アニールを行つているが、かかる方法によつても
Asの解離は完全には避けられず、またクロム
(Cr)をドーピングしている半絶縁性GaAs基板
では、Crが保護膜に吸着される現象が起こり、
さらには、GaAs基板と保護膜との熱膨張係数の
差によりストレスが発生し、イオン注入層の性質
が変化するという難点がある。 For example, in the protective film annealing method that uses a protective film, GaAs after impurity ion implantation is
A protective film such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) is formed on the substrate, and then annealing is performed, but even with this method,
Dissociation of As cannot be completely avoided, and in semi-insulating GaAs substrates doped with chromium (Cr), a phenomenon occurs where Cr is adsorbed to the protective film.
Furthermore, there is a problem that stress is generated due to the difference in thermal expansion coefficient between the GaAs substrate and the protective film, and the properties of the ion implantation layer change.
また、同一管内にGaAs基板と金属Asを封じ込
んでアニールする閉管法(または封管法)の場合
には、金属Asから出るAs圧の制御が難かしい上
に、冷却時にAsがGaAs基板表面や管内壁に凝着
して汚染し、さらにはその取り扱いも難しいとい
う問題がある。 In addition, in the case of the closed tube method (or sealed tube method) in which a GaAs substrate and metal As are sealed in the same tube and annealed, it is difficult to control the As pressure released from the metal As, and when cooling, As is released from the surface of the GaAs substrate. There are problems in that it adheres to the inner walls of pipes and contaminates them, and is also difficult to handle.
上記した問題は、ガリウムヒ素(GaAs)化合
物半導体の熱処理装置にして、ふたを係合してな
る密閉型の反応装置を設け、概反応装置の内部に
はGaAs基板とGaAsよりも高い平衡解離圧を有
するヒ素化合物をのせる試料台と熱電対を配設
し、前記反応装置の相対する両側にはそれぞれ不
活性ガスを導入し排出する毛管を接続し、不活性
ガス導入用毛管には調圧用の他の毛管を接続し、
各毛管にはそれぞれコツクを取りつけ、一方前記
反応装置を覆う加熱炉を移動可能に設けたことを
特徴とする半導体の熱処理装置によつて解決され
る。 The above-mentioned problem can be solved by using a heat treatment equipment for gallium arsenide (GaAs) compound semiconductors, which is equipped with a closed reactor with an engaged lid, and the inside of the reactor has a GaAs substrate and an equilibrium dissociation pressure higher than that of GaAs. A sample stage on which an arsenic compound having Connect the other capillary of
The problem is solved by a semiconductor heat treatment apparatus characterized in that each capillary tube is equipped with a pot, and a heating furnace covering the reaction apparatus is movably provided.
本発明は、GaAs基板を800℃以上でアニール
するに際して問題となるAsの解離と酸化を防止
するために、アニール温度においてGaAs化合物
よりも解離圧の高いAs化合物を同一反応系中に
置き、そのAs圧によつてGaAs基板表面からの
Asの解離を防ごうとするものであり、取り扱い
も簡単で操作上の危険も少なく、かつ再現性のよ
い熱処理装置を提供するものである。 In order to prevent the dissociation and oxidation of As, which is a problem when annealing a GaAs substrate at 800°C or higher, the present invention aims to place an As compound, which has a higher dissociation pressure than the GaAs compound at the annealing temperature, in the same reaction system. From the GaAs substrate surface due to As pressure
The purpose is to prevent the dissociation of As, and to provide a heat treatment device that is easy to handle, has little operational risk, and has good reproducibility.
以下、本発明の実施例を添付図面にもとづいて
説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
添付図面は本発明にかかる熱処理装置を模式図
的に示したものであるが、本装置は大きく分ける
と反応装置、加熱装置ならびに雰囲気調整の配管
制御系から構成される。反応装置1は、上部にふ
た2をすり合わせて密閉型に形成され、その内部
には試料台3を設け、該試料台3の下面には熱電
対4をその先端が接触するように配設する。ここ
で、反応装置1は、一般には石英製であるが、ア
ルミナ(Al2O3)、カーボンあるいは他の耐熱材
料を使用してもよく、またふた2はその自重によ
つても気密性が保たれるように比較的大型にかつ
重い材料で設計されているが、さらにその気密性
を高めるべく、例えば重りやバネ等を利用して加
圧するようにし、または係合部に溝を形成して多
重に突き合わせるようにしてもよい。 The accompanying drawings schematically show a heat treatment apparatus according to the present invention, which is broadly divided into a reaction apparatus, a heating apparatus, and a piping control system for adjusting the atmosphere. The reactor 1 is formed into a closed type by rubbing a lid 2 on the top, a sample stage 3 is provided inside the reactor 1, and a thermocouple 4 is arranged on the bottom surface of the sample stage 3 so that its tip is in contact with the reactor 1. . Here, the reactor 1 is generally made of quartz, but may also be made of alumina (Al 2 O 3 ), carbon, or other heat-resistant materials, and the lid 2 is not airtight due to its own weight. It is designed to be relatively large and made of heavy material in order to maintain its airtightness, but in order to further improve its airtightness, pressure may be applied using weights, springs, etc., or grooves may be formed in the engaging portion. It is also possible to perform multiple matching.
反応装置1の一方側面に不活性ガス吸入用の第
1の毛管5を、反対側面に排気用の第2の毛管
5′を取り付け、さらに第1の毛管5の途中にAs
圧調整用の第3の毛管6を取り付け、それぞれの
毛管には反応装置1内のガスを置換したり、ガス
圧を調整するための第1のコツク7、第2のコツ
ク8および第3のコツク9を設けてある。ここで
毛管を使用した理由は、管内のガス逆流を防止す
るのに効果があるためである。なお、図中、1
0,10′は流量計を、11は圧力計をそれぞれ
表わす。 A first capillary tube 5 for inert gas intake is attached to one side of the reactor 1, a second capillary tube 5' for exhaust gas is attached to the opposite side, and an As
A third capillary tube 6 for pressure adjustment is attached, and each capillary tube has a first capillary tube 7, a second capillary tube 8, and a third capillary tube for replacing the gas in the reaction device 1 and adjusting the gas pressure. Kotuku 9 is provided. The reason for using a capillary tube here is that it is effective in preventing gas backflow within the tube. In addition, in the figure, 1
0 and 10' represent flow meters, and 11 represents a pressure gauge, respectively.
加熱装置としては、反応装置全体を外熱式に加
熱するための抵抗加熱炉12を設け、これを移動
可能とし、加熱時にはそれを図中白抜き矢印の方
向へ移動させる。 As a heating device, a resistance heating furnace 12 for externally heating the entire reaction device is provided, and this is movable, and during heating, it is moved in the direction of the white arrow in the figure.
以上の構成により、まず反応装置1内の試料台
3上に不純物イオン注入を終えたGaAs基板13
と反応剤としてのヒ素シリコン化合物(AsSi)
14の粉末を載せ、次に第1のコツク7と第2の
コツク8を開き、第3のコツク9を開いて第1の
毛管5の一端からアルゴン(Ar)などの不活性
ガスを流し込み(図中実線矢印方向)、反応装置
1内をArガスで換置する。前記のようにして
GaAs基板の酸化を防いだ上で、続いて加熱炉1
2を反応装置1をカバーする位置まで移動し(図
中白抜き矢印方向)、昇温を開始する。ここで、
反応剤としてのAsSi化合物は700℃以上において
GaAs化合物の平衡As圧よりも高いAs圧を発生
するので、GaAs基板のアニール温度(850℃)
に達する以前に、まず第2のコツク8を閉じて
Asガスが外へ流出しないようにし、続いて第3
のコツク9及び第1のコツク7の開度を調節しな
がら反応装置1内のAs圧を所定の圧力に調整し、
場合によつては第1のコツク7を閉じて第3のコ
ツク9の開度のみによつてAs圧の調整を行う。 With the above configuration, first, the GaAs substrate 13, which has been implanted with impurity ions, is placed on the sample stage 3 in the reaction device 1.
and arsenic silicon compound (AsSi) as a reactant
14 powder, then open the first cap 7 and second cap 8, open the third cap 9, and pour inert gas such as argon (Ar) from one end of the first capillary 5 ( (in the direction of the solid line arrow in the figure), the inside of the reactor 1 is replaced with Ar gas. as above
After preventing the oxidation of the GaAs substrate, the heating furnace 1
2 to a position covering the reactor 1 (in the direction of the white arrow in the figure) and start raising the temperature. here,
AsSi compound as a reactant is used at temperatures above 700℃.
The annealing temperature of the GaAs substrate (850°C) generates an As pressure higher than the equilibrium As pressure of the GaAs compound.
Before reaching , first close the second Kotoku 8.
Prevent As gas from escaping, and then
Adjust the As pressure in the reactor 1 to a predetermined pressure while adjusting the opening degree of the first socket 9 and the first socket 7,
In some cases, the first pot 7 is closed and the As pressure is adjusted only by the opening degree of the third pot 9.
アニール終了後は、まず第2のコツク8を開き
第3のコツク9を閉じて第1のコツク7を開き温
度降下にしたがつて除々に反応装置1内をArガ
スで置換する。この際、Arガスの置換速度には
十分注意する必要があり、例えば温度がまだ高い
うちに(Asの解離が進行している温度範囲で)
急激に置換すると、GaAs基板からAsが解離する
危険性があり、逆に低温まで置換が完了しない場
合にはAsガスが凝着して、GaAs基板表面を汚染
してしまう危険性がある。したがつて、あらかじ
め実験によつて操作条件をよくつかんでおく必要
がある。 After the annealing is completed, the second tank 8 is first opened, the third tank 9 is closed, and the first tank 7 is opened and the inside of the reactor 1 is gradually replaced with Ar gas as the temperature decreases. At this time, it is necessary to pay close attention to the replacement rate of Ar gas, for example, while the temperature is still high (in the temperature range where As dissociation is progressing).
If the substitution is carried out rapidly, there is a risk that As will dissociate from the GaAs substrate.On the other hand, if the substitution is not completed until the temperature reaches a low temperature, there is a risk that As gas will adhere and contaminate the surface of the GaAs substrate. Therefore, it is necessary to thoroughly understand the operating conditions through experiments in advance.
なお、本実施例においては、反応剤として
AsSi化合物を用いたが、使用する温度領域にお
いてGaAs化合物の平衡As圧よりも高いAs圧を
発生する物質であれば何を使用してもよい。 In addition, in this example, as a reactant,
Although an AsSi compound was used, any material may be used as long as it generates an As pressure higher than the equilibrium As pressure of the GaAs compound in the temperature range used.
また他の実施例においては、加熱方式に高周波
加熱を試みた。すなわち、反応装置内にカーボン
製の試料台を設け、該試料台上にGaAs基板と
AsSi化合物を載せ、高周波加熱を行うものであ
るが、この際GaAs化合物を載せる試料台とAsSi
化合物を載せる試料台の形状と寸法を適宜設定
し、昇温速度や到達温度などの加熱特性を制御す
ることが可能であり、さらに良好な結果を得るこ
とができた。 In other examples, high frequency heating was tried as a heating method. That is, a carbon sample stand is provided in the reaction apparatus, and a GaAs substrate and a GaAs substrate are placed on the sample stand.
The AsSi compound is placed on it and high-frequency heating is performed.At this time, the sample stage on which the GaAs compound is placed and the AsSi
By appropriately setting the shape and dimensions of the sample stage on which the compound is placed, it was possible to control the heating characteristics, such as the rate of temperature increase and the temperature reached, and we were able to obtain even better results.
本発明は、以上設明したように、同一反応装置
内にGaAs基板と該GaAs基板よりも平衡As圧の
高いヒ素化合物とを入れてアニールするので、
GaAs基板からのAsの解離が防止でき、しかも金
属Asを使用する場合のように大量のAsガスの発
生がないので危険が少なく、例えば長時間アニー
ルが可能になるなど熱処理の自由度も増し、さら
には毛管を利用して雰囲気調整をするので再現性
がよく、また不活性ガスをうまく利用して酸化や
Asガスによる汚染も防止することができるので、
そのおよぼす効果は非常に大きなものである。 As set forth above, in the present invention, a GaAs substrate and an arsenic compound having a higher equilibrium As pressure than the GaAs substrate are placed in the same reaction apparatus and annealed.
The dissociation of As from the GaAs substrate can be prevented, and there is no danger of generating a large amount of As gas, unlike when using metal As, so there is less danger, and the degree of freedom in heat treatment is increased, for example by allowing long-term annealing. Furthermore, since the atmosphere is adjusted using capillary tubes, reproducibility is good, and inert gas is used well to prevent oxidation.
Contamination by As gas can also be prevented, so
The effect it has is very large.
図は本発明にかかる熱処理装置の模式図であ
る。
1……反応装置、2……ふた、3……試料台、
4……熱電対、5,5′,6……毛管、7,8,
9……コツク、10,10′……流量計、11…
…圧力計、12……加熱炉、13……GaAs基
板、14……AsSi化合物。
The figure is a schematic diagram of a heat treatment apparatus according to the present invention. 1... Reactor, 2... Lid, 3... Sample stand,
4...Thermocouple, 5,5', 6...Capillary, 7,8,
9...Kotuku, 10,10'...Flowmeter, 11...
...Pressure gauge, 12...Heating furnace, 13...GaAs substrate, 14...AsSi compound.
Claims (1)
理装置にして、ふたを係合してなる密閉型の反応
装置を設け、概反応装置の内部にはGaAs基板と
GaAsよりも高い平衡解離圧を有するヒ素化合物
をのせる試料台と熱電対を配設し、前記反応装置
の相対する両側にはそれぞれ不活性ガスを導入し
排出する毛管を接続し、不活性ガス導入用毛管に
は調圧用の他の毛管を接続し、各毛管にはそれぞ
れコツクを取りつけ、一方前記反応装置を覆う加
熱炉を移動可能に設けたことを特徴とする半導体
の熱処理装置。 2 該反応装置内の試料台を炭素もしくは炭化ケ
イ素で形成し、該反応装置の外部には前記試料台
を加熱する高周波電力発生装置が設けられたこと
を特徴とする特許請求の範囲第1項記載の半導体
の熱処理装置。[Scope of Claims] 1. A heat treatment apparatus for gallium arsenide (GaAs) compound semiconductors, including a closed type reaction apparatus with an engaged lid, and generally inside the reaction apparatus, a GaAs substrate and
A sample stage on which an arsenic compound having a higher equilibrium dissociation pressure than GaAs is placed and a thermocouple are installed, and capillary tubes for introducing and discharging an inert gas are connected to opposite sides of the reactor, respectively. 1. A semiconductor heat treatment apparatus, characterized in that an introduction capillary is connected to another capillary for pressure regulation, each capillary is equipped with a pot, and a heating furnace covering the reaction apparatus is movably provided. 2. Claim 1, characterized in that a sample stage within the reaction apparatus is made of carbon or silicon carbide, and a high-frequency power generator for heating the sample stage is provided outside the reaction apparatus. The semiconductor heat treatment apparatus described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14294681A JPS5844712A (en) | 1981-09-10 | 1981-09-10 | Heat treatment device for semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14294681A JPS5844712A (en) | 1981-09-10 | 1981-09-10 | Heat treatment device for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5844712A JPS5844712A (en) | 1983-03-15 |
JPH0119266B2 true JPH0119266B2 (en) | 1989-04-11 |
Family
ID=15327320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14294681A Granted JPS5844712A (en) | 1981-09-10 | 1981-09-10 | Heat treatment device for semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5844712A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100262417B1 (en) * | 1992-06-04 | 2000-08-01 | 엔다 나오또 | Film adhesive and production thereof |
-
1981
- 1981-09-10 JP JP14294681A patent/JPS5844712A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5844712A (en) | 1983-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5429498A (en) | Heat treatment method and apparatus thereof | |
US4846926A (en) | HcCdTe epitaxially grown on crystalline support | |
US4275094A (en) | Process for high pressure oxidation of silicon | |
US5662469A (en) | Heat treatment method | |
JPH03224223A (en) | Selective cvd method and cvd device | |
KR20050031058A (en) | Thermal treating apparatus | |
US5500388A (en) | Heat treatment process for wafers | |
US4599247A (en) | Semiconductor processing facility for providing enhanced oxidation rate | |
JP2008239480A (en) | Semiconductor crystal | |
JPH0119266B2 (en) | ||
JPS61247683A (en) | Pulling device for single crystal sapphire | |
US3658032A (en) | Reactor for the formation of material on a substrate | |
JP5224256B2 (en) | Single crystal silicon carbide substrate processing method, semiconductor device manufacturing method | |
JP3240180B2 (en) | Heat treatment equipment | |
JPS6224630A (en) | Formation of thermal oxidation film and device therefor | |
JP2715645B2 (en) | Semiconductor closed tube diffusion method and closed tube diffusion device | |
US5340553A (en) | Method of removing oxygen from a controlled atmosphere | |
JPS6313340B2 (en) | ||
JPS6212697A (en) | Production of silicon carbide single crystal film | |
JPS5856341A (en) | Heat treatment and heat treatment device | |
JPS6230686B2 (en) | ||
JPH10265300A (en) | Heat treating device for fluorite single crystal and heat treatment therefor | |
JPH09295899A (en) | Heat treatment of crystal and apparatus therefor | |
JPH05299370A (en) | Heat-treating device | |
JPS6381933A (en) | Formation of single thin-film |